請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25329完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 莊晴光(Ching-Kuang Tzuang) | |
| dc.contributor.author | Chi-Yang Hsu | en |
| dc.contributor.author | 徐啟洋 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:09:16Z | - |
| dc.date.copyright | 2007-07-23 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-16 | |
| dc.identifier.citation | [1] S. Wu and B. Razavi, “A 900-MHz/1.8-GHz CMOS Receiver for Dual-Band Applications,” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2178-2185, Dec. 1998.
[2] K. Vavelidis et al., “A Dual-Band 5.15-5.35-GHz, 2.4-2.5-GHz 0.18-μm CMOS Transceiver for 802.11a/b/g Wireless LAN,” IEEE Journal of Solid-State Circuits, vol. 39, no. 7, pp. 1180-1184, Jul. 2004. [3] M. Zargari et al., “A Single-Chip Dual-Band Tri-Mode CMOS Transceiver for IEEE 802.11a/b/g Wireless LAN,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2239-2249, Dec. 2004. [4] W. H. W., Tuttlebee, “Software-defined radio: facets of a developing technology,” IEEE Personal Communications, vol. 6, pp. 38-44, Apr. 1999. [5] R. B. Staszewski, C. M. Hung, D. Leipold, and P. T. Balsara, “A First Multigigahertz Digitally Controlled Oscillator for Wireless Applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 11, pp. 2154-2164, Nov. 2003. [6] K. Muhammad, R. B. Staszewski, and D. Leipold, “Digital RF Processing: Toward Low-Cost Reconfigurable Radios,” IEEE Communications Magazine, vol. 43, no. 8, pp. 105-113, Aug. 2005. [7] D. J. Mellor and J. G. Linvill, “Synthesis of Interstage Networks of Prescribed Gain Versus Frequency Slopes,” IEEE Transactions on Microwave Theory and Techniques, vol. 23, no. 12, pp. 1013-1020, Dec. 1975. [8] D. J. Mellor, “Improved Computer-Aided Synthesis Tools for the Design of Matching Networks for Wide-Band Microwave Amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 34, no. 12, pp. 1276-1281, Dec. 1986. [9] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design (2nd Edition), Prentice Hall, 1996. [10] D. K. Shaeffer and T. H. Lee, “A 1.5-V, 1.5-GHz CMOS Low Noise Amplifier,” IEEE Journal of Solid-State Circuits, vol. 32, no. 5, pp. 745-759, May 1997. [11] T. H. Lee, The Design of CMOS Radio-Frequency Integrated Circuits (2nd Edition), Cambridge University Press, 2004. [12] S. Asgaran, M. J. Deen, and C. H. Chen, “A 4-mW Monolithic CMOS LNA at 5.7 GHz With the Gate Resistance Used for Input Matching,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 4, pp. 188-190, Apr. 2006. [13] R. Brederlow et al., “A Mixed-Signal Design Roadmap,” IEEE Design & Test of Computers, vol. 18, no. 6, pp. 34-46, Nov.-Dec. 2001. [14] S. Arekapudi, E. Iroaga, and B. Murmann, “A Low-Power Distributed Wide-Band LNA in 0.18μm CMOS,” [15] C. T. Fu and C. N. Kuo, “3~11-GHz CMOS UWB LNA Using Dual Feedback for Broadband Matching,” RFIC Symposium, 2006 IEEE, pp. 53-56, Jun. 2006. [16] B. Razavi et al., “A UWB CMOS Tranceiver,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2555-2562, Dec. 2005. [17] A. Ismail and A. A. Abidi, “A 3-10-GHz Low-Noise Amplifier with Wideband LC-Ladder Matching Network,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2269-2277, Dec. 2004. [18] C. P. Chang, C. C. Yen, and H. R. Chuang, “A 0.18-um 2.4~6GHz CMOS Broadband Differential LNA for WLAN and UWB Receiver,” 2005 European Microwave Conference, vol. 3, Oct. 2005. [19] R. Liu, C. Lin, K. Deng, and H. Wang, “A 0.5-14-GHz 10.6-dB CMOS Cascode Distributed Amplifier,” Symposium VLSI Circuits Digest 17, pp.139-140, Jun. 2003. [20] A. Bevilacqua and A. M. Niknejad, “An Ultrawideband CMOS Low-Noise Amplifier for 3.1-10.6-GHz Wireless Receivers,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2259-2268, Dec. 2004. [21] A. Bevilacqua, C. Sandner, A. Gerosa, and A. Neviani, “A Fully Integrated Differential CMOS LNA for 3-5-GHz Ultrawideband Wireless Receivers,” IEEE Electronics Letters, vol. 41, no. 12, Jun. 2005. [22] C. P. Chang and H. R. Chuang, “0.18μm 3-6 GHz CMOS Broadband LNA for UWB Radio,” IEEE Microwave and Wireless Components Letters, vol. 16, no. 3, Mar. 2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25329 | - |
| dc.description.abstract | 於無線通訊技術快速發展的今日,在單隻手機內整合所有需要的通信標準之系統,已成為越來越急迫的需求。本篇論文提出以單一寬頻低雜訊放大器之方式,取代傳統上以多顆窄頻低雜訊放大器滿足各個不同標準之需求,而達到縮小晶片面積、減低功率消耗之目的。不同於以往寬頻放大器之設計,本篇論文使用一有系統之方式,即利用數學敘述合成匹配網路,完成寬頻低雜訊放大器之設計。而此數學敘述已被寫成MATLAB程式,使得未來設計寬頻放大器時,可節省許多時間以及精力。最終以此匹配網路合成之方式,設計並實作了一顆0.9~7GHz之寬頻低雜訊放大器。 | zh_TW |
| dc.description.abstract | Nowadays, with the rapid development of wireless communication technique, the need for a system which integrates all the required communication standards in one mobile phone becomes more and more urgent. This thesis proposes a method that using one broadband low-noise amplifier to replace several narrowband low-noise amplifiers for different standards which is traditionally used. It can not only save chip area but also reduce power consumption. Different from the previous design of broadband amplifiers, this thesis adopts a more systematic method, that is, matching network synthesis by mathematical description, to complete the design of a broadband low-noise amplifier. Moreover, this mathematical description has been written into MATLAB program, which can save more time and energy when designing the broadband amplifiers in the future. Finally, by the way of matching network synthesis, a 0.9 to 7 GHz broadband low-noise amplifier was designed and implemented. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:09:16Z (GMT). No. of bitstreams: 1 ntu-96-R94942010-1.pdf: 3533181 bytes, checksum: ac5f6848c9f82ae90f095163bbf87182 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 摘要
Abstract Table of Contents List of Tables List of Figures i iii v ix xi Chapter 1 Introduction 1 1.1 Current wireless communication systems……………………………1 1.2 The needed broadband low-noise amplifier………………………….4 1.3 Thesis organization…………………………………………………...6 Chapter 2 Prescribed Gain Matching Synthesis from Mathematical Description 7 2.1 Matching network synthesis description……………………………..7 2.1.1 Sloped-gain matching networks…………………………………………….7 2.1.2 Device input and output impedance modeling……………………………...8 2.1.3 Passband response approximation using insertion-loss function………….11 2.1.4 Ladder realization…………………………………………………………14 2.1.5 Frequency scaling and impedance scaling………………………………...17 2.1.6 Impedance transformation………………………………………………...18 2.1.7 Situation that no network can be synthesized………...…………………...20 2.2 A matching network synthesis example…………………………….22 2.3 MATLAB program………………………………………………….35 Chapter 3 Low-Noise Amplifier Concept 39 3.1 Introduction to the design parameters of an LNA…………………..39 3.1.1 Equivalent noise temperature and noise figure……………………………39 3.1.2 Gain compression………………………………………………………….44 3.1.3 Intermodulation distortion………………………………………………...47 3.1.4 Stability……………………………………………………………………50 3.2 Methods of improving noise figure…………………………………54 3.2.1 Inductive source degeneration…………………………………………….54 3.2.2 Device sizing………………………………………………………………56 Chapter 4 Broadband Low-Noise Amplifier for Multi-Standard Wireless Communication System 59 4.1 Design flow…………………………………………………………59 4.1.1 Amplifier topology………………………………………………………...59 4.1.2 Device size and biasing……………………………………………………61 4.1.3 Matching network synthesis………………………………………………63 4.1.4 Improve P1dB compression point…………………………………………..71 4.1.5 Stability check……………………………………………………………..74 4.1.6 Layout……………………………………………………………………..78 4.2 Measured result……………………………………………………..83 4.3 Another version of broadband low-noise amplifier design………….87 4.4 Figure-of-merit comparison…………………………………………87 Chapter 5 Conclusion 91 References 93 | |
| dc.language.iso | en | |
| dc.title | 以數學合成之1伏0.9至7 GHz寬頻低雜訊放大器設計 | zh_TW |
| dc.title | Design of A One Volt 0.9-to-7 GHz Broadband Low-Noise Amplifier Based on Mathematical Synthesis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | #VALUE! | |
| dc.subject.keyword | 寬頻,低雜訊,放大器,合成,互補金屬氧化物半導體, | zh_TW |
| dc.subject.keyword | Broadband,low-noise,amplifier,synthesis,CMOS, | en |
| dc.relation.page | 96 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-07-16 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.45 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
