請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25370完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江衍偉 | |
| dc.contributor.author | Chia-Chih Kuo | en |
| dc.contributor.author | 郭嘉志 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:10:47Z | - |
| dc.date.copyright | 2007-07-16 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-07 | |
| dc.identifier.citation | [1] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett., vol. 58, no. 20, pp. 2059-2062, May 1987.
[2] S. John, “Strong localization of photons in certain disordered dielectric super lattices,” Phys. Rev. Lett., vol. 58, no. 23, pp. 2486-2489, June 1987. [3] K. Srinivasan, O. Painter, R. Colombelli, C. Gmachl, D. M. Tennant, A. M. Sergent, D. L Sivco, A. Y. Cho, M. Troccoli, and F. Capasso, “Lasing mode pattern of a quantum cascade photonic crystal surface-emitting microcavity laser,” Appl. Phys. Lett., vol. 84, no. 21, pp. 4164-4166, May 2004. [4] W. J. Kim, J. D. O’Brien, “Optimization of a two-dimensional photonic-crystal waveguide branch by simulated annealing and the finite element method,” J. Opt. Soc. Am. B, vol. 21, no. 2, pp. 289-295, Feb. 2004. [5] J. Limpert, T. Schreiber, A. Liem, S. Nolte, H. Zellmer, T. Peschel, V. Guyenot and A. Tünnermann, “Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation,” Opt. Express, vol. 11, no. 22, pp. 2982-2990, Sep. 2003. [6] S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Guided modes in photonic crystal slabs,” Phys. Rev. B, vol. 60, no. 8, pp. 5751-5758, Aug. 1999. [7] S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Linear waveguides in photonic-crystal slabs,” Phys. Rev. B, vol. 62, no. 12, pp. 8212-8222, Sep. 2000. [8] R. L. Chern, C. C. Chang, C. C. Chang, and R. R. Hwang, “Large full band gaps for photonic crystals in two dimensions computed by an inverse method with multigrid acceleration,” Phys. Rev. E, vol. 68, pp. 026704, Aug. 2003. [9] L. Shen, A. Ye, and S. He, “Design of two dimensional photonic crystals with large absolute band gaps using a genetic algorithm,” Phys. Rev. B, vol. 68, pp. 035109, July 2003. [10] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi, “Optimization by simulated annealing,” Science, vol. 220, no. 5498, pp. 671-680, May 1983. [11] H. Kogelnik, and V. Ramaswamy, “Scaling rules for thin-film optical waveguides,” Appl. Opt. vol. 13, no. 8, pp. 1857-1862, Aug. 1974. [12] M. Qiu, “Effective index method for heterostructure-slab-waveguide-based two dimensional photonic crystals,” Appl. Phys. Lett. vol. 81, no. 7, pp. 1163-1165, Aug. 2002. [13] C. Chen, S. Shi, J. Murakowski, and D. W. Prather, “Effective index method in modeling of high index contrast planar photonic crystals,” Proc. SPIE vol. 5360, pp. 390-399, July 2004. [14] S. Shi, C. Chen, and D. W. Prather, “Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs,” Appl. Phys. Lett. vol. 86, pp. 043104, Jan. 2005. [15] S. Guo, S. Albin, “Simple plane wave implementation method for photonic crystal calculations,” Opt. Express, Vol. 11, no. 2, pp. 167-175, Jan. 2003. [16] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller. “Equation of state calculations by fast computing machines,” J. Chem. Phys. vol. 21, no. 6, pp. 1087-1092, Jun. 1953. [17] M. S. Kim and C. C. Guest, “Simulated annealing algorithm for binary phase only filters in pattern classification,” Appl. Opt., vol. 29, no. 8, pp. 1203-1208, July 1990. [18] V. Cerny “Thermodynamical Approach to the Traveling Salesman Problem: An Efficient Simulation Algorithm,” J. Opt. Theory Appl., vol. 45, no. 1, pp. 505-516, Jan. 1985. [19] R. R. Brooks, S. S. Iyenger, and S. Rai. “Comparison of Genetic Algorithms and Simulated Annealing for Cost Minimization in a Multisensor System,” Optical Engineering, vol. 37, no. 2, pp. 505-516 Feb. 1998. [20] P. K. Tien, “Light waves in thin films and integrated optics,” Appl. Opt. vol. 10, no. 11, pp. 2395-2313, Nov. 1971. [21] R. G. Hunsperger, Integrated Optics: Theory and Technology (Springer Verlag, 2002). [22] D. Gloge, “Weakly guiding fibers,” Appl. Opt. vol. 10, pp. 2252-2258, Oct. 1971. [23] H. Kogelnik and H. P. Weber, “Rays, stored energy, and power flow in dielectric waveguides,” J. Opt. Soc. Am. Vol. 64, no. 2, pp. 174-185, Feb. 1974. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25370 | - |
| dc.description.abstract | 本論文中,我們結合模擬退火法與等效折射率法來合成光子晶體平板線型波導,使其缺陷模態具有最低或固定群速度。模擬退火法是處理非線性最佳化問題之機率迭代法。迭代過程中,我們以傳統平面波展開法計算二維光子晶體之能帶。等效折射率法乃利用二維計算來作等效近似,以處理三維平板波導問題。使用等效折射率法時,我們結合傳統及修訂的平面波展開法來得出最終之色散關係圖。數值結果顯示模擬退火法與等效折射率法的結合,確實可以合成ㄧ具有最低或固定群速度之光子晶體平板線型波導。 | zh_TW |
| dc.description.abstract | The simulated annealing and effective index methods are used to synthesize a photonic crystal slab line-defect waveguide with its line-defect mode at a minimal group velocity or a fixed group velocity. The simulated annealing is a probabilistic iterative algorithm for finding a global extremum in a nonlinear optimization problem. In this thesis, the conventional plane wave expansion method is used to calculate the band diagram at each step of the simulated annealing process. The effective index method is an approximation algorithm for reducing the three-dimensional slab waveguide problem to an approximate two-dimensional one. The conventional and revised plane wave expansion methods are used together with the effective index method to calculate the final band diagram. The numerical results show that the simulated annealing and effective index methods can effectively be used to synthesize a photonic crystal slab line-defect waveguide with its line-defect mode at a minimal group velocity or a fixed group velocity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:10:47Z (GMT). No. of bitstreams: 1 ntu-96-R94942077-1.pdf: 2507477 bytes, checksum: c464018d76c528756080b86a93318885 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | List of Tables
List of Figures Chapter 1 Introduction..........1 Chapter 2 Plane Wave Expansion Method..........6 2.1 Conventional plane wave expansion method..6 2.2 Revised plane wave expansion method......9 Chapter 3 Simulated Annealing (SA)...16 3.1 Simulated annealing....16 3.2 Synthesis of photonic crystals by using simulated annealing ..20 Chapter 4 Effective Index Method (EIM).......29 4.1 Effective guide index of a slab waveguide..29 4.2 Modeling photonic crystal slabs by EIM....32 Chapter 5 Numerical Results...39 5.1 Synthesis of 2D perfect PCs with photonic band gap (PBG).... 39 5.1.1 Synthesis of 2D perfect PCs with PBG in TE case..40 5.1.2 Synthesis of 2D perfect PCs with PBG in TM case..42 5.2 Band diagram of a perfect PC slab........43 5.3 Synthesis of 2D PC line-defect waveguides..45 5.3.1 Synthesis of 2D PC line-defect waveguides in TE case..... 46 5.3.2 Synthesis of 2D PC line-defect waveguides in TM case..... 50 5.4 Band diagram of a PC slab line-defect waveguide....52 Chapter 6 Conclusions......84 References.........86 | |
| dc.language.iso | en | |
| dc.title | 利用模擬退火法與等效折射率法合成光子晶體平板線型波導 | zh_TW |
| dc.title | Synthesis of Photonic Crystal Slab Line-Defect Waveguides
Using Simulated Annealing and Effective Index Methods | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊志忠,張宏鈞,邱奕鵬 | |
| dc.subject.keyword | 模擬退火法,等效折射率法,光子晶體平板線型波導, | zh_TW |
| dc.subject.keyword | Simulated Annealing,Effective Index Method,Photonic Crystal Slab Line-Defect Waveguides, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-07-10 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 2.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
