請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25299完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 黃建璋(Jian-Jang Huang) | |
| dc.contributor.author | Min-Yann Hsieh | en |
| dc.contributor.author | 謝旻諺 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:08:13Z | - |
| dc.date.copyright | 2007-07-19 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-17 | |
| dc.identifier.citation | 第一章 參考文獻
[1]C. M. Tsai, J. K. Sheu, W. C. Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. W. Kuo, S. J. Chang, and Y. K. Su, ”Enhanced output power in GaN-based LEDs with naturally texture surface grown by MOCVD,” IEEE Electron Device Letters, vol. 26, pp. 464-466, 2005. [2]S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh, and J. T. Hsu, “Improvement of InGaN–GaN light-emitting diodes with surface-textured Indium–Tin–Oxide transparent ohmic contacts,” IEEE Photonics Technology Letters, vol. 15, no. 5, pp. 649-651, 2003. [3]C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol. 93, no. 11, pp. 9383-9385, 2003. [4]H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology, vol. 16, pp. 1844–1848, 2005. [5]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, no. 6, pp. 855-857, 2004. [6]T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “Ⅲ-nitride blue and ultraviolet photonic crystal light emitting diodes,” Appl. Phys. Lett., vol. 84, no. 4, pp. 466-468, 2004. [7]I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and A. Scherer, “30% external quantum efficiency from surface textured, thin-film light-emitting diodes,” Appl. Phys. Lett., vol. 63, no. 16, pp. 2174-2176, 1993. [8]R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, and G. H. Dohler, B. Dutta, M. Kuijk, G. Borghs, and P. Heremans, “Impact of texture-enhanced transmission on high-efficiency surface-textured light-emitting diodes,” Appl. Phys. Lett., vol. 79, no. 15, pp. 2315-2317, 2001. 第二章 參考文獻 [1]E. Woelk, G. Strauch, D. Schmitz, M. Deschler, H. Juergensen, “III-nitride multiwafer MOCVD systems for blue-green LED material,” Materials Science & Engineering B: Solid-State Materials for Advanced Technology, v B44, no. 1-3, p 419-422, Feb. 1997. [2]VLSI製造技術,莊達人著,高立圖書有限公司,民國93年6月20日。 [3]S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of p-Type GaN Films,” Jpn. J. Appl. Phys., vol. 31, p.1258, 1992. [4]Andrew L. Goodyear, Sinclair Mackenzie, Deirdre L. Olynick, and Erik H. Anderson, “High resolution inductively coupled plasma etching of 30 nm lines and spaces in tungsten and silicon”, Journal of Vacuum Science & Technology B, vol. 18, no. 6, pp. 3471-3475, 2000. 第三章 參考文獻 [1]C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys., vol. 93, no. 11, pp. 9383-9385, 2003. [2]H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang, and C. C. Yu, “Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface,” Nanotechnology, vol. 16, pp. 1844–1848, 2005. [3]T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett., vol. 84, no. 6, pp. 855-857, 2004. [4]T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, “III-nitride blue and ultraviolet photonic crystal light emitting diodes,” Appl. Phys. Lett., vol. 84, no. 4, pp. 466-468, 2004. [5]C. M. Tsai, J. K. Sheu, W. C. Lai, Y. P. Hsu, P. T. Wang, C. T. Kuo, C. W. Kuo, S. J. Chang, and Y. K. Su, ”Enhanced output power in GaN-based LEDs with naturally texture surface grown by MOCVD,” IEEE Electron Device Letters, vol. 26, pp. 464-466, 2005. [6]C. L. Lee, S. C. Lee and W. I Lee, “Nonlithographic Random Masking and Regrowth of GaN Microhillocks to Improve Light-Emitting Diode Efficiency,” Jpn. J. Appl. Phys., vol. 45, no. 1, pp. L4–L7, 2006. 第四章 參考文獻 [1]Hwa-Mok Kim, D. S. Kim, D. Y. Kim, and T. W. Kang, 'Growth and characterization of single-crystal GaN nanorods by hydride vapor phase epitaxy,' Applied Physics Letters, 81, pp. 2193-2195, 2002. [2]K. Akihiko, T. Makoto, M. Kyoko, K. Katsumi, “Growth and characterization of InGaN/GaN nanocolumn LED,” Proc. of SPIE, vol. 6129, p612905, 2006. [3]S. Y. Kuo, C. C. Kei, C. N. Hsiao, C. K. Chao, F. I. Lai, H. C. Kuo, W. F. Hsieh, and S. C. Wang, “Catalyst-free GaN nanorods grown by metalorganic molecular beam epitaxy,” IEEE transactions on nanotechnology, vol. 5, no. 6, pp. 273–277, 2006. [4]H. Li, J. Y. Li, M. He, X. L. Chen, Z. Zhang, “Fabrication of bamboo-shaped GaN nanorods,” Appl. Phys. A 74, pp. 561-562, 2002. [5]T. H. Hsueh, H. W. Huang, C. C. Kao, Y. H. Chang, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, “Characterization of InGaN/GaN multiple quantum well nanorods fabricated by plasma etching with self-assembled nickel metal nanomasks,” Japanese Journal of Applied Physics, vol. 44, no. 4B, pp. 2661-2663, 2005. [6]T. H. Hsueh, H. W. Huang, F. I. Lai, J. K. Sheu, Y. H. Chang, H. C. Kuo ,and S. C. Wang, 'Photoluminescence from In0.3Ga0.7N/GaN multiple-quantum-well nanorods,' Nanotechnology, 16, pp. 448-450, 2005. [7]R. Armitage, W. Hong, Q. Yang, H. Feick, J. Gebauer, E. R. Weber, S. Hautakangas, and K. Saarinen, “Contributions from gallium vacancies and carbon-related defects to the yellow luminescence in GaN,” Applied Physics Letters, vol. 82, no.20, pp. 3457-3459, 2003. [8]J. Y. Chen, C. J. Pan, and G. C. Chi, “Electrical and optical changes in the near surface of reactively ion etched n-GaN,” Solid-State Electronics 43, pp. 649-652, 1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25299 | - |
| dc.description.abstract | 在氮化鎵發光二極體上製作表面粗化、表面結構、或光子晶體等來提升發光二極體之外部量子效率,一直都是很多團隊研究的目標。本文中提出一種自組成單層奈米粒子遮罩搭配ICP-RIE乾式蝕刻的製程方法在氮化鎵元件上面製作奈米級的表面結構,討論其對發光效率提升情形,並考慮不同尺寸奈米結構對發光效率的影響,藉此歸納出提升發光效率的設計方向。另外,在發光二極體元件上製作透明導電層ITO來增加電流傳導擴散為目前業界很普遍的情形,本文亦嘗試在透明導電層ITO上製作表面奈米結構,並探討其對發光效率的提升情形。
一維的氮化鎵半導體材料奈米結構,如奈米柱、奈米線、奈米管等,不管在基礎物理研究或新科技應用上更是被寄予高的期望。本文採用由上而下製程(Top-down process)來製備高密度、高均勻性的氮化銦鎵/氮化鎵多重量子井奈米柱發光二極體,量測其光激發光頻譜(PL),發現此種高密度、高均勻性的氮化銦鎵/氮化鎵多重量子井奈米柱發光二極體有一個相當寬頻帶的黃放光(yellow luminescence)現象。 | zh_TW |
| dc.description.abstract | In this paper, we present a novel method to fabricate textured GaN-based LEDs using a SiO2 nano-mask and ICP dry etching. The SiO2 nano-particles are placed on top of the p-type layer simply by spin-coating or immersion. The optical output power of a surface textured LED is 1.4 times higher than that of a conventional LED (a LED without surface textured). In addition, the current-voltage (I-V) curve of the textured LED is nearly the same as that of a conventional LED, which implies that the fabrication process greatly improves light extraction efficiency without damaging the electrical properties of the LED material.
One-dimensional nanostructures, such as nanotubes, nanowires, and nanorods, of GaN-based nitride semiconductors are known to have great prospects in fundamental physics and novel technological applications. However, fabrication and characterization of well-ordered nanostructures with high density are very important for the practical device applications. In this paper, we present InGaN/GaN MQW nanorod LEDs. From photoluminescence measurements, we observed a blue shift of the peak wavelength and a broad band yellow luminescence in the nanorod LED samples. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:08:13Z (GMT). No. of bitstreams: 1 ntu-96-R93941044-1.pdf: 3724623 bytes, checksum: 960945121cad4c8e3f93b6d6886cbf35 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目錄
第一章 緒論 1-1 前言.................................................1 1-2 研究動機.............................................2 參考文獻................................................3 第二章 氮化鎵發光二極體元件結構與製程 2-1 製程儀器簡介.........................................5 2-2 氮化鎵發光二極體結構.................................7 2-3 發光二極體元件製作流程...............................9 2-4 氮化鎵發光二極體表面奈米結構製作流程................12 參考文獻...............................................16 第三章 表面奈米結構氮化鎵發光二極體元件特性 3-1 簡介................................................17 3-2 表面奈米結構氮化鎵發光二極體發光效率探討............19 3-3 表面奈米結構尺寸效應................................22 3-4 具表面奈米結構透明導電層ITO之發光二極體特性........27 參考文獻...............................................32 第四章 氮化銦鎵/氮化鎵多重量子井奈米柱發光二極體 4-1 簡介................................................33 4-2 氮化銦鎵/氮化鎵多重量子井奈米柱發光二極體製程.......34 4-3 奈米柱發光二極體特性討論............................36 參考文獻...............................................41 第五章 結論與未來展望 5-1 結論與未來展望......................................43 圖目錄 圖2-1 本文所採用的氮化鎵發光二極體結構圖................8 圖2-2 本文所採用的氮化鎵發光二極體PL圖...................8 圖2-3 微影及ICP-RIE乾蝕刻流程示意圖...............11 圖2-4 正負電極製程示意圖......................11 圖2-5 氮化鎵表面單層二氧化矽奈米粒子遮罩SEM圖...........13 圖2-6 氮化鎵表面奈米結構製作過程.......................14 圖2-7 製程完成後氮化鎵表面奈米結構SEM圖................15 圖3-1 全反射造成氮化鎵發光二極體之低外部量子效率.......18 圖3-2 表面奈米結構氮化鎵發光二極體元件示意圖..........20 圖3-3 發光二極體元件發光效率比較......................20 圖3-4 發光二極體元件電激發光頻譜(EL)比較圖..............21 圖3-5 發光二極體元件的I-V量測結果......................21 圖3-6(a) 20nm單層奈米粒子遮罩於氮化鎵表面SEM圖..........24 圖3-6(b) 50nm單層奈米粒子遮罩於氮化鎵表面SEM圖..........24 圖3-6(c) 100nm單層奈米粒子遮罩於氮化鎵表面SEM圖.........25 圖3-7 採用的P型金屬電極layout設計.....................25 圖3-8 不同奈米表面結構元件的發光效率比較................26 圖3-9 元件在20mA下量測到的電激發光頻譜(EL)比較結果.......26 圖3-10(a) 璨圓光電提供的氮化鎵發光二極體結構圖........28 圖3-10(b) 發光二極體元件的上視圖......................28 圖3-11(a) 發光二極體元件發光效率比較...................29 圖3-11(b) 發光二極體元件I-V特性比較....................29 圖3-12(a) 元件Radiation pattern之比較結果(極性座標).....30 圖3-12(b) 元件Radiation pattern之比較結果(線性座標)......30 圖3-13 固定電流20mA下量測到的電激發光頻譜(EL)比較結果....31 圖4-1 氮化銦鎵/氮化鎵多重量子井奈米柱發光二極體製程.....35 圖4-2(a) 蝕刻1分鐘後的奈米柱結構15000倍SEM圖...........38 圖4-2(b) 蝕刻1分鐘後的奈米柱結構60000倍SEM圖...........38 圖4-3(a) 蝕刻2分鐘後的奈米柱結構20000倍SEM圖...........39 圖4-3(b) 蝕刻2分鐘後的奈米柱結構40000倍SEM圖...........39 圖4-4(a) 蝕刻1分鐘後的奈米柱PL量測結果...................40 圖4-4(b) 蝕刻2分鐘後的奈米柱PL量測結果...................40 | |
| dc.language.iso | zh-TW | |
| dc.subject | 表面奈米結構 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 發光二極體 | zh_TW |
| dc.subject | LED | en |
| dc.subject | Surface textured | en |
| dc.subject | GaN | en |
| dc.title | 以二氧化矽奈米粒子改善氮化鎵發光二極體發光效率之研究 | zh_TW |
| dc.title | Improvement of Light Output in GaN-based LEDs by Surface Texturing with SiO2 Nano-particles | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊志忠,彭隆瀚 | |
| dc.subject.keyword | 氮化鎵,表面奈米結構,發光二極體, | zh_TW |
| dc.subject.keyword | GaN,Surface textured,LED, | en |
| dc.relation.page | 44 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-07-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.64 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
