Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2524
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李遠哲(Yuan-Tseh Lee)
dc.contributor.authorYen-Cheng Linen
dc.contributor.author林彥成zh_TW
dc.date.accessioned2021-05-13T06:41:26Z-
dc.date.available2017-07-12
dc.date.available2021-05-13T06:41:26Z-
dc.date.copyright2017-07-12
dc.date.issued2017
dc.date.submitted2017-06-26
dc.identifier.citation1. Pino, G. A.; Dedonder-Lardeux, C.; Grégoire, G.; Jouvet, C.; Martrenchard, S.; Solgadi, D., J. Chem. Phys. 1999, 111 (24), 10747-10749.
2. Pino, G.; Gre´goire, G.; Dedonder-Lardeux, C.; Jouvet, C.; Martrenchard, S.; Solgadi, D., Phys. Chem. Chem. Phys. 2000, 2 (4), 893-900.
3. Tseng, C. M.; Lee, Y. T.; Ni, C. K., J. Chem. Phys. 2004, 121 (6), 2459-61.
4. Nix, M. G.; Devine, A. L.; Cronin, B.; Dixon, R. N.; Ashfold, M. N., J. Chem. Phys. 2006, 125 (13), 133318.
5. Tseng, C.-M.; Lee, Y. T.; Lin, M.-F.; Ni, C.-K.; Suet-Yi Liu; Lee, Y.-P.; Xu, Z. F.; Lin, M. C., J. Phys. Chem. A 2007, 111, 9463-9470.
6. Iqbal, A.; Pegg, L.-J.; Stavros, V. G., J. Phys. Chem. A 2008, 112, 9531–9534.
7. Iqbal, A.; Cheung, M. S. Y.; Nix, M. G. D.; Stavros, V. G., J. Phys. Chem. A 2009, 113, 8157–8163.
8. King, G. A.; Oliver, T. A. A.; Nix, M. G. D.; Ashfold, M. N. R., J. Phys. Chem. A 2009, 113, 7984–7993.
9. Pino, G. A.; Oldani, A. N.; Marceca, E.; Fujii, M.; Ishiuchi, S. I.; Miyazaki, M.; Broquier, M.; Dedonder, C.; Jouvet, C., J. Chem. Phys. 2010, 133 (12), 124313.
10. Roberts, G. M.; Chatterley, A. S.; Young, J. D.; Stavros, V. G., J. Phys. Chem. Lett. 2012, 3 (3), 348-52.
11. Lee, C.; Lin, Y.-C.; Lee, S.-H.; Lee, Y.-Y.; Tseng, C.-M.; Lee, Y.-T.; Ni, C.-K., THE JOURNAL OF CHEMICAL PHYSICS 2017, 147.
12. Sobolewski, A. L.; Domcke, W., J. Phys. Chem. A 2001, 105.
13. Sobolewski, A. L.; Domcke, W.; Dedonder-Lardeux, C.; Jouvet, C., Phys. Chem. Chem. Phys. 2002, 4 (7), 1093-1100.
14. Dixon, R. N.; Oliver, T. A.; Ashfold, M. N., J. Chem. Phys. 2011, 134 (19), 194303.
15. Xu, X.; Yang, K. R.; Truhlar, D. G., J. Chem. Theory. Comput. 2013, 9 (8), 3612-25.
16. Xu, X.; Zheng, J.; Yang, K. R.; Truhlar, D. G., J. Am. Chem. Soc. 2014, 136 (46), 16378-86.
17. Yang, K. R.; Xu, X.; Zheng, J.; Truhlar, D. G., Chem. Sci. 2014, 5 (12), 4661-4680.
18. Guo, H.; Yarkony, D. R., Phys. Chem. Chem. Phys. 2016, 18 (38), 26335-26352.
19. Xie, C.; Ma, J.; Zhu, X.; Yarkony, D. R.; Xie, D.; Guo, H., J. Am. Chem. Soc. 2016, 138 (25), 7828-31.
20. Xie, C.; Yarkony, D. R.; Guo, H., Phy. Rev. A 2017, 95 (2).
21. Callis, P. R., Annu. Rev. Phys. Chem. 1983, 34, 329-357.
22. creed, D., Photochem. Photobiol. 1984, 39, 537-562.
23. Creed, D., Photochem. Photobiol. 1984, 39, 537.
24. Lee, C.; Lin, Y.-C.; Lee, S.-H.; Lee, Y.-Y.; Tseng, C.-M.; Lee, Y.-T.; Ni, C.-K., J. Chem. Phys. 2017, 147 (1), 013904.
25. Ratzer, C.; kupper, J.; Daniel Spangenberg2; Schmitt, M., Chem. Phy. 2002, 283, 153–169.
26. Wang, C. C.; Lee, Y. T.; Lin, J. J.; Shu, J.; Lee, Y.-Y.; Yang, X., J. Chem. Phys. 2002, 117 (1), 153-160.
27. Lin, J. J.; Chen, Y.; Lee, Y. Y.; Lee, Y. T.; Yang, X., Chem. Phy. Lett. 2002, 361, 374–382.
28. Lee, S. H.; Chen, W. K.; Huang, W. J., J. Chem. Phys. 2009, 130 (5), 054301.
29. Scoles, G., Atomic and molecular beam methods. 1988.
30. Yang, S. c.; Bersohn, R., J. Chem. Phys. 1974, 61 (11), 4400-4407.
31. Wittig, C., J. Phys. Chem. B 2005, 109, 8428-8430.
32. Tseng, C.-M.; Dyakov, Y. A.; Huang, C.-L.; Mebel, A. M.; Lin, S. H.; Lee, Y. T.; Ni, C.-K., J. Am. Chem. Soc. 2004, 126, 8760-8768.
33. King, G. A.; Oliver, T. A.; Ashfold, M. N., J. Chem. Phys. 2010, 132 (21), 214307.
34. Roberts, G. M.; Williams, C. A.; Young, J. D.; Ullrich, S.; Paterson, M. J.; Stavros, V. G., J. Am. Chem. Soc. 2012, 134 (30), 12578-89.
35. Tseng, C. M.; Lee, Y. T.; Ni, C. K., J. Phys. Chem. A 2009, 113 (16), 3881-5.
36. Hadden, D. J.; Roberts, G. M.; Karsili, T. N.; Ashfold, M. N.; Stavros, V. G., Phys. Chem. Chem. Phys. 2012, 14 (38), 13415-28.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2524-
dc.description.abstract因為苯酚是多重位能曲面分解的重要模型分子,其光分解在過去數十年來被許多實驗與理論計算研究過。苯酚在紫外光區域光分解的主要碎片為OH斷鍵產生的氫原子與苯氧基。先前的實驗在測量光解碎片動能分布時,發現有兩個不同的產物,他們分別被稱為快速產物與慢速產物。快速產物被認為是苯酚的激發態分解成苯氧基的基態。而慢速產物則有以下兩種可能:(1) 從苯酚的基態分解而來,(2) 從苯酚的激發態分解成苯氧基的激發態。過去並沒有實驗測量這兩種分解途徑的分支比。
在本實驗中,我們藉由改良傳統的光解碎片動能儀完成一新型態的時間解析實驗並得到時間解析的移動動能分布。藉此我們可以很清楚地分出三種不同的分解途徑。分解途徑一在移動動能分布中會在12000cm-1有一峰值,並且其生命週期為小於10奈秒,因此分解途徑一為苯酚的激發態分解成苯氧基的基態;分解途徑二在移動動能分布中會在2000cm-1有一峰值,同樣的其生命週期為小於10奈秒,因此分解途徑二為苯酚的激發態分解成苯氧基的激發態;分解途徑三在移動動能分布中主要落於小於3000cm-1的區域,而其生命週期為大於100奈秒,因此分解途徑三為苯酚的基態分解。根據本實驗的結果,我們可以得到苯酚在基態分解及苯酚在激發態分解成苯氧基的基態、第一激發態、第二激發態的分支比。在193奈米分解時分別為0.05、0.53、0.24和0.17;在213奈米分解時分別為0.07、0.60、0.32和0。我們得到的這些分支比數值可以做為檢驗理論計算結果的重要依據。而我們所開發出的新方法也有助於研究其他有多重位能曲面分解的分子的光分解。
zh_TW
dc.description.abstractPhotodissociation of phenol has been investigated by both experimental and theoretical methods for the past few decades since it is an important model molecular of multistate dissociation. The major photofragments in UV region are Hydrogen atom plus phenoxyl radical produced through OH bond fission. Previous experiments showed that there are two components, namely fast and slow, in the photofragment translational energy distributions. The fast component was assigned as dissociation in the electronic excited state forming the ground state phenoxyl radical. As for the slow component, it can be assigned as (1) dissociation in the electronic excited state forming the excited state phenoxyl radical, or (2) internal conversion followed by dissociation in the electronic ground state. There was no experimental measurement of branching ratio for these two channels before.
In this work, we have performed a new type of time-resolved experiment using modified conventional photofragment translational spectroscopy to get the time-resolved spectra of photofragment translational energy. The results show clear characteristic of three different dissociation channels. The first channel producing a component centered at ~12000 cm-1 in translational energy distribution has a lifetime < 10 ns, and is assigned as dissociation in the excited state forming the ground state phenoxyl radical. The second channel generates a component centered at ~2000 cm-1 in translational energy distribution with a lifetime < 10 ns, and is assigned as dissociation in the excited state forming the excited state phenoxyl radical. The third channel producing a component mainly below 3000 cm-1 in translational energy distribution has a lifetime > 100 ns, and is assigned as dissociation in the ground state forming the excited state phenoxyl radical. Finally, we get the branching ratio of ground state dissociation channel and excited state dissociation channel forming phenoxyl radical X,A,B state for the photodissociation of phenol at 193nm as 0.05, 0.53, 0.24, 0.17, and at 213 nm as 0.07, 0.60, 0.32, 0. These branching ratios are useful for justifying the results of theoretical calculations. Furthermore, this technique is useful for the investigation of photodissocition of other molecules which would also dissociate on the multi potential energy surface.
en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:41:26Z (GMT). No. of bitstreams: 1
ntu-106-R04223133-1.pdf: 2718485 bytes, checksum: 3695a837323e04ae290a0f531378c3d5 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試論文審定書 #
謝誌 I
中文摘要 II
Abstract III
Contents V
List of Figures VII
List of table X
Chapter 1. Introductions 1
Chapter 2. Experimental Method 11
2.1 Experimental Apparatus 11
2.1.1 Conventional Photofragment Translational Spectroscopy (PTS) 11
2.1.2 Time-of-Flight Mass Spectrometer 13
2.2 Experimental Principle 14
2.2.1 Translational Energy Distribution 14
2.2.2 Time-Resolved Experiment 16
2.3 Experimental Procedure and Data Analysis 18
Chapter 3. Photodissociation Experiment of Phenol 26
3.1 Photodissociation Experiment of Phenol at 275 nm 26
3.2 Photodissociation Experiment of Phenol at 213 nm 29
3.3 Photodissociation Experiment of Phenol at 193 nm 35
3.4 Discussions 44
Chapter 4. Prospects 49
Chapter 5. Conclusions 52
Reference 53
Appendix A. Changing from Laboratory Frame to Center-of-Mass Frame 56
dc.language.isoen
dc.subject分支比zh_TW
dc.subject苯酚zh_TW
dc.subject光分解zh_TW
dc.subject光解碎片動能分布zh_TW
dc.subject時間解析zh_TW
dc.subjectPhenolen
dc.subjectbranching ratioen
dc.subjecttime-resolveden
dc.subjectPhotofragment translational energy distributionen
dc.subjectPhotodissociaitonen
dc.title苯酚的光分解:光解碎片動能分布中慢速產物的來源zh_TW
dc.titlePhotodissociation of Phenol: the Origins of Slow Component in Photofragment Translational Energy Distributionen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor倪其焜(Chi-Kung Ni)
dc.contributor.oralexamcommittee曾建銘,李世煌,王家蓁
dc.subject.keyword苯酚,光分解,光解碎片動能分布,時間解析,分支比,zh_TW
dc.subject.keywordPhenol,Photodissociaiton,Photofragment translational energy distribution,time-resolved,branching ratio,en
dc.relation.page57
dc.identifier.doi10.6342/NTU201701130
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-06-27
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf2.65 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved