Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25251
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭石通
dc.contributor.authorYa-Ling Tzengen
dc.contributor.author曾雅鈴zh_TW
dc.date.accessioned2021-06-08T06:06:37Z-
dc.date.copyright2007-07-25
dc.date.issued2007
dc.date.submitted2007-07-18
dc.identifier.citationAbdalla, A.A., and Verkerk, K. (1968). Growth, flowering and fruit set of the tomato at high temperature. Netherlands Journal of Agricultural Science 16, 71-76.
Abdul-Baki, A.A. (1991). Tolerance of tomato cultivators and selected germplasm to heat stress. Journal of the American Society for Horticultural Science 116, 1113-1116.
Alwine, J.C., Kemp, D.J., and Stark, G.R. (1977). Method for detection of specific RNAs in agarose gels by transfer to diazobenzyloxymethyl-paper and hybridization with DNA probes. Proceedings of the National Academy of Science 74, 5350-5354.
Ayres, M.P., and Lombardero, M.J. (2000). Assessing the consequences of global change for forest disturbance from herbivores and pathogens. Sciense of the Total Environment 262, 263-286.
Baumlein, H., Braun, H., Kakhovskaya, I.A., and Shutov, A.D. (1995). Seed storage proteins of spermatophytes share a common ancestor with desiccation proteins of fungi. Journal of Molecular Evolution 41, 1070-1075.
Bowles, D.J. (1990). Defense-related proteins in higher plants. Annual Review of Biochemistry 59, 873-907.
Broadford, M.M. (1976). A rapid and sensitive method for the quantitation of protein utilizing the principles of protein-dye binding. Analytical Biochemistry 72, 248–254.
Bryant, J., Green, T.R., Gurusaddaiah, T., and Ryan, C.A. (1976). Proteinase inhibitor II from potatoes: isolation and characterization of its promoter components. Biochemistry 15, 3418-3424.
Carpita, N.C., and Kanabus, J. (1988). Chemical structure of the cell walls of dwarf maize and changes mediated by gibberellin1. Plant Physiology 88, 671-678.
Choi, D., Ward, B.L., and Bostock, R.M. (1992). Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophthora infestans and to its elicitor arachidonic acid. The Plant Cell 4, 1333-1344.
Chomczynski, P., and Sacchi, N. (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162, 156-159.
Derksen, J., Rutten, T., van Amstel, T., de Win, A., Doris, F., and Steer, M. (1995). Regulation of pollen tube growth. Acta Botanica Neerlandica 44, 93-119.
Deshaies, R.J., Koch, B.D., and Schekman, R. (1988). The role of stress proteins in membrane biogenesis. Trends in Biochemical Sciences 13, 384-388.
Dunwell, J.M. (1998). Cupins: a new superfamily of functionally-diverse proteins that include germins and plant seed storage proteins. Biotechnology and Genetic Engineering Review 15, 1-32.
Dunwell, J.M., and Gane, P.J. (1998). Microbial relatives of seed storage proteins: conservation of motifs in a functionally diverse superfamily of enzymes. Journal of Molecular Evolution 46, 147-154.
Dunwell, J.M., Khuri, S., and Gane, P.J. (2000). Microbial relatives of the seed storage proteins of higher plants: Conservation of structure and diversification of function during evolution of the cupin superfamily. Microbiology and Molecular Biology Reviews 64, 153-179.
Dunwell, J.M., Purvis, A., and Khuri, S. (2004). Cupins: the most functionally diverse protein superfamily? Phytochemistry 65, 7-17.
Enns, L.C., Kanaoka, M.M., Torii, K.U., Comai, L., Okada, K., and Cleland, R.E. (2005). Two callose synthases, GSL1 and GSL5, play an essential and redundant role in plant and pollen development and in fertility. Plant Molecular Biology Reporter 59, 333-249.
Farmer, E.E., Johnson, R.R., and Ryan, C.A. (1992). Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiology 98, 995-1002.
Feys, B.J.F., Benedetti, C.E., Penfold, C.N., and Turner, J.G. (1994). Arabidopsis mutants selected for resistance to the phytotoxin coronatine are male sterile, insensitive to methyl jasmonate, and resistant to a bacterial pathogen. The Plant Cell 6, 751-759.
Frary, A., and Earle, E.D. (1996). An examination of factors affecting thhe efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Reports 16, 235-240.
Fulton, T.M., Chunwongse, J., and Tanksley, S.D. (1995). Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Molecular Biology Reporter 13, 207-209.
Gray, D.W., and Morris, P.J. (1987). The use of fluorescein diacetate and dthidium bromide as a viability stain for isolaed islets of Langerhans. Stain Technology 62, 373-381.
Gustafson, G., and Ryan, C.A. (1976). Specificity of protein turnover in tomato leaves. Journal of Biological Chemistry 251, 7004-7010.
Hedden, P., and Kamiya, Y. (1997). Gibberellin biosynthesis: Enzymes, genes and their regulation. Annual Review of Plant Physiology and Plant Molecular Biology 48, 431-460.
Hilder, V.A., Gatehouse, A.M.R., Sheerman, S.E., Barker, R.F., and Boulter, D. (1987). A novel mechanism of insect resistance engineered into tobacco. Nature 330, 160-163.
Hong, S.W., and Vierling, E. (2001). HSP101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. The Plant Journal 27, 25-35.
Iba, K. (2002). Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Annual Review of Plant Biology 53, 225-245.
Jacobsen, S.E., and Olszewski, N.E. (1991). Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiology 97, 401-414.
Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The EMBO Journal 6, 3901-3907.
Kaneko, M., Inukai, Y., Ueguchi-Tanaka, M., Itoh, H., Izawa, T., Kobayashi, Y., Hattori, T., Miyao, A., Hirochika, H., Ashikari, M., and Matsuoka, M. (2004). Loss-of-function mutations of the rice GAMYB Gene impair α-Amylase expression in aleurone and flower development. The Plant Cell 16, 33-44.
Kinet, J.M., and Peet, M.M. (1997). Tomato. In the Physiology of Vegetable Crops, pp. 207-258.
Ko, T.P., Ng, J.D., and McPherson, A. (1993). The three-dimensional structure of canavalin from jack bean (Canavalia ensiformis). Plant Physiology 101, 729-744.
Koiwa, H., Bressan, R.A., and Hasegawa, P.M. (2006). Identification of plant stress-responsive determinants in arabidopsis by large-scale forward genetic screens. Journal of Experimental Botany 57, 1119-1128.
Lane, B.G., Dunwell, J.M., Ray, J.A., Schmitt, M.R., and Cuming, A.C. (1993). Germin, a protein marker of early plant development, is an oxalate oxidase. Journal of Biological Chemistry 268, 12239-12242.
Lapik, Y.R., and Kaufman, L.S. (2003). The Arabidopsis cupin domain protein AtPirin1 interacts with the G protein subunit GPA1 and regulates seed germination and early seedling development. The Plant Cell 15, 1578-1590.
Li, H., Bacic, A., and Read, S.M. (1999). Role of a callose synthase zymogen in regulating wall deposition in pollen tubes of Nicotiana alata. Planta 208, 528-538.
Li, L., Zhao, Y., McCaig, B.C., Wingerd, B.A., Wang, J., Whalon, M.E., Pichersky, E., and Howe, G.A. (2004). The tomato homolog of Coronatine-insensitive1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development. The Plant Cell 16, 126-143.
Liu, Y.G., Mitsukawa, N., Oosumi, T., and Whittier, R.F. (1995). Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. The Plant Journal 8, 457-463.
Logemann, J., and Schell, J. (1989). Nucleotide sequence and regulated expression of a wound-induced potato gene (wun1). Molecular and General Genetics 219, 81-88.
Logemann, J., Mayer, J.E., Schell, J., and Willmitzer, L. (1988). Differential expression of genes in potato tubers after wounding. Proceedings of National Academic Science 85, 1136-1140.
Logemann, J., Lipphardt, S., Lorz, H., Hauser, I., Willmitzer, L., and SchelP, J. (1989). 5' Upstream Sequences from the wunl Gene Are Responsible for Gene Activation by Wounding in Transgenic Plants. The Plant Cell 1, 151-158.
