請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25343完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅?升(Wan-Sheng Lo) | |
| dc.contributor.author | Yan-Ru Long | en |
| dc.contributor.author | 龍彥儒 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:09:47Z | - |
| dc.date.copyright | 2007-07-20 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-12 | |
| dc.identifier.citation | 1. Adams, I. R., and J. V. Kilmartin. 2000. Spindle pole body duplication: a model for centrosome duplication? Trends Cell Biol 10:329-35.
2. Agalioti, T., G. Chen, and D. Thanos. 2002. Deciphering the transcriptional histone acetylation code for a human gene. Cell 111:381-92. 3. Ainsztein, A. M., S. E. Kandels-Lewis, A. M. Mackay, and W. C. Earnshaw. 1998. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J Cell Biol 143:1763-74. 4. Andrews, P. D., E. Knatko, W. J. Moore, and J. R. Swedlow. 2003. Mitotic mechanics: the auroras come into view. Curr Opin Cell Biol 15:672-83. 5. Barratt, M. J., C. A. Hazzalin, E. Cano, and L. C. Mahadevan. 1994. Mitogen-stimulated phosphorylation of histone H3 is targeted to a small hyperacetylation-sensitive fraction. Proc Natl Acad Sci U S A 91:4781-5. 6. Bayliss, R., T. Sardon, I. Vernos, and E. Conti. 2003. Structural basis of Aurora-A activation by TPX2 at the mitotic spindle. Mol Cell 12:851-62. 7. Biggins, S., F. F. Severin, N. Bhalla, I. Sassoon, A. A. Hyman, and A. W. Murray. 1999. The conserved protein kinase Ipl1 regulates microtubule binding to kinetochores in budding yeast. Genes Dev 13:532-44. 8. Bischoff, J. R., and G. D. Plowman. 1999. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 9:454-9. 9. Bolton, M. A., W. Lan, S. E. Powers, M. L. McCleland, J. Kuang, and P. T. Stukenberg. 2002. Aurora B kinase exists in a complex with survivin and INCENP and its kinase activity is stimulated by survivin binding and phosphorylation. Mol Biol Cell 13:3064-77. 10. Burckstummer, T., K. L. Bennett, A. Preradovic, G. Schutze, O. Hantschel, G. Superti-Furga, and A. Bauch. 2006. An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3:1013-9. 11. Carey, M. 2005. Chromatin marks and machines, the missing nucleosome is a theme: gene regulation up and downstream. Mol Cell 17:323-30. 12. Carmena, M., and W. C. Earnshaw. 2003. The cellular geography of aurora kinases. Nat Rev Mol Cell Biol 4:842-54. 13. Castro, A., Y. Arlot-Bonnemains, S. Vigneron, J. C. Labbe, C. Prigent, and T. Lorca. 2002. APC/Fizzy-Related targets Aurora-A kinase for proteolysis. EMBO Rep 3:457-62. 14. Castro, A., S. Vigneron, C. Bernis, J. C. Labbe, C. Prigent, and T. Lorca. 2002. The D-Box-activating domain (DAD) is a new proteolysis signal that stimulates the silent D-Box sequence of Aurora-A. EMBO Rep 3:1209-14. 15. Chan, C. S., and D. Botstein. 1993. Isolation and characterization of chromosome-gain and increase-in-ploidy mutants in yeast. Genetics 135:677-91. 16. Cheeseman, I. M., S. Anderson, M. Jwa, E. M. Green, J. Kang, J. R. Yates, 3rd, C. S. Chan, D. G. Drubin, and G. Barnes. 2002. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 111:163-72. 17. Cheeseman, I. M., C. Brew, M. Wolyniak, A. Desai, S. Anderson, N. Muster, J. R. Yates, T. C. Huffaker, D. G. Drubin, and G. Barnes. 2001. Implication of a novel multiprotein Dam1p complex in outer kinetochore function. J Cell Biol 155:1137-45. 18. Cheeseman, I. M., D. G. Drubin, and G. Barnes. 2002. Simple centromere, complex kinetochore: linking spindle microtubules and centromeric DNA in budding yeast. J Cell Biol 157:199-203. 19. Cheeseman, I. M., M. Enquist-Newman, T. Muller-Reichert, D. G. Drubin, and G. Barnes. 2001. Mitotic spindle integrity and kinetochore function linked by the Duo1p/Dam1p complex. J Cell Biol 152:197-212. 20. Cheetham, G. M., R. M. Knegtel, J. T. Coll, S. B. Renwick, L. Swenson, P. Weber, J. A. Lippke, and D. A. Austen. 2002. Crystal structure of aurora-2, an oncogenic serine/threonine kinase. J Biol Chem 277:42419-22. 21. Cosgrove, M. S., and C. Wolberger. 2005. How does the histone code work? Biochem Cell Biol 83:468-76. 22. Crane, R., A. Kloepfer, and J. V. Ruderman. 2004. Requirements for the destruction of human Aurora-A. J Cell Sci 117:5975-83. 23. Crosio, C., N. Cermakian, C. D. Allis, and P. Sassone-Corsi. 2000. Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci 3:1241-7. 24. de la Cruz, X., S. Lois, S. Sanchez-Molina, and M. A. Martinez-Balbas. 2005. Do protein motifs read the histone code? Bioessays 27:164-75. 25. De Souza, C. P., A. H. Osmani, L. P. Wu, J. L. Spotts, and S. A. Osmani. 2000. Mitotic histone H3 phosphorylation by the NIMA kinase in Aspergillus nidulans. Cell 102:293-302. 26. Delaval, B., A. Ferrand, N. Conte, C. Larroque, D. Hernandez-Verdun, C. Prigent, and D. Birnbaum. 2004. Aurora B -TACC1 protein complex in cytokinesis. Oncogene 23:4516-22. 27. Dewar, H., K. Tanaka, K. Nasmyth, and T. U. Tanaka. 2004. Tension between two kinetochores suffices for their bi-orientation on the mitotic spindle. Nature 428:93-7. 28. Eyers, P. A., and J. L. Maller. 2004. Regulation of Xenopus Aurora A activation by TPX2. J Biol Chem 279:9008-15. 29. Fischle, W., B. S. Tseng, H. L. Dormann, B. M. Ueberheide, B. A. Garcia, J. Shabanowitz, D. F. Hunt, H. Funabiki, and C. D. Allis. 2005. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 438:1116-22. 30. Fitzgerald-Hayes, M., L. Clarke, and J. Carbon. 1982. Nucleotide sequence comparisons and functional analysis of yeast centromere DNAs. Cell 29:235-44. 31. Fry, C. J., M. A. Shogren-Knaak, and C. L. Peterson. 2004. Histone H3 amino-terminal tail phosphorylation and acetylation: synergistic or independent transcriptional regulatory marks? Cold Spring Harb Symp Quant Biol 69:219-26. 32. Gallinari, P., S. Di Marco, P. Jones, M. Pallaoro, and C. Steinkuhler. 2007. HDACs, histone deacetylation and gene transcription: from molecular biology to cancer therapeutics. Cell Res 17:195-211. 33. Gassmann, R., A. Carvalho, A. J. Henzing, S. Ruchaud, D. F. Hudson, R. Honda, E. A. Nigg, D. L. Gerloff, and W. C. Earnshaw. 2004. Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J Cell Biol 166:179-91. 34. Giet, R., and D. M. Glover. 2001. Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152:669-82. 35. Giet, R., and C. Prigent. 1999. Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J Cell Sci 112 ( Pt 21):3591-601. 36. Goshima, G., T. Kiyomitsu, K. Yoda, and M. Yanagida. 2003. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol 160:25-39. 37. Goto, H., T. Kiyono, Y. Tomono, A. Kawajiri, T. Urano, K. Furukawa, E. A. Nigg, and M. Inagaki. 2006. Complex formation of Plk1 and INCENP required for metaphase-anaphase transition. Nat Cell Biol 8:180-7. 38. Goto, H., Y. Tomono, K. Ajiro, H. Kosako, M. Fujita, M. Sakurai, K. Okawa, A. Iwamatsu, T. Okigaki, T. Takahashi, and M. Inagaki. 1999. Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem 274:25543-9. 39. Goto, H., Y. Yasui, A. Kawajiri, E. A. Nigg, Y. Terada, M. Tatsuka, K. Nagata, and M. Inagaki. 2003. Aurora-B regulates the cleavage furrow-specific vimentin phosphorylation in the cytokinetic process. J Biol Chem 278:8526-30. 40. Gurley, L. R., J. A. D'Anna, S. S. Barham, L. L. Deaven, and R. A. Tobey. 1978. Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur J Biochem 84:1-15. 41. Guse, A., M. Mishima, and M. Glotzer. 2005. Phosphorylation of ZEN-4/MKLP1 by aurora B regulates completion of cytokinesis. Curr Biol 15:778-86. 42. He, X., D. R. Rines, C. W. Espelin, and P. K. Sorger. 2001. Molecular analysis of kinetochore-microtubule attachment in budding yeast. Cell 106:195-206. 43. Hirota, T., N. Kunitoku, T. Sasayama, T. Marumoto, D. Zhang, M. Nitta, K. Hatakeyama, and H. Saya. 2003. Aurora-A and an interacting activator, the LIM protein Ajuba, are required for mitotic commitment in human cells. Cell 114:585-98. 44. Hirota, T., J. J. Lipp, B. H. Toh, and J. M. Peters. 2005. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176-80. 45. Honda, R., R. Korner, and E. A. Nigg. 2003. Exploring the functional interactions between Aurora B, INCENP, and survivin in mitosis. Mol Biol Cell 14:3325-41. 46. Hsu, J. Y., Z. W. Sun, X. Li, M. Reuben, K. Tatchell, D. K. Bishop, J. M. Grushcow, C. J. Brame, J. A. Caldwell, D. F. Hunt, R. Lin, M. M. Smith, and C. D. Allis. 2000. Mitotic phosphorylation of histone H3 is governed by Ipl1/aurora kinase and Glc7/PP1 phosphatase in budding yeast and nematodes. Cell 102:279-91. 47. Janke, C., J. Ortiz, J. Lechner, A. Shevchenko, A. Shevchenko, M. M. Magiera, C. Schramm, and E. Schiebel. 2001. The budding yeast proteins Spc24p and Spc25p interact with Ndc80p and Nuf2p at the kinetochore and are important for kinetochore clustering and checkpoint control. Embo J 20:777-91. 48. Janke, C., J. Ortiz, T. U. Tanaka, J. Lechner, and E. Schiebel. 2002. Four new subunits of the Dam1-Duo1 complex reveal novel functions in sister kinetochore biorientation. Embo J 21:181-93. 49. Jenuwein, T., and C. D. Allis. 2001. Translating the histone code. Science 293:1074-80. 50. Kang, J., I. M. Cheeseman, G. Kallstrom, S. Velmurugan, G. Barnes, and C. S. Chan. 2001. Functional cooperation of Dam1, Ipl1, and the inner centromere protein (INCENP)-related protein Sli15 during chromosome segregation. J Cell Biol 155:763-74. 51. Kaszas, E., and W. Z. Cande. 2000. Phosphorylation of histone H3 is correlated with changes in the maintenance of sister chromatid cohesion during meiosis in maize, rather than the condensation of the chromatin. J Cell Sci 113:3217-26. 52. Katayama, H., H. Zhou, Q. Li, M. Tatsuka, and S. Sen. 2001. Interaction and feedback regulation between STK15/BTAK/Aurora-A kinase and protein phosphatase 1 through mitotic cell division cycle. J Biol Chem 276:46219-24. 53. Kawajiri, A., Y. Yasui, H. Goto, M. Tatsuka, M. Takahashi, K. Nagata, and M. Inagaki. 2003. Functional significance of the specific sites phosphorylated in desmin at cleavage furrow: Aurora-B may phosphorylate and regulate type III intermediate filaments during cytokinesis coordinatedly with Rho-kinase. Mol Biol Cell 14:1489-500. 54. Keen, N., and S. Taylor. 2004. Aurora-kinase inhibitors as anticancer agents. Nat Rev Cancer 4:927-36. 55. Kim, J. H., J. S. Kang, and C. S. Chan. 1999. Sli15 associates with the Ipl1 protein kinase to promote proper chromosome segregation in Saccharomyces cerevisiae. J Cell Biol 145:1381-94. 56. Krogan, N. J., G. Cagney, H. Yu, G. Zhong, X. Guo, A. Ignatchenko, J. Li, S. Pu, N. Datta, A. P. Tikuisis, T. Punna, J. M. Peregrin-Alvarez, M. Shales, X. Zhang, M. Davey, M. D. Robinson, A. Paccanaro, J. E. Bray, A. Sheung, B. Beattie, D. P. Richards, V. Canadien, A. Lalev, F. Mena, P. Wong, A. Starostine, M. M. Canete, J. Vlasblom, S. Wu, C. Orsi, S. R. Collins, S. Chandran, R. Haw, J. J. Rilstone, K. Gandi, N. J. Thompson, G. Musso, P. St Onge, S. Ghanny, M. H. Lam, G. Butland, A. M. Altaf-Ul, S. Kanaya, A. Shilatifard, E. O'Shea, J. S. Weissman, C. J. Ingles, T. R. Hughes, J. Parkinson, M. Gerstein, S. J. Wodak, A. Emili, and J. F. Greenblatt. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637-43. 57. Lan, W., X. Zhang, S. L. Kline-Smith, S. E. Rosasco, G. A. Barrett-Wilt, J. Shabanowitz, D. F. Hunt, C. E. Walczak, and P. T. Stukenberg. 2004. Aurora B phosphorylates centromeric MCAK and regulates its localization and microtubule depolymerization activity. Curr Biol 14:273-86. 58. Lens, S. M., J. A. Rodriguez, G. Vader, S. W. Span, G. Giaccone, and R. H. Medema. 2006. Uncoupling the central spindle-associated function of the chromosomal passenger complex from its role at centromeres. Mol Biol Cell 17:1897-909. 59. Lens, S. M., G. Vader, and R. H. Medema. 2006. The case for Survivin as mitotic regulator. Curr Opin Cell Biol 18:616-22. 60. Li, F., G. Ambrosini, E. Y. Chu, J. Plescia, S. Tognin, P. C. Marchisio, and D. C. Altieri. 1998. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396:580-4. 61. Lo, W. S., L. Duggan, N. C. Emre, R. Belotserkovskya, W. S. Lane, R. Shiekhattar, and S. L. Berger. 2001. Snf1--a histone kinase that works in concert with the histone acetyltransferase Gcn5 to regulate transcription. Science 293:1142-6. 62. Luger, K., A. W. Mader, R. K. Richmond, D. F. Sargent, and T. J. Richmond. 1997. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389:251-60. 63. Mackay, A. M., D. M. Eckley, C. Chue, and W. C. Earnshaw. 1993. Molecular analysis of the INCENPs (inner centromere proteins): separate domains are required for association with microtubules during interphase and with the central spindle during anaphase. J Cell Biol 123:373-85. 64. Mateescu, B., P. England, F. Halgand, M. Yaniv, and C. Muchardt. 2004. Tethering of HP1 proteins to chromatin is relieved by phosphoacetylation of histone H3. EMBO Rep 5:490-6. 65. McIntosh, J. R., E. L. Grishchuk, and R. R. West. 2002. Chromosome-microtubule interactions during mitosis. Annu Rev Cell Dev Biol 18:193-219. 66. Measday, V., D. W. Hailey, I. Pot, S. A. Givan, K. M. Hyland, G. Cagney, S. Fields, T. N. Davis, and P. Hieter. 2002. Ctf3p, the Mis6 budding yeast homolog, interacts with Mcm22p and Mcm16p at the yeast outer kinetochore. Genes Dev 16:101-13. 67. Meluh, P. B., P. Yang, L. Glowczewski, D. Koshland, and M. M. Smith. 1998. Cse4p is a component of the core centromere of Saccharomyces cerevisiae. Cell 94:607-13. 68. Minoshima, Y., T. Kawashima, K. Hirose, Y. Tonozuka, A. Kawajiri, Y. C. Bao, X. Deng, M. Tatsuka, S. Narumiya, W. S. May, Jr., T. Nosaka, K. Semba, T. Inoue, T. Satoh, M. Inagaki, and T. Kitamura. 2003. Phosphorylation by aurora B converts MgcRacGAP to a RhoGAP during cytokinesis. Dev Cell 4:549-60. 69. Morrow, C. J., A. Tighe, V. L. Johnson, M. I. Scott, C. Ditchfield, and S. S. Taylor. 2005. Bub1 and aurora B cooperate to maintain BubR1-mediated inhibition of APC/CCdc20. J Cell Sci 118:3639-52. 70. Nguyen, H. G., D. Chinnappan, T. Urano, and K. Ravid. 2005. Mechanism of Aurora-B degradation and its dependency on intact KEN and A-boxes: identification of an aneuploidy-promoting property. Mol Cell Biol 25:4977-92. 71. Nightingale, K. P., L. P. O'Neill, and B. M. Turner. 2006. Histone modifications: signalling receptors and potential elements of a heritable epigenetic code. Curr Opin Genet Dev 16:125-36. 72. Nousiainen, M., H. H. Sillje, G. Sauer, E. A. Nigg, and R. Korner. 2006. Phosphoproteome analysis of the human mitotic spindle. Proc Natl Acad Sci U S A 103:5391-6. 73. Nowak, S. J., and V. G. Corces. 2004. Phosphorylation of histone H3: a balancing act between chromosome condensation and transcriptional activation. Trends Genet 20:214-20. 74. Ohashi, S., G. Sakashita, R. Ban, M. Nagasawa, H. Matsuzaki, Y. Murata, H. Taniguchi, H. Shima, K. Furukawa, and T. Urano. 2006. Phospho-regulation of human protein kinase Aurora-A: analysis using anti-phospho-Thr288 monoclonal antibodies. Oncogene 25:7691-702. 75. Ohi, R., T. Sapra, J. Howard, and T. J. Mitchison. 2004. Differentiation of cytoplasmic and meiotic spindle assembly MCAK functions by Aurora B-dependent phosphorylation. Mol Biol Cell 15:2895-906. 76. Oki, M., H. Aihara, and T. Ito. 2007. Role of histone phosphorylation in chromatin dynamics and its implications in diseases. Subcell Biochem 41:319-36. 77. Pereira, G., and E. Schiebel. 2003. Separase regulates INCENP-Aurora B anaphase spindle function through Cdc14. Science 302:2120-4. 78. Peters, J. M. 2002. The anaphase-promoting complex: proteolysis in mitosis and beyond. Mol Cell 9:931-43. 79. Pinsky, B. A., C. Kung, K. M. Shokat, and S. Biggins. 2006. The Ipl1-Aurora protein kinase activates the spindle checkpoint by creating unattached kinetochores. Nat Cell Biol 8:78-83. 80. Pinsky, B. A., S. Y. Tatsutani, K. A. Collins, and S. Biggins. 2003. An Mtw1 complex promotes kinetochore biorientation that is monitored by the Ipl1/Aurora protein kinase. Dev Cell 5:735-45. 81. Preuss, U., G. Landsberg, and K. H. Scheidtmann. 2003. Novel mitosis-specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res 31:878-85. 82. Pugacheva, E. N., and E. A. Golemis. 2005. The focal adhesion scaffolding protein HEF1 regulates activation of the Aurora-A and Nek2 kinases at the centrosome. Nat Cell Biol 7:937-46. 83. Puig, O., F. Caspary, G. Rigaut, B. Rutz, E. Bouveret, E. Bragado-Nilsson, M. Wilm, and B. Seraphin. 2001. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods 24:218-29. 84. Rigaut, G., A. Shevchenko, B. Rutz, M. Wilm, M. Mann, and B. Seraphin. 1999. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol 17:1030-2. 85. Satinover, D. L., C. A. Leach, P. T. Stukenberg, and D. L. Brautigan. 2004. Activation of Aurora-A kinase by protein phosphatase inhibitor-2, a bifunctional signaling protein. Proc Natl Acad Sci U S A 101:8625-30. 86. Schimanski, B., T. N. Nguyen, and A. Gunzl. 2005. Highly efficient tandem affinity purification of trypanosome protein complexes based on a novel epitope combination. Eukaryot Cell 4:1942-50. 87. Schotta, G., M. Lachner, K. Sarma, A. Ebert, R. Sengupta, G. Reuter, D. Reinberg, and T. Jenuwein. 2004. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251-62. 88. Schumacher, J. M., A. Golden, and P. J. Donovan. 1998. AIR-2: An Aurora/Ipl1-related protein kinase associated with chromosomes and midbody microtubules is required for polar body extrusion and cytokinesis in Caenorhabditis elegans embryos. J Cell Biol 143:1635-46. 89. Sessa, F., M. Mapelli, C. Ciferri, C. Tarricone, L. B. Areces, T. R. Schneider, P. T. Stukenberg, and A. Musacchio. 2005. Mechanism of Aurora B activation by INCENP and inhibition by hesperadin. Mol Cell 18:379-91. 90. Severson, A. F., D. R. Hamill, J. C. Carter, J. Schumacher, and B. Bowerman. 2000. The aurora-related kinase AIR-2 recruits ZEN-4/CeMKLP1 to the mitotic spindle at metaphase and is required for cytokinesis. Curr Biol 10:1162-71. 91. Shang, C., T. R. Hazbun, I. M. Cheeseman, J. Aranda, S. Fields, D. G. Drubin, and G. Barnes. 2003. Kinetochore protein interactions and their regulation by the Aurora kinase Ipl1p. Mol Biol Cell 14:3342-55. 92. Shinkai, Y. 2007. Regulation and function of H3K9 methylation. Subcell Biochem 41:337-50. 93. Soloaga, A., S. Thomson, G. R. Wiggin, N. Rampersaud, M. H. Dyson, C. A. Hazzalin, L. C. Mahadevan, and J. S. Arthur. 2003. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. Embo J 22:2788-97. 94. Strelkov, I. S., and J. R. Davie. 2002. Ser-10 phosphorylation of histone H3 and immediate early gene expression in oncogene-transformed mouse fibroblasts. Cancer Res 62:75-8. 95. Stukenberg, P. T., K. D. Lustig, T. J. McGarry, R. W. King, J. Kuang, and M. W. Kirschner. 1997. Systematic identification of mitotic phosphoproteins. Curr Biol 7:338-48. 96. Taguchi, S., K. Honda, K. Sugiura, A. Yamaguchi, K. Furukawa, and T. Urano. 2002. Degradation of human Aurora-A protein kinase is mediated by hCdh1. FEBS Lett 519:59-65. 97. Tanaka, T. U., N. Rachidi, C. Janke, G. Pereira, M. Galova, E. Schiebel, M. J. Stark, and K. Nasmyth. 2002. Evidence that the Ipl1-Sli15 (Aurora kinase-INCENP) complex promotes chromosome bi-orientation by altering kinetochore-spindle pole connections. Cell 108:317-29. 98. Tsai, M. Y., C. Wiese, K. Cao, O. Martin, P. Donovan, J. Ruderman, C. Prigent, and Y. Zheng. 2003. A Ran signalling pathway mediated by the mitotic kinase Aurora A in spindle assembly. Nat Cell Biol 5:242-8. 99. Vader, G., J. J. Kauw, R. H. Medema, and S. M. Lens. 2006. Survivin mediates targeting of the chromosomal passenger complex to the centromere and midbody. EMBO Rep 7:85-92. 100. Van Hooser, A., D. W. Goodrich, C. D. Allis, B. R. Brinkley, and M. A. Mancini. 1998. Histone H3 phosphorylation is required for the initiation, but not maintenance, of mammalian chromosome condensation. J Cell Sci 111:3497-506. 101. Vigneron, S., S. Prieto, C. Bernis, J. C. Labbe, A. Castro, and T. Lorca. 2004. Kinetochore localization of spindle checkpoint proteins: who controls whom? Mol Biol Cell 15:4584-96. 102. Wei, Y., L. Yu, J. Bowen, M. A. Gorovsky, and C. D. Allis. 1999. Phosphorylation of histone H3 is required for proper chromosome condensation and segregation. Cell 97:99-109. 103. Wheatley, S. P., A. J. Henzing, H. Dodson, W. Khaled, and W. C. Earnshaw. 2004. Aurora-B phosphorylation in vitro identifies a residue of survivin that is essential for its localization and binding to inner centromere protein (INCENP) in vivo. J Biol Chem 279:5655-60. 104. Wolner, B., S. van Komen, P. Sung, and C. L. Peterson. 2003. Recruitment of the recombinational repair machinery to a DNA double-strand break in yeast. Mol Cell 12:221-32. 105. Yokoyama, T., H. Goto, I. Izawa, H. Mizutani, and M. Inagaki. 2005. Aurora-B and Rho-kinase/ROCK, the two cleavage furrow kinases, independently regulate the progression of cytokinesis: possible existence of a novel cleavage furrow kinase phosphorylates ezrin/radixin/moesin (ERM). Genes Cells 10:127-37. 106. Yoon, H. J., and J. Carbon. 1999. Participation of Bir1p, a member of the inhibitor of apoptosis family, in yeast chromosome segregation events. Proc Natl Acad Sci U S A 96:13208-13. 107. Zeitlin, S. G., R. D. Shelby, and K. F. Sullivan. 2001. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. J Cell Biol 155:1147-57. 108. Zhang, K., W. Lin, J. A. Latham, G. M. Riefler, J. M. Schumacher, C. Chan, K. Tatchell, D. H. Hawke, R. Kobayashi, and S. Y. Dent. 2005. The Set1 methyltransferase opposes Ipl1 aurora kinase functions in chromosome segregation. Cell 122:723-34. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25343 | - |
| dc.description.abstract | 組蛋白H3第10號絲胺酸之磷酸化,為一具有兩種意義之基因外分子遺傳標誌,其首先被發現高度發生於進行有絲分裂的細胞中,推測可能與染色體濃縮相關;然而此磷酸化現象,也在經有絲分裂源刺激的細胞及轉錄活化的基因座上被觀察到。因此,組蛋白H3第10號絲胺酸之磷酸化似乎和兩種截然不同的染色質狀態有關,而專一進行此磷酸化反應的酵素也已被發現。證據顯示出芽酵母菌中,Ipl1在有絲分裂期間是該絲胺酸的主要修飾者。
Ipl1是出芽酵母菌中唯一的極光激酶,其主要在細胞分裂中期藉由磷酸化下游受質來調節紡錘絲的雙向性。除此之外,在分裂不同時期發生的染色體濃縮、紡錘體關卡的活化及胞質分裂等詎料也需要該酵素的活性參與。 Ipl1的完整功能性依賴與其結合的蛋白質,因此在本研究中,首先致力於Ipl1蛋白複合體的純化,此部份採取並列親和純化的技術。藉由在Ipl1的C端加入TAP摽記,使用硫酸銨初分劃加上兩步驟的親和純化,可以得到足夠純度的Ipl1複合體。結果顯示Ipl1在自然狀態下為一具有三個次單元的複合體,根據分子量預測及前人的研究,該複合體中的另兩個次單元應為Sli15及Bir1。 為了更進一步論證Ipl1和其交互作用者,特別是Sli15在功能上的重要性,因此製造出數個ipl1的突變種。溫度敏感突變株ipl1T260A及ipl1P340L並不影響其與Sli15的交互作用,然而它們均使激酶活性下降。胜肽刪除突變種ipl1ΔK166-V185,抑制了大部分和Sli15的交互作用卻僅造成相對較低的活性喪失,說明K166-V185可能是與Sli15結合的重要區域。在此和Sli15交互作用缺乏的突變株中,細胞週期遭受干擾而產生大規模細胞死亡及染色體不穩定的表現型。另外分析Ipl1及Sli15的表現量,發現有些許差異,且結果暗示在細胞週期期間Ipl1必然會與Sli15結合。最終發現若失去與Sli15之結合,會使有絲分裂時的組蛋白磷酸化狀態下降,此觀察亦說明Sli15可以幫助Ipl1正常執行組蛋白激酶的功能。 | zh_TW |
| dc.description.abstract | Histone H3S10 phosphorylation is an epigenetic mark with two faces. It was first described to occur at high levels in mitotic cells and to be correlated with chromosome condensation. However, phosphorylation on this residue was also found in mitogen-stimulated cells and transcriptionally activated loci. Thus, histone H3S10 phophorylation seems to be associated with two chromatin states. Enzymes that specifically catalyze this phosphorylation reaction were also studied. In budding yeast, it has been shown that Ipl1 is a major modifier on histone H3S10 during mitosis.
Ipl1 is the only aurora kinase in S. cerevisiae and it regulates the spindle biorientation during metaphase by phosphorylating downstream substrates. Concerning other functions during cell division, it has been reported that cellular pathways like chromosome condensation, spindle checkpoint activation and cytokinesis also requires the enzyme activity. Fully functional Ipl1 relies on its binding partners. In this study, I devoted myself to purification of Ipl1 complex first. The technique of tandem affinity purification (TAP) was applied. By addition of a TAP tag into the C-terminal of Ipl1, ammonium sulfate pre-fractionation and two successive affinity purification steps yielded Ipl1 complex with sufficient purity. The results suggested Ipl1 forms a three-subunit complex in normal status. Based on molecular weight predictions and previous studies, the other two subunits should stand for Sli15 and Bir1. To further demonstrate the functional importance between Ipl1 and its interactors, especially Sli15, multiple ipl1 mutants have been generated. The temperature-sensitive mutants, ipl1T260A and ipl1P340L, did not affect the interactions between Ipl1 and Sli15. However, they reduced the kinase activity overall. Peptide truncation mutant ipl1ΔK166-V185 abolished most affinity with Sli15 but resulted in a relatively minor activity loss. This suggested K166-V185 might serve as the critical interaction region with Sli15. Phenotypes in this interaction-deficiency mutant showed that cell cycle was disturbed, resulted in large population of cell death and genome instability. By analyzing the expression levels of Ipl1 and Sli15, they showed differential patterns which implied a constitutively Sli15-bound Ipl1 during cell cycle. At last, loss of Sli15 binding also led to reduction of the mitotic histone H3 phosphorylation status. The observation suggested Sli15 also functions in guiding Ipl1 as a histone kinase. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:09:47Z (GMT). No. of bitstreams: 1 ntu-96-R94442008-1.pdf: 4332268 bytes, checksum: 3a31ee66d5f4d7c22abfe3c7c2238ed2 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
Abstract (in Chinese) I Abstract II Acronyms and Abbreviations IV Introduction I. Chromatin structure and histone code 1 II. Histone H3 phosphorylation 3 III. Ipl1/aurora kinase family 4 IV. Ipl1/aurora B and mitotic control 6 V. Functional regulation of Ipl1/aurora kinases 8 VI. Chromosomal passenger complex 9 VII. Yeast mitotic events and kinetochore structure 11 VIII. Specific aims in this study 13 Materials 15 Methods 1. Culture and stock 21 2. Gene manipulation 21 3. Yeast generation 26 4. Tandem affinity purification 28 5. Protein analyses 30 6. Purification of recombinant proteins 33 7. In vitro kinase assay 34 8. Site-directed mutagenesis 35 9. Cell analyses 36 Results I. Creation of epitope-tagged Ipl1 yeast strain 38 II. Tandem affinity purification of Ipl1 complex 39 III. Ipl1-Sli15 complex 40 IV. Ipl1 as a histone kinase 41 V. Deletion of IPL1 gene in yeast 42 VI. Interaction between Ipl1 and Sli15 43 VII. Growth phenotypes in ipl1 mutants 44 VIII. Interaction with Sli15 in ipl1 mutants 45 IX. Cell analyses in ipl1 mutants 46 X. Ipl1-Sli15 complex during cell cycle 48 XI. Ipl1 complex and histone phosphorylation 50 Discussion I. Affinity purification of Ipl1 complex 52 II. Functional characterization of Ipl1 complex 54 III. Proposed model 58 References 60 TABLES, FIGURES, AND APPENDICES Tables 1. Yeast strains used and generated in this study 70 2. Plasmids used and constructed in this study 72 3. Oligonucleotides used in this study 74 Figures 1. Construction of basic plasmids in this study 76 2. Generation of strains bearing epitope-tagged Ipl1 77 3. ipl1-2 complementation assay 78 4. Schematic representation of the TAP procedure 79 5. Ipl1 complex 80 6. Generation of epitope-tagged Sli15 81 7. Ipl1 shows histone kinase activity 82 8. Deletion of the IPL1 gene in yeast 83 9. IPL1 is essential for yeast viability 84 10. Ipl1-Sli15 interaction and IPL1 mutagenesis 85 11. Multiple sequence alignment of Ipl1/aurora B in 7 model organisms 86 12. Growth phenotypes of various ipl1 mutants 87 13. Growth phenotypes of various ipl1 mutants 88 14. H123-C130 and K166-V185 of Ipl1 are crucial for Ipl1-Sli15 interaction 89 15. Histone kinase activity of WT Ipl1 and respective mutants 90 16. Histone kinase activity of WT Ipl1 and respective mutants 91 17. DNA content change after temperature shift in ipl1ΔK166-V185 cells 92 18. Cell cycle distribution and growth rate change in ipl1ΔK166-V185 cells 93 19. Morphological and DNA distribution change in ipl1ΔK166-V185 cells 94 20. Ipl1-Sli15 complex during the cell cycle 95 21. Quantification of expression level of Ipl1 and Sli15 during the cell cycle 96 22. ipl1ΔK166-V185 -Sli15 complex during the cell cycle 97 23. Interaction between ipl1ΔK166-V185 and Sli15 in synchronized cells 98 24. The histone phosphorylation status in Ipl1 or ipl1ΔK166-V185 cells 99 25. A proposed model 100 Appendices 1. Overall view of the X. laevis aurora B-INCENP complex 101 2. Budding yeast kinetochore structure 102 | |
| dc.language.iso | en | |
| dc.subject | 激酶 | zh_TW |
| dc.subject | 組蛋白磷酸化 | zh_TW |
| dc.subject | Sli15 | zh_TW |
| dc.subject | Ipl1 | zh_TW |
| dc.subject | 並列親和純化 | zh_TW |
| dc.subject | 有絲分裂 | zh_TW |
| dc.subject | mitosis | en |
| dc.subject | tandem affinity purification | en |
| dc.subject | Sli15 | en |
| dc.subject | histone phosphorylation | en |
| dc.subject | kinase | en |
| dc.subject | Ipl1 | en |
| dc.title | 酵母菌組蛋白激酶Ipl1 複合體之親和純化與功能性鑑定 | zh_TW |
| dc.title | The affinity purification and functional characterization
of Ipl1 complex for histone phosphorylation in accharomyces cerevisiae | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊榮輝(Rong-Huay Juang),施修明(Hsiu-Ming Shih),王隆祺(Long-Chi Wang) | |
| dc.subject.keyword | 組蛋白磷酸化,激酶,有絲分裂,Ipl1,Sli15,並列親和純化, | zh_TW |
| dc.subject.keyword | histone phosphorylation,kinase,mitosis,Ipl1,Sli15,tandem affinity purification, | en |
| dc.relation.page | 102 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-07-13 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 4.23 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
