請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25216完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李芳仁 | |
| dc.contributor.author | Chiung-Ying Fang | en |
| dc.contributor.author | 方瓊瑩 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:05:31Z | - |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-23 | |
| dc.identifier.citation | Allain FH, Bouvet P, Dieckmann T, Feigon J. (2000). Molecular basis of sequence-specific recognition of pre-ribosomal RNA by nucleolin. EMBO J. 19, 6870-6881.
Amanchy R, Kalume DE, Iwahori A, Zhong J, Pandey A. (2005). Phosphoproteome analysis of HeLa cells using stable isotope labeling with amino acids in cell culture (SILAC). J. Proteome. Res. 4, 1661-1671. Anderson P. and Kedersha N. (2002). Stressful initiations. J. Cell Sci. 115, 3227-3234. Anderson P. and Kedersha N. (2006). RNA granules. J. Cell Biol. 172, 803-808. Ausubel FM, Brent R, Kingston RE, Moore DD, Seodman JG, Smith JA, Struhl K. (1993). Current Protocols in Molecular Biology. John Wiley & Sons, Inc. Baker KE and Parker R. (2004). Nonsense-mediated mRNA decay: terminating erroneous gene expression. Curr. Opin. Cell Biol. 16, 293-299. Basson ME, Moore RL, O'Rear J, Rine J. (1987). Identifying mutations in duplicated functions in Saccharomyces cerevisiae: recessive mutations in HMG-CoA reductase genes. Genetics 117, 645-655. Beelman CA, Stevens A, Caponigro G, LaGrandeur TE, Hatfield L, Fortner DM, Parker R. (1996). An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382, 642-646. Benjamin D, Schmidlin M, Min L, Gross B, Moroni C. (2006). BRF1 protein turnover and mRNA decay activity are regulated by protein kinase B at the same phosphorylation sites. Mol. Cell. Biol. 26, 9497-507. Blom N, Gammeltoft S, Brunak S. (1999). Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294, 1351-1362. Boeke JD, Trueheart J, Natsoulis G, Fink GR. (1987). 5-Fluoroorotic acid as a selective agent in yeast molecular genetics. Methods Enzymol. 154, 164-175. Brengues M, Teixeira D, Parker R. (2005). Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310, 486-489. Brook M, Tchen CR, Santalucia T, McIlrath J, Arthur JS, Saklatvala J, Clark AR. (2006). Posttranslational regulation of tristetraprolin subcellular localization and protein stability by p38 mitogen-activated protein kinase and extracellular signal-regulated kinase pathways. Mol. Cell. Biol. 26, 2408-18. Buu LM, Jang LT, Lee FJ. (2004). The yeast RNA-binding protein Rbp1p modifies the stability of mitochondrial porin mRNA. J. Biol. Chem. 279, 453-62. Cagney G, Uetz P, Fields S. (2001). Two-hybrid analysis of the Saccharomyces cerevisiae 26S proteasome. Physiol. Genomics 7, 27-34. Chen CY and Shyu AB. (1995). AU-rich elements: characterization and importance in mRNA degradation. Trends Biochem. Sci. 20, 465-470. Cohen P. (2001). The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. Eur. J. Biochem. 268, 5001-5010. Coller JM, Tucker M, Sheth U, Valencia-Sanchez MA, Parker R. (2001). The DEAD box helicase, Dhh1p, functions in mRNA decapping and interacts with both the decapping and deadenylase complexes. RNA 7, 1717-1727. Coller J and Parker R. (2004). Eukaryotic mRNA decapping. Annu. Rev. Biochem. 73, 861-890. Collins MO, Yu L, Coba MP, Husi H, Campuzano I, Blackstock WP, Choudhary JS, Grant SG. (2005). Proteomic analysis of in vivo phosphorylated synaptic proteins. J. Biol. Chem. 280, 5972-5982. Colombini M. (1979). A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 279, 643-645. Conti E and Izaurralde E. (2005). Nonsense-mediated mRNA decay: molecular insights and mechanistic variations across species. Curr. Opin. Cell Biol. 17, 316-325. Costanzo MC, Crawford ME, Hirschman JE, Kranz JE, Olsen P, Robertson LS, Skrzypek MS, Braun BR, Hopkins KL, Kondu P, Lengieza C, Lew-Smith JE, Tillberg M, Garrels JI. (2001). YPDTM, PombePDTM and WormPDTM: model organism volumes of the BioKnowledge library, an integrated resource for protein information. Nucleic Acids Res. 29, 75-79. Cougot N, Babajko S, Seraphin B. (2004). Cytoplasmic foci are sites of mRNA decay in human cells. J. Cell. Biol. 165, 31-40. Daugeron MC, Mauxion F, Seraphin B. (2001). The yeast POP2 gene encodes a nuclease involved in mRNA deadenylation. Nucleic Acids Res. 29, 2448-55. Dean JL, Sully G, Clark AR, Saklatvala J. (2004). The involvement of AU-rich element-binding proteins in p38 mitogen-activated protein kinase pathway-mediated mRNA stabilisation. Cell Signal. 16, 1113-1121. Deo RC, Bonanno JB, Sonenberg N, Burley SK. (1999). Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 98, 835-845. Ding J, Hayashi MK, Zhang Y, Manche L, Krainer AR, Xu RM. (1999). Crystal structure of the two-RRM domain of hnRNP A1 (UP1) complexed with single-stranded telomeric DNA. Genes Dev. 13, 1102-1115. Fischer N. and Weis K. (2002). The DEAD box protein Dhh1 stimulates the decapping enzyme Dcp1. EMBO J. 21, 2788-2797. Fleischmann M, Stagljar I, Aebi M. (1996). Allele-specific suppression of a Saccharomyces cerevisiae prp20 mutation by overexpression of a nuclear serine/threonine protein kinase. Mol. Gen. Genet. 250, 614-625. Flynn A, and Proud CG. (1995). Serine 209, not serine 53, is the major site of phosphorylation in initiation factor eIF-4E in serum-treated Chinese hamster ovary cells. J. Biol. Chem. 270, 21684-21688. Gingras AC, Raught B, Sonenberg N. (1999). eIF4 initiation factors: effectors of mRNA recruitment to ribosomes and regulators of translation. Annu. Rev. Biochem. 68, 913-963. Gorg A, Weiss W, Dunn MJ. (2004). Current two-dimensional electrophoresis technology for proteomics. Proteomics 4, 3665-3685. Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M, Jensen ON. (2005). Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol. Cell. Proteomics 4, 310-327. Herman PK. (2002). Stationary phase in yeast. Curr. Opin. Microbiol. 5, 602-607. Hieter P, Mann C, Snyder M, Davis RW. (1985). Mitotic stability of yeast chromosomes: a colony color assay that measures nondisjunction and chromosome loss. Cell 40, 381-392. Huang CF, Liu YW, Tung L, Lin CH, Lee FJ. (2003). Role for Arf3p in development of polarity, but not endocytosis, in Saccharomyces cerevisiae. Mol. Biol. Cell 14, 3834-47. Hunter T and Plowman GD. (1997). The protein kinases of budding yeast: six score and more. Trends Biochem. Sci. 22, 18-22. Hunter T. (2000). Signaling--2000 and beyond. Cell 100, 113-127. Hsu CL and Stevens A. (1993). Yeast cells lacking 5'→3'exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5' cap structure. Mol. Cell. Biol. 13, 4826-4835. Ingelfinger D, Arndt-Jovin DJ, Luhrmann R, Achsel T. (2002). The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 8, 1489-1501. Jaeken J, van Eijk HG, van der Heul C, Corbeel L, Eeckels R, Eggermont E. (1984). Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin. Chim. Acta. 144, 245-247. Jang LT, Buu LM, Lee FJ. (2006). Determinants of Rbp1p localization in specific cytoplasmic mRNA-processing foci, P-bodies. J. Biol. Chem. 281, 29379-19390. Joshi B, Cai AL, Keiper BD, Minich WB, Mendez R, Beach CM, Stepinski J, Stolarski R, Darzynkiewicz E, Rhoads RE. (1995). Phosphorylation of eukaryotic protein synthesis initiation factor 4E at Ser-209. J. Biol. Chem. 270, 14597-14603. Kaiser CA, Adams A, Gottschling DE. (1994). Methods in Yeast Genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Kamps MP and Sefton BM. (1989). Acid and base hydrolysis of phosphoproteins bound to immobilon facilitates analysis of phosphoamino acids in gel-fractionated proteins. Anal. Biochem. 176, 22-27. Kedersha N, Cho MR, Li W, Yacono PW, Chen S, Gilks N, Golan DE, Anderson P. (2000). Dynamic shuttling of TIA-1 accompanies the recruitment of mRNA to mammalian stress granules. J. Cell Biol. 151, 1257-1268. Kedersha N, Anderson P. (2002). Stress granules: sites of mRNA triage that regulate mRNA stability and translatability. Biochem. Soc. Trans. 30, 963-969. Kedersha N, Chen S, Gilks N, Li W, Miller IJ, Stahl J, Anderson P. (2002). Evidence that ternary complex (eIF2-GTP-tRNA(i)(Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol. Biol. Cell 13, 195-210. Kelly WG, Dahmus ME, Hart GW. (1993). RNA polymerase II is a glycoprotein: modification of the COOH-terminal domain by O-GlcNAc. J. Biol. Chem. 268, 10416-10424. Koshland D, Kent JC, Hartwell LH. (1985). Genetic analysis of the mitotic transmission of minichromosomes. Cell 40, 393-403. Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S, Umansky L, Drawid A, Jansen R, Liu Y, Cheung KH, Miller P, Gerstein M, Roeder GS, Snyder M. (2002). Subcellular localization of the yeast proteome. Genes Dev. 16, 707-719. Ladomery M, Wade E, Sommerville J. (1997). Xp54, the Xenopus homologue of human RNA helicase p54, is an integral component of stored mRNP particles in oocytes. Nucleic Acids Res. 25, 965-973. Lasko P. (2003). Gene regulation at the RNA layer: RNA binding proteins in intercellular signaling networks. Sci STKE 2003, RE6. Lee FJ, Moss J, Lin LW. (1992). A simplified procedure for hybridization of RNA blots. Biotechniques 13, 844-846. Lee FJ. and Moss J. (1993). An RNA-binding protein gene (RBP1) of Saccharomyces cerevisiae encodes a putative glucose-repressible protein containing two RNA recognition motifs. J. Biol. Chem. 268, 15080-15087. Lee K, Du C, Horn M, Rabinow L. (1996). Activity and autophosphorylation of LAMMER protein kinases. J. Biol. Chem. 271, 27299-27303. Lehle L, Strahl S, Tanner W. (2006). Protein glycosylation, conserved from yeast to man: a model organism helps elucidate congenital human diseases. Angew. Chem. Int. Ed. Engl. 45, 6802-6818. Lehninger AL, Nelson DL, Cox MM. (2000). Principles of Biochemistry, 3rd Ed.; Worth Publishers Inc. N.Y., 161-169. Lelivelt MJ and Culbertson MR. (1999). Yeast Upf proteins required for RNA surveillance affect global expression of the yeast transcriptome. Mol. Cell. Biol. 19, 6710-6719. Lillie SH and Pringle JR. (1980). Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J. Bacteriol. 143, 1384-1394. Linder P. (2003). Yeast RNA helicases of the DEAD-box family involved in translation initiation. Biol. Cell 95, 157-167. Liu J, Rivas FV, Wohlschlegel J, Yates JR 3rd, Parker R, Hannon GJ. (2005a). A role for the P-body component GW182 in microRNA function. Nat. Cell Biol. 7, 1161-1166. Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R. (2005b). MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat. Cell Biol. 7, 719-723. Longtine MS, McKenzie A 3rd, Demarini DJ, Shah NG, Wach A, Brachat A, Philippsen P, Pringle JR. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14, 953-61. Lorsch JR. (2002). RNA chaperones exist and DEAD box proteins get a life. Cell 109, 797-800. Ma JL, Lee SJ, Duong JK, Stern DF. (2006). Activation of the checkpoint kinase Rad53 by the phosphatidyl inositol kinase-like kinase Mec1. J. Biol. Chem. 281, 3954-3963. Mader S, and Sonenberg N. (1995). Cap binding complexes and cellular growth control. Biochimie. 77, 40-44. Maekawa H, Nakagawa T, Uno Y, Kitamura K, Shimoda C. (1994). The ste13+ gene encoding a putative RNA helicase is essential for nitrogen starvation-induced G1 arrest and initiation of sexual development in the fission yeast Schizosaccharomyces pombe. Mol. Gen. Genet. 244, 456-464. Mann M, Jensen ON. (2003). Proteomic analysis of post-translational modifications. Nat. Biotechnol. 21, 255-261. Mann M, Ong SE, Gronborg M, Steen H, Jensen ON, Pandey A. (2002). Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends. Biotechnol. 20, 261-268. Maris C, Dominguez C, Allain FH. (2005). The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J. 272, 2118-2131. Mata J, Marguerat S, Bahler J. (2005). Post-transcriptional control of gene expression: a genome-wide perspective. Trends Biochem. Sci. 30, 506-514. McKendrick L, Pain VM, Morley SJ. (1999). Translation initiation factor 4E. Int. J. Biochem. Cell Biol. 31, 31-35. McLaughlin MM, Kumar S, McDonnell PC, Van Horn S, Lee JC, Livi GP, Young PR. (1996). Identification of mitogen-activated protein (MAP) kinase-activated protein kinase-3, a novel substrate of CSBP p38 MAP kinase. J. Biol. Chem. 271, 8488-8492. Minshall N, Thom G, Standart N. (2001). Conserved role of a DEAD-box helicase in translational masking. RNA 7, 1728-1742. Moore MJ. (2005). From birth to death: the complex lives of eukaryotic mRNAs. Science 309, 1514-1518. Morandell S, Stasyk T, Grosstessner-Hain K, Roitinger E, Mechtler K, Bonn GK, Huber LA. (2006). Phosphoproteomics strategies for the functional analysis of signal transduction. Proteomics 6, 4047-4056. Muhlrad D and Parker R. (1992). Mutations affecting stability and deadenylation of the yeast MFA2 transcript. Genes Dev. 6, 2100-2111. Muhlrad D and Parker R. (1994). Premature translational termination triggers mRNA decapping. Nature 370, 578-581. Muhlrad D, Decker CJ, Parker R. (1995). Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell. Biol. 15, 2145-2156. Nakamura A, Amikura R, Hanyu K, Kobayashi S. (2001). Me31B silences translation of oocyte-localizing RNAs through the formation of cytoplasmic RNP complex during Drosophila oogenesis. Development 128, 3233-3242. Ooi SL, Shoemaker DD, Boeke JD. (2003). DNA helicase gene interaction network defined using synthetic lethality analyzed by microarray. Nat. Genet. 35, 277-286. Orphanides G. and Reinberg D. (2002). A unified theory of gene expression. Cell 108, 439-451. Padmanabha R, Gehrung S, Snyder M. (1991). The KNS1 gene of Saccharomyces cerevisiae encodes a nonessential protein kinase homologue that is distantly related to members of the CDC28/cdc2 gene family. Mol. Gen. Genet. 229, 1-9. Panasyuk G, Nemazanyy I, Zhyvoloup A, Bretner M, Litchfield DW, Filonenko V, Gout IT. (2006). Nuclear export of S6K1 II is regulated by protein kinase CK2 phosphorylation at Ser-17. J. Biol. Chem. 281, 31188-31201. Parker R and Song H. (2004). The enzymes and control of eukaryotic mRNA turnover. Nat. Struct. Mol. Biol. 11, 121-7. Pawson T. and Nash P. (2003). Assembly of cell regulatory systems through protein interaction domains. Science 300, 445-452. Piccioni F, Zappavigna V, Verrotti AC. (2005). Translational regulation during oogenesis and early development: the cap-poly(A) tail relationship. C. R. Biol. 328, 863-881. Pinon R. (1978). Folded chromosomes in non-cycling yeast cells: evidence for a characteristic G0 form. Chromosoma. 67, 263-274. Pinon R and Pratt D. (1980). Folded chromosomes of Saccharomyces cerevisiae: comparison of response to sporulation medium, arrest at start, and G0 arrest. Chromosoma. 81, 379-391. Proudfoot NJ, Furger A, Dye MJ. (2002). Integrating mRNA processing with transcription. Cell 108, 501-512. Ptacek J, Devgan G, Michaud G, Zhu H, Zhu X, Fasolo J, Guo H, Jona G, Breitkreutz A, Sopko R, McCartney RR, Schmidt MC, Rachidi N, Lee SJ, Mah AS, Meng L, Stark MJ, Stern DF, De Virgilio C, Tyers M, Andrews B, Gerstein M, Schweitzer B, Predki PF, Snyder M. (2005). Global analysis of protein phosphorylation in yeast. Nature 438, 679-684. Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E. (2005). A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11, 1640-1647. Rehwinkel J, Letunic I, Raes J, Bork P, Izaurralde E. (2005). Nonsense-mediated mRNA decay factors act in concert to regulate common mRNA targets. RNA 11, 1530-1544. Rossignol M. (2006). Proteomic analysis of phosphorylated proteins. Curr. Opin. Plant Biol. 9, 538-543. Sambrook J, Fritsch EF, Maniatis T. (1989). Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. Schenberg-Frascino A and Moustacchi E. (1972). Lethal and mutagenic effects of elevated temperature on haploid yeast. I. Variations in sensitivity during the cell cycle. Mol. Gen. Genet. 115, 243-257. Scheper GC and Proud CG. (2002). Does phosphorylation of the cap-binding protein eIF4E play a role in translation initiation? Eur. J. Biochem. 269, 5350-5359. Schmidlin M, Lu M, Leuenberger SA, Stoecklin G, Mallaun M, Gross B, Gherzi R, Hess D, Hemmings BA, Moroni C. (2004). The ARE-dependent mRNA-destabilizing activity of BRF1 is regulated by protein kinase B. EMBO J. 23, 4760-9. Sen GL, Blau HM. (2005). Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nat. Cell Biol. 7, 633-636. Sherman F, Fink GR, Hicks JB. (1986). Methods in Yeast Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY. Sheth U and Parker R. (2003). Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300, 805-808. Shyu AB, Belasco JG, GreenME. (1991). Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes Dev. 5, 221-231. Siomi H and Dreyfuss G. (1997). RNA-binding proteins as regulators of gene expression. Curr. Opin. Genet. Dev. 7, 345-353. Slepenkov SV, Darzynkiewicz E, Rhoads RE. (2006). Stopped-flow kinetic analysis of eIF4E and phosphorylated eIF4E binding to cap analogs and capped oligoribonucleotides: evidence for a one-step binding mechanism. J. Biol. Chem. 281, 14927-14938. Spingola M and Ares M Jr. (2000). A yeast intronic splicing enhancer and Nam8p are required for Mer1p-activated splicing. Mol. Cell 6, 329-338. Steen H, Kuster B, Fernandez M, Pandey A, Mann M. (2002). Tyrosine phosphorylation mapping of the epidermal growth factor receptor signaling pathway. J. Biol. Chem. 277, 1031-1039. Stefl R, Skrisovska L, Allain FH. (2005). RNA sequence- and shape-dependent recognition by proteins in the ribonucleoprotein particle. EMBO Rep. 6, 33-38. Stevens A and Maupin MK. (1987). A 5'→3' exoribonuclease of Saccharomyces cerevisiae: size and novel substrate specificity. Arch. Biochem. Biophys. 252, 339-347. Stoecklin G, Stubbs T, Kedersha N, Wax S, Rigby WF, Blackwell TK, Anderson P. (2004). MK2-induced tristetraprolin:14-3-3 complexes prevent stress granule association and ARE-mRNA decay. EMBO J. 23, 1313-24. Sun L, Stoecklin G, Van Way S, Hinkovska-Galcheva V, Guo RF, Anderson P, Shanley TP. (2007). Tristetraprolin (TTP)-14-3-3 complex formation protects TTP from dephosphorylation by protein phosphatase 2a and stabilizes tumor necrosis factor-alpha mRNA. J. Biol. Chem. 282, 3766-77. Swida U, Schulz-Harder B, Kucherer C, Kaufer N. (1981). The occurrence of two ribosomal ribonucleases depending on growth phase in yeast. Induction of ribonuclease in glucose-starved cells. Biochim. Biophys. Acta. 652, 129-138. Tanner NK, Cordin O, Banroques J, Doere M, Linder P. (2003). The Q motif: a newly identified motif in DEAD-box helicases may regulate ATP binding and hydrolysis. Mol. Cell 11, 127-138. Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R. (2005). Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11, 371-382. Tomaska L. (2000). Mitochondrial protein phosphorylation: Lessons from yeasts. Gene 255, 59-64. Tong AH, Evangelista M, Parsons AB, Xu H, Bader GD, Page N, Robinson M, Raghibizadeh S, Hogue CW, Bussey H, Andrews B, Tyers M, Boone C. (2001). Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294, 2364-2368. Tseng-Rogenski SS, Chong JL, Thomas CB, Enomoto S, Berman J, Chang TH. (2003). Functional conservation of Dhh1p, a cytoplasmic DExD/H-box protein present in large complexes. Nucleic Acids Res. 31, 4995-5002. Tucker CL and Fields S (2003). Lethal combinations. Nat. Genet. 35, 204-205. Tucker M, Valencia-Sanchez MA, Staples RR, Chen J, Denis CL, Parker R. (2001). The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377-86. Tucker M, Staples RR, Valencia-Sanchez MA, Muhlrad D, Parker R. (2002). Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427-36. Vasudevan S and Peltz SW. (2001). Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol. Cell 7, 1191-1200. Vernet T, Dignard D, Thomas DY. (1987). A family of yeast expression vectors containing the phage f1 intergenic region. Gene 52, 225-233. Vitali J, Ding J, Jiang J, Zhang Y, Krainer AR, Xu RM. (2002). Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Res. 30, 1531-1538. Vosseller K, Wells L, Hart GW. (2001). Nucleocytoplasmic O-glycosylation: O-GlcNAc and functional proteomics. Biochimie 83, 575-581. Warner JR. (1991). Labeling of RNA and phosphoproteins in Saccharomyces cereivisiae. Methods Enzymol. 194, 423-428. Wang X. and Tanaka Hall TM. (2001). Structural basis of recognition of AU-rich element RNA by the HuD protein. Nat. Struct. Biol. 8, 141-5. Weerapana E, Imperiali B. (2006). Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology 16, 91R-101R. Wells L, Vosseller K, Hart GW. (2001). Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science 291, 2376-2378. Wells L, Whelan SA, Hart GW. (2003). O-GlcNAc: a regulatory post-translational modification. Biochem. Biophys. Res. Commun. 302, 435-441. Westmoreland TJ, Olson JA, Saito WY, Huper G, Marks JR, Bennett CB. (2003). Dhh1 regulates the G1/S-checkpoint following DNA damage or BRCA1 expression in yeast. J. Surg. Res. 113, 62-73. Wilusz CJ, Wilusz J. (2004). Bringing the role of mRNA decay in the control of gene expression into focus. Trends Genet. 20, 491-497. Yaffe MB, Leparc GG, Lai J, Obata T, Volinia S, Cantley LC. (2001). A motif-based profile scanning approach for genome-wide prediction of signaling pathways. Nat. Biotechnol. 19, 348-353. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25216 | - |
| dc.description.abstract | 真核細胞中,基因表現在訊息核醣核酸轉錄後必須經過一連串的調控,包括訊息核醣核酸的修飾、運輸、降解、及轉譯成蛋白質的過程。調控的步驟中包含了許多核醣核酸結合蛋白和核醣核酸共同組成不同的複合體,稱為核醣核蛋白。過去實驗室發現酵母菌中一個包含三個核醣核酸識別基序RRM及兩個富含麩氨酸區域的核醣核酸結合蛋白Rbp1p。目前已經知道在細胞內大量表現Rbp1p會抑制細胞生長,Rbp1p也能夠促進粒腺體外膜孔蛋白porin訊息核醣核酸降解。Rbp1p在Δxrn1的細胞突變株中,會坐落到細胞質中特殊的細胞質聚集顆粒,稱做P-bodies;在野生型細胞株中,經由葡萄糖剝奪、滲透壓力和生長階段晚期的壓力之下,Rbp1p也會坐落在P-bodies的位置,這些位置的改變暗示著Rbp1p會被外界的訊息所調控。在這篇論文中我們證明了在細胞中Rbp1p是一個磷酸化蛋白。我們以單點突變的方式將Rbp1p五個被推測可能會被磷酸化的位置突變為丙胺酸。實驗結果顯示這些僅包含一個單點磷酸化位置突變的Rbp1p仍然具有其負調控細胞生長的功能,但若將五個磷酸化位置突變則可產生功能喪失的Rbp1p。另外我們也研究了Rbp1p可能的激酶Ksp1p及Ykl171w和Rbp1p之間的關連性,我們發現在Δrbp1Δksp1的突變株中大量表現Rbp1p並不會抑制細胞生長,暗示缺乏Ksp1p的情況下Rbp1p可能喪失部分的功能。此外,於論文中也界定了Rbp1p的三個交互作用蛋白Rbp1p本身、核酸解螺旋酵素Dhh1p、及粒線體外膜蛋白Por1p的最小交互作用區域。酵母菌雙雜交實驗顯示,Rbp1p是利用其碳端和交互作用蛋白進行交互作用,而Dhh1p是利用碳端富含麩氨酸區域和Rbp1p進行交互作用。我們也發現無法坐落到P-bodies的Rbp1p突變種也無法和野生型Rbp1p進行交互作用,更進一步確認Rbp1p的自我結合對於坐落到P-bodies是重要的。 | zh_TW |
| dc.description.abstract | Posttranscriptional control of eukaryotic gene expression is comprised of several levels of regulation including processing, export, turnover, localization, and translation of mRNAs. Each regulation step involves various combinations of RNA-binding proteins that form dynamic messenger ribonucleoproteins with the transcript. In Saccharomyces cerevisiae, the RNA-binding protein Rbp1p was first identified as a negative growth regulator, which contains three copies of an RNA recognition motif (RRM) and two glutamine-rich stretches. Our lab has demonstrated that Rbp1p decreases the porin mRNA level by enhancing degradation. In a Δxrn1 strain, Rbp1p localized to a specific cytoplasmic foci known as a P-body. In wild-type cells, Rbp1p localized to P-bodies under glucose deprivation or treatment with KCl, suggesting that outside signaling regulates Rbp1p localization. Here we showed that Rbp1p is a phosphorylated protein in vivo. We generated several putative phosphorylation mutants by site-direct mutagenesis and characterized these mutants by functional analysis. Although all single phosphorylated mutations of Rbp1p are functional, combinations of several mutations can generate a loss-of-function mutant. Ptacek et al. used large-scale screening of kinase-substrate interaction and found two putative kinases of Rbp1p, Ksp1p and Ykl171wp (Ptacek et al., 2005). We demonstrated that overexpression of Rbp1p, but not N-terminal-truncated mutant, resulted in slow growth of the Δrbp1 strain; however, this phenomenon disappeared in the Δrbp1Δksp1 strain, suggesting that Rbp1p loss part of its function in absence of Ksp1p. The 2-D electrophoresis further confirmed that protein pattern of Rbp1p in Δrbp1Δksp1 strain shifts to lower pI compared with in the Δrbp1 strain. In the second part of this thesis, we mapped the interaction region of Rbp1p with three interaction proteins: Rbp1p itself, a DEAD-box helicase, Dhh1p, and a mitochondrial pore protein, Por1p. We found that all three interactions required the C-terminus of Rbp1p. We also found Rbp1p mutants which could not localize to P-bodies and could not interact with wild-type Rbp1p; further confirming that the oligomerization of Rbp1p is required for P-body localization. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:05:31Z (GMT). No. of bitstreams: 1 ntu-96-R93448007-1.pdf: 3688398 bytes, checksum: 372d568dffa4350f3ded0b82a38239f0 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Table of Contents 2
中文摘要 4 Abstract 5 Introduction 6 Materials and Methods 14 Results 21 I. Functional characterization the putative phosphorylation sites of Rbp1 21 II. Identification the interaction region between Rbp1p and other proteins using yeast two-hybrid assay 26 III. Synthetic lethal screening of Rbp1p 29 Discussion 31 Figures 37 Figure 1. Rbp1p is a phosphorylated protein. 37 Figure 2. Domain and sequence alignment of Rbp1p and its homologues. 38 Figure 3. Construction and expression of putative phosphorylation mutants of Rbp1p. 39 Figure 4. Growth phenotypes of cells expressing HA-Rbp1p, -dN or putative phosphorylation mutants. 40 Figure 5. Steady-state mRNA level of cells expressing HA-Rbp1p, -dN or putative phosphorylation mutants. 41 Figure 6. Putative phosphorylation mutants can be recruited to P-bodies in a Δxrn1 mutant. 42 Figure 7. Rbp1p-5p increases the interaction with Por1p, but not Rbp1p or Dhh1p. 44 Figure 8. C-terminal Ser-524 is a putative phosphorylation site of Rbp1p. 45 Figure 9. Mutant Rbp1p-SPSA does not accelerate the POR1 mRNA turnover. 46 Figure 10. P-body localization of Rbp1p is not affected by mutation on Ser-524. 47 Figure 11. Mutation of Ser-524 does not affect interaction with Rbp1p, Dhh1p, and Por1p. 48 Figure 12. Schematic representation of two putative kinases of Rbp1p. 49 Figure 13. KSP1 disruption abolish the function of Rbp1p. 50 Figure 14. YKL171w disruption does not affect the function of Rbp1p. 51 Figure 15. Schematic representation of Rbp1p and Dhh1p used in yeast two-hybrid assay. 52 Figure 16. The C-terminus of Rbp1p is required for its oligomerization. 53 Figure 17. The C-terminus of Rbp1p is required for interaction with Dhh1p. 54 Figure 18. The C-terminal Q-rich region is required for interaction with Rbp1p. 55 Figure 19. Por1p interacted with Rbp1p in yeast two-hybrid assay. 56 Appendix 1. Mutations in HA-Rbp1p-dNm decrease protein size. 57 Appendix 2. Multiple mutations occur in construct Rbp1p-S55Am and -5pm. 58 Appendix 3. Multiple mutations disrupt the P-body localization of HA-Rbp1p. 59 Appendix 4. Multiple mutations interpret the interaction with Rbp1p and Dhh1p. 60 Appendix 5. HA-Rbp1p-5p decreases protein spots at low pI compared with HA-Rbp1p. 61 Appendix 6. KSP1 disruption decreases Rbp1p spots at high pI. 62 Table 1. Yeast strains used in this study. 63 Table 2. Primers used in this study. 64 Table 3. A brief summary of plasmids used in this study. 67 Table 4. Antibodies used in this study. 68 Table 5. Synthetic lethal screening performed in this study. 69 References 70 | |
| dc.language.iso | en | |
| dc.title | 探討酵母菌核醣核酸蛋白Rbp1p之後轉譯修飾及蛋白交互作用 | zh_TW |
| dc.title | Characterization of post-translational modification and protein-protein interaction of RNA-binding protein 1, Rbp1p, in Saccharomyces cerevisiae | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林敬哲,鄭明媛,譚婉玉 | |
| dc.subject.keyword | 酵母菌,核醣核酸蛋白,後轉譯修釋作用,蛋白交互作用, | zh_TW |
| dc.subject.keyword | Saccharomyces cerevisiae,RNA-binding protein,post-translational modification,protein-protein interaction, | en |
| dc.relation.page | 78 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-07-24 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