Lorberth, R., Dammann, C., Ebneth, M., Amati, S., and Sanchez-Serrano, J.J. (1992). Promoter elements involved in environmental and developmental control of potato proteinase inhibitor II expression. The Plant Journal 2, 477-486.
Mascarenhas, J.P. (1993). Molecular mechanisms of pollen tube growth and differentiation. The Plant Cell 5, 1303-1314.
Metzger, J.D. (1985). Role of gibberellins in the environmental control of stem growth in Thlaspi arvensi L. Plant Physiology 78, 8-13.
Mtwisha, L., Farrant, J.M., Brandt, W., Hlongwane, C., and Lindsey, G.G. (2007). ASP53, a thermostable protein from Acacia erioloba seeds that protects target proteins against thermal denaturation. Functional Plant Biology 34, 139-142.
Muschietti, J., Dircks, L., Vancanneyt, G., and McCormick, S. (1994). LAT52 protein is essential for tomato pollen development: pollen expressing antisense LAT52 RNA hydrates and germinates abnormally and cannot achieve fertilization. The Plant Journal 6, 321-338.
Nagao, R.T., Kimpel, J.A., and Key, J.L. (1990). Molecular and cellular biology of the heat shock response. Advances in Genetics 28, 235-266.
Nester, J.E., and Zeevaart, J.A.D. (1988). Flower development in normal tomato and a gibberellin-deficient (ga-2) mutant. American Journal of Botany 75, 45-55.
Nishimura, M.T., Stein, M., Hou, B.-H., Vogel, J.P., Edwards, H., and Somerville, S.C. (2003). Loss of a callose synthase results in salicylic acid-dependent disease resistance. Science 301, 969-972.
Parre, E., and Geitmann, A. (2005). More than a leak sealant. The mechanical properties of callose in pollen tubes. Plant Physiology 137, 274-286.
Parthler, B. (1991). Jasmonates, new regulators of plant growth and development: Many facts and few hypotheses on their actions. Botanica Acta 104, 446-454.
Pearce, G., Johnson, S., and Ryan, C.A. (1993). Purification and characterization from tobacco (Nicotiana tabacum) leaves of six small, wound-inducible, proteinase isoinhibitors of the potato inhibitor II family. Plant Physiology 102, 639-644.
Peet, M.M., Sato, S., and Gardner, R.G. (1998). Comparing heat stress effects on male-fertile and male-sterile tomatoes. Plant, Cell and Environment 21, 225-231.
Picken, A.J.F. (1984). A review of pollination and fruit set in the tomato (Lycopersicon esculentum Mill). Journal of Horticultural Science 59, 1-13.
Raison, J.K., Pike, C.S., and Berry, J.A. (1982). Growth temperature-induced alterations in the thermotropic properties of nerium oleander membrane lipids. Plant Physiology 70, 215-218.
Ressayre, A., Raquin, C., Mignot, A., Godelle, B., and Gouyon, P.H. (2002). Correlated variation in microtubule distribution, callose deposition during male post-meiotic cytokinesis, and pollen aperture number across Nicotiana species (Solanaceae). American Journal of Botany 89, 393-400.
Rinne, P.L.H., Kaikuranta, P.M., and Schoot, C.V.D. (2001). The shoot apical meristem restores its symplasmic organization during chilling-induced release from dormancy. The Plant Journal 26, 249-264.
Rizhsky, L., Liang, H., Shuman, J., Shulaev, V., Davletova, S., and Mittler, R. (2004). When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiology 134, 1683-1969.
Sachs, M.M., and David, H.T.U. (1986). Alteration of gene expression during environment stress in plants. Annual Review of Plant Physiology and Plant Molecular Biology 37, 363-376.
Sasaki, H., Yano, T., and Yamasaki, A. (2005). Reduction of high temperature inhibition in tomato fruit set by plant growth regulators. Japan Agricultural Research Quarterly 39, 135-138.
Sato, S., Peet, M.M., and Thomas, J.F. (2000). Physiological factors limit fruit set of tomato (Lycopersicon esculentum Mill.) under chronic high temperature stress. Plant, Cell and Environment 23, 719-726.
SchluE, P.H., Bacic, A., and Read, S.M. (1994). Uridine diphosphate glucose metabolism and callose synthesis in cultured pollen tubes of Nicotiana alata Link et Otto. Plant Physiology 105, 659-670.
Schrauwen, J.A.M., Groot, P.F.M.D., Herpen, M.M.A.V., Lee, T.V.D., Reynen, W.H., Weterings, K.A.P., and Wullems, G.J. (1990). Stage-related expression of mRNAs during pollen development in lily and tobacco. Planta 182, 298-304.
Sembdner, G., and Parthier, B. (1993). The biochemistry and the physiological and molecular actions of jasmonates. Annual Review of Plant Physiology and Plant Molecular Biology 44, 569-589.
Siebertz, B., Logemann, J., Willmitzer, L., and Schell, J. (1989). Cis-analysis of the wound-inducible promoter wun1 in transgenic tobacco plants and histochemical localization of its expression. The Plant Cell 1, 961-968.
Sin, S.F., and Chye, M.L. (2004). Expression of proteinase inhibitor II proteins during floral development in Solanum americanum. Planta 219, 1010-1022.
Sin, S.F., Yeung, E.C., and Chye, M.L. (2006). Downregulation of Solanum americanum genes encoding proteinase inhibitor II causes defective seed development. The Plant Journal 45, 58-70.
Singh, D.P., Jermakow, A.M., and Swain, S.M. (2002). Gibberellins are required for seed development and pollen tube growth in Arabidopsis. The Plant Cell 14, 3133-3147.
Song, J., Nada, K., and Tachibana, S. (2001). The early increase of S-adenosylmethionine decarboxylase activity is essential for the normal germination and tube growth in tomato (Lycopersicon esculentum Mill.) pollen. Plant Science 161, 507-515.
Taiz, L. and Zeiger, E. (2002). Stress physiology. Plant Physiology, pp. 602-606.
Taylor, L.P. (1997). Pollen germination and tube growth. Annual Review of Plant Physiology and Plant Molecular Biology 48, 461-491.
Twell, D., Yamaguchi, J., Wing, R.A., Ushiba, J., and McCormick, S. (1991). Promoter analysis of genes that are coordinately expressed during pollen development reveals pollen-specific enhancer sequences and shared regulatory elements. Genes and Development 5, 496-507.
Vallelian-Bindschedler, L., Mosinger, E., Metraux, J.P., and Schweizer, P. (1998). Structure, expression and localisation of a germin-like protein in barley (Hordeum vulgare L.) that is insolubilized in stressed leaves. Plant Molecular Biology 37, 297-308.
Verma, D.P.S., and Hong, Z. (2001). Plant callose synthase complexes. Plant Molecular Biology 47, 693-701.
Wasternacka, C., Stenzela, I., Hauseb, B., Hausec, G., Kuttera, C., Mauchera, H., Neumerkela, J., Feussnerd, I., and Mierscha, O. (2006). The wound response in tomato – Role of jasmonic acid. Journal of Plant Physiology 163, 297-306.
Wingate, V.P.M., Franceschi, V.R., and Ryan, C.A. (1991). Tissue and cellular localization of proteinase inhibitors I and II on the fruit of the wild tomato, Lycopersicon peruvianum (L.) Mill. Plant Physiology 97, 490-495.
Yen, S.K., Chung, M.C., Chen, P.C., and Yen, H.E. (2001). Environmental and developmental regulation of the wound-induced cell wall protein WI12 in the halophyte ice plant. Plant Physiology 127, 517-528.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25251-
dc.description.abstractTomato (Solanum lycopersicum) is a temperature-sensitive crop. The harvest of tomato is poor due to the elevated temperature. Studies have pointed out that impairment of tomato pollen during anther development by elevated temperature contributes to decreased fruit set. In this study, we used heat-sensitive (L4783) and heat-tolerant (CL5915) tomatoes cultivated in high temperatures(day35/ night30 and day30/night 25 °C) and optimal temperature (day25/night20 ℃) to investigate the molecular mechanisms of heat tolerance of the tomato pollen grains during anther development.
First, we used Real-time PCR to screen candidate genes from anther cDNA library that was constructed from the heat-tolerant tomato by Suppression Subtractive Hybridization (SSH). Thus, Clone 5 and Clone 29 (LwWun1) were selected from the heat-tolerant tomato (CL5915) based on the results of Northern blotting and reverse transcription-polymerase chain reaction (RT-PCR). By means of RACE (Rapid amplification of cDNA end),I obtained the full-length cDNA of Clone 5 and Clone 29 genes according to the SSH fragment sequence. Through the alignment on the NCBI database, the translation products of Clone 5 and Clone 29 were predicted to be the cupin-superfamily protein and wound-inducible 1 protein (Wun1), respectively. Furthermore, we detect the expression of Clone 5 and LeWun1 by RT-PCR with total RNA extracted from various tomato organs. To study whether these target genes participate in the heat-resistance process of tomato pollen, we generated transgenic tomatoes over-expressing target genes, Clone 5 and LeWun1,in heat-sensitive L4783 tomato and knock-down target genes in heat-tolerant CL5915 tomato by Agrobacteria with pCAMBIA-2301. Additionally, the promoter region of LeWun1 gene was isolated from the tomato by Tail PCR (Thermal asymmetric interlaced PCR), and its function was predicted.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:06:37Z (GMT). No. of bitstreams: 1
ntu-96-R94b42019-1.pdf: 1707967 bytes, checksum: 6c88089c985f3d72de61d6fd75034ae7 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents中文摘要 1
英文摘要 2
第一章 前言 4
一、 番茄 4
二、 熱逆境 4
三、 番茄與熱逆境 5
四、 使番茄具有耐熱潛力之基因 5
五、 研究目的與方向 7
第二章 材料與方法 9
一、 材料 9
二、 番茄雄蕊RNA的萃取 9
三、 cDNA 之製作 10
四、 Real-time PCR 10
五、 北方墨點轉漬分析(Northern blotting assay) 11
六、 RACE(Rapid amplification cDNA end) 13
七、 聚合酵素連鎖反應(The polymerase chain reaction, PCR) 14
八、 限制酵素切割 15
九、 瓊脂凝膠內DNA片段之回收 15
十、 質粒構築與挑選 16
十一、 蕃茄之轉殖 18
十二、 植物基因組DNA萃取 18
十三、 GUS活性分析 19
十四、 Thermal Asymmetric Interlaced PCR (Tail PCR) 20
十五、 番茄花粉外表型的觀察 22
第三章 結果 24
一、 耐熱番茄中受熱誘導表現的目標基因之確認 24
二、 目標基因序列全長之釣取及比對結果 24
三、 目標基因於野生型番茄各器官表現之情況 25
四、 番茄轉殖載體之構築 26
五、 番茄轉殖株之篩選與鑑定 27
六、 番茄轉殖株花粉性狀之分析 28
七、 釣取LeWun1基因啟動子序列 28
第四章 討論 30
一、 Clone 5與LeWun1基因受熱影響的內生表現情形 30
二、 Clone 5與LeWun1蛋白質序列分析 31
三、 在不耐熱番茄品系4783體內大量表現clone 5 33
四、 LeWun1番茄啟動子之釣取 34
五、 結論 36
第五章 參考文獻 37
第六章 圖表 45
dc.language.isozh-TW
dc.title耐熱番茄中雄蕊表現基因Clone 5 與 LeWun1 之分離及分析zh_TW
dc.titleIsolation and analysis of stamen-expressed genes Clone 5 and LeWun1 from heat0tolerant tomatoen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee盧虎生,黃鵬林,吳克強
dc.subject.keyword番茄,雄蕊,zh_TW
dc.subject.keywordtomato,stamen,en
dc.relation.page44
dc.rights.note未授權
dc.date.accepted2007-07-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  目前未授權公開取用
1.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved