請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25190完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳瑞華 | |
| dc.contributor.author | Hsin-Yi Chen | en |
| dc.contributor.author | 陳忻怡 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:04:45Z | - |
| dc.date.copyright | 2007-08-08 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-24 | |
| dc.identifier.citation | Akira,S. (1999). Functional roles of STAT family proteins: lessons from knockout mice. Stem Cells 17, 138-146.
Alahari,S.K., Reddig,P.J., and Juliano,R.L. (2002). Biological aspects of signal transduction by cell adhesion receptors. Int. Rev Cytol. 220, 145-184. Anderson,D., Koch,C.A., Grey,L., Ellis,C., Moran,M.F., and Pawson,T. (1990). Binding of SH2 domains of phospholipase C gamma 1, GAP, and Src to activated growth factor receptors. Science 250, 979-982. Aronheim,A., Engelberg,D., Li,N., al-Alawi,N., Schlessinger,J., and Karin,M. (1994). Membrane targeting of the nucleotide exchange factor Sos is sufficient for activating the Ras signaling pathway. Cell 78, 949-961. Arthur,W.T. and Burridge,K. (2001). RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol Biol Cell 12, 2711-2720. Arthur,W.T., Petch,L.A., and Burridge,K. (2000). Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr. Biol 10, 719-722. Arthur,W.T., Quilliam,L.A., and Cooper,J.A. (2004). Rap1 promotes cell spreading by localizing Rac guanine nucleotide exchange factors. J. Cell Biol. 167, 111-122. Avraham,H., Park,S.Y., Schinkmann,K., and Avraham,S. (2000). RAFTK/Pyk2-mediated cellular signalling. Cell Signal. 12, 123-133. Bagrodia,S., Taylor,S.J., Jordon,K.A., Van,A.L., and Cerione,R.A. (1998). A novel regulator of p21-activated kinases. J. Biol Chem. 273, 23633-23636. Balaban,N.Q., Schwarz,U.S., Riveline,D., Goichberg,P., Tzur,G., Sabanay,I., Mahalu,D., Safran,S., Bershadsky,A., Addadi,L., and Geiger,B. (2001). Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol 3, 466-472. Bar-Sagi,D. and Hall,A. (2000). Ras and Rho GTPases: a family reunion. Cell 103, 227-238. Barker,K.T., Jackson,L.E., and Crompton,M.R. (1997). BRK tyrosine kinase expression in a high proportion of human breast carcinomas. Oncogene 15, 799-805. Bellis,S.L., Miller,J.T., and Turner,C.E. (1995). Characterization of tyrosine phosphorylation of paxillin in vitro by focal adhesion kinase. J. Biol. Chem. 270, 17437-17441. Beningo,K.A., Dembo,M., Kaverina,I., Small,J.V., and Wang,Y.L. (2001). Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol 153, 881-888. Besser,D., Bromberg,J.F., Darnell,J.E., Jr., and Hanafusa,H. (1999). A single amino acid substitution in the v-Eyk intracellular domain results in activation of Stat3 and enhances cellular transformation. Mol. Cell Biol. 19, 1401-1409. Blume-Jensen,P. and Hunter,T. (2001). Oncogenic kinase signalling. Nature 411, 355-365. Boguski,M.S. and McCormick,F. (1993). Proteins regulating Ras and its relatives. Nature 366, 643-654. Bokoch,G.M., Vlahos,C.J., Wang,Y., Knaus,U.G., and Traynor-Kaplan,A.E. (1996). Rac GTPase interacts specifically with phosphatidylinositol 3-kinase. Biochem. J. 315 ( Pt 3), 775-779. Bolourani,P., Spiegelman,G.B., and Weeks,G. (2006). Delineation of the roles played by RasG and RasC in cAMP-dependent signal transduction during the early development of Dictyostelium discoideum. Mol. Biol. Cell 17, 4543-4550. Boriack-Sjodin,P.A., Margarit,S.M., Bar-Sagi,D., and Kuriyan,J. (1998). The structural basis of the activation of Ras by Sos. Nature 394, 337-343. Born,M., Quintanilla-Fend,L., Braselmann,H., Reich,U., Richter,M., Hutzler,P., and Aubele,M. (2005). Simultaneous over-expression of the Her2/neu and PTK6 tyrosine kinases in archival invasive ductal breast carcinomas. J. Pathol. 205, 592-596. Bos,J.L., Rehmann,H., and Wittinghofer,A. (2007). GEFs and GAPs: critical elements in the control of small G proteins. Cell 129, 865-877. Bradley,W.D., Hernandez,S.E., Settleman,J., and Koleske,A.J. (2006). Integrin signaling through Arg activates p190RhoGAP by promoting its binding to p120RasGAP and recruitment to the membrane. Mol Biol Cell 17, 4827-4836. Brahmbhatt,A.A. and Klemke,R.L. (2003). ERK and RhoA differentially regulate pseudopodia growth and retraction during chemotaxis. J. Biol Chem. 278, 13016-13025. Brown,M.C., Perrotta,J.A., and Turner,C.E. (1996). Identification of LIM3 as the principal determinant of paxillin focal adhesion localization and characterization of a novel motif on paxillin directing vinculin and focal adhesion kinase binding. J. Cell Biol. 135, 1109-1123. Brown,M.T. and Cooper,J.A. (1996). Regulation, substrates and functions of src. Biochim. Biophys. Acta 1287, 121-149. Brugnera,E., Haney,L., Grimsley,C., Lu,M., Walk,S.F., Tosello-Trampont,A.C., Macara,I.G., Madhani,H., Fink,G.R., and Ravichandran,K.S. (2002). Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat. Cell Biol. 4, 574-582. Brunet,A., Bonni,A., Zigmond,M.J., Lin,M.Z., Juo,P., Hu,L.S., Anderson,M.J., Arden,K.C., Blenis,J., and Greenberg,M.E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868. Burstein,H.J. (2005). The distinctive nature of HER2-positive breast cancers. N. Engl. J. Med. 353, 1652-1654. Chang,J.H., Gill,S., Settleman,J., and Parsons,S.J. (1995). c-Src regulates the simultaneous rearrangement of actin cytoskeleton, p190RhoGAP, and p120RasGAP following epidermal growth factor stimulation. J. Cell Biol 130, 355-368. Chang,J.H., Wilson,L.K., Moyers,J.S., Zhang,K., and Parsons,S.J. (1993). Increased levels of p21ras-GTP and enhanced DNA synthesis accompany elevated tyrosyl phosphorylation of GAP-associated proteins, p190 and p62, in c-src overexpressors. Oncogene 8, 959-967. Chen HY. Breast tumor kinase can activate transcription factor Stat3 by phosphorylation. 2000. Ref Type: Thesis/Dissertation Chen SA. A tyrosine kinase profile of bladder cancer cell lines. 1998. Ref Type: Thesis/Dissertation Chen WS. The studies on tumor progression and liver metastasis in colorectal cancer. 1996. Ref Type: Thesis/Dissertation Chen,H.Y., Shen,C.H., Tsai,Y.T., Lin,F.C., Huang,Y.P., and Chen,R.H. (2004). Brk activates rac1 and promotes cell migration and invasion by phosphorylating paxillin. Mol. Cell Biol. 24, 10558-10572. Chen,M.Y., Long,Y., and Devreotes,P.N. (1997). A novel cytosolic regulator, Pianissimo, is required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase in Dictyostelium. Genes Dev. 11, 3218-3231. Chiarle,R., Simmons,W.J., Cai,H., Dhall,G., Zamo,A., Raz,R., Karras,J.G., Levy,D.E., and Inghirami,G. (2005). Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat. Med. 11, 623-629. Chung,C.Y., Potikyan,G., and Firtel,R.A. (2001). Control of cell polarity and chemotaxis by Akt/PKB and PI3 kinase through the regulation of PAKa. Mol. Cell 7, 937-947. Condeelis,J. and Segall,J.E. (2003). Intravital imaging of cell movement in tumours. Nat. Rev. Cancer 3, 921-930. Cory,G.O., Garg,R., Cramer,R., and Ridley,A.J. (2002). Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation. Wiskott-Aldrich Syndrome protein. J. Biol. Chem. 277, 45115-45121. Cory,G.O. and Ridley,A.J. (2002). Cell motility: braking WAVEs. Nature 418, 732-733. Cox,E.A. and Huttenlocher,A. (1998). Regulation of integrin-mediated adhesion during cell migration. Microsc. Res. Tech. 43, 412-419. Cross,D.A., Alessi,D.R., Cohen,P., Andjelkovich,M., and Hemmings,B.A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378, 785-789. Datta,S.R., Dudek,H., Tao,X., Masters,S., Fu,H., Gotoh,Y., and Greenberg,M.E. (1997). Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231-241. Daub,H., Gevaert,K., Vandekerckhove,J., Sobel,A., and Hall,A. (2001). Rac/Cdc42 and p65PAK regulate the microtubule-destabilizing protein stathmin through phosphorylation at serine 16. J. Biol. Chem. 276, 1677-1680. deBakker,C.D., Haney,L.B., Kinchen,J.M., Grimsley,C., Lu,M., Klingele,D., Hsu,P.K., Chou,B.K., Cheng,L.C., Blangy,A., Sondek,J., Hengartner,M.O., Wu,Y.C., and Ravichandran,K.S. (2004). Phagocytosis of apoptotic cells is regulated by a UNC-73/TRIO-MIG-2/RhoG signaling module and armadillo repeats of CED-12/ELMO. Curr. Biol. 14, 2208-2216. del,P.L., Gonzalez-Garcia,M., Page,C., Herrera,R., and Nunez,G. (1997). Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 278, 687-689. Delcommenne,M., Tan,C., Gray,V., Rue,L., Woodgett,J., and Dedhar,S. (1998). Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc. Natl. Acad. Sci. U. S. A 95, 11211-11216. Deprez,J., Vertommen,D., Alessi,D.R., Hue,L., and Rider,M.H. (1997). Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem. 272, 17269-17275. Derry,J.J., Prins,G.S., Ray,V., and Tyner,A.L. (2003). Altered localization and activity of the intracellular tyrosine kinase BRK/Sik in prostate tumor cells. Oncogene 22, 4212-4220. Derry,J.J., Richard,S., Valderrama,C.H., Ye,X., Vasioukhin,V., Cochrane,A.W., Chen,T., and Tyner,A.L. (2000). Sik (BRK) phosphorylates Sam68 in the nucleus and negatively regulates its RNA binding ability. Mol. Cell Biol. 20, 6114-6126. Devreotes,P. and Janetopoulos,C. (2003). Eukaryotic chemotaxis: distinctions between directional sensing and polarization. J. Biol Chem. 278, 20445-20448. Dhanasekaran,N. and Premkumar,R.E. (1998). Signaling by dual specificity kinases. Oncogene 17, 1447-1455. Diehl,J.A., Cheng,M., Roussel,M.F., and Sherr,C.J. (1998). Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 12, 3499-3511. Dolfi,F., Garcia-Guzman,M., Ojaniemi,M., Nakamura,H., Matsuda,M., and Vuori,K. (1998). The adaptor protein Crk connects multiple cellular stimuli to the JNK signaling pathway. Proc. Natl. Acad. Sci. U. S. A 95, 15394-15399. Donovan,S., See,W., Bonifas,J., Stokoe,D., and Shannon,K.M. (2002). Hyperactivation of protein kinase B and ERK have discrete effects on survival, proliferation, and cytokine expression in Nf1-deficient myeloid cells. Cancer Cell 2, 507-514. Downward,J. (2003). Targeting RAS signalling pathways in cancer therapy. Nat. Rev. Cancer 3, 11-22. Dufner,A. and Thomas,G. (1999). Ribosomal S6 kinase signaling and the control of translation. Exp. Cell Res. 253, 100-109. Easty,D.J., Mitchell,P.J., Patel,K., Florenes,V.A., Spritz,R.A., and Bennett,D.C. (1997). Loss of expression of receptor tyrosine kinase family genes PTK7 and SEK in metastatic melanoma. Int. J. Cancer 71, 1061-1065. Etienne-Manneville,S. and Hall,A. (2002). Rho GTPases in cell biology. Nature 420, 629-635. Etienne-Manneville,S. and Hall,A. (2003). Cell polarity: Par6, aPKC and cytoskeletal crosstalk. Curr. Opin. Cell Biol 15, 67-72. Evers,E.E., Zondag,G.C.M., Malliri,A., Price,L.S., ten Klooster,J.-P., van der Kammen,R.A., and Collard,J.G. (2000). Rho family proteins in cell adhesion and cell migration. European Journal of Cancer 36, 1269-1274. Feller,S.M. (2001). Crk family adaptors-signalling complex formation and biological roles. Oncogene 20, 6348-6371. Forsberg,M., Blomgran,R., Lerm,M., Sarndahl,E., Sebti,S.M., Hamilton,A., Stendahl,O., and Zheng,L. (2003). Differential effects of invasion by and phagocytosis of Salmonella typhimurium on apoptosis in human macrophages: potential role of Rho-GTPases and Akt. J. Leukoc. Biol. 74, 620-629. Friedl,P. (2004). Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14-23. Friedl,P. and Wolf,K. (2003b). Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362-374. Friedl,P. and Wolf,K. (2003a). Proteolytic and non-proteolytic migration of tumour cells and leucocytes. Biochem. Soc. Symp. 277-285. Fritz,G., Just,I., and Kaina,B. (1999). Rho GTPases are over-expressed in human tumors. Int. J. Cancer 81, 682-687. Fukata,M., Watanabe,T., Noritake,J., Nakagawa,M., Yamaga,M., Kuroda,S., Matsuura,Y., Iwamatsu,A., Perez,F., and Kaibuchi,K. (2002). Rac1 and Cdc42 capture microtubules through IQGAP1 and CLIP-170. Cell 109, 873-885. Fumagalli,S., Totty,N.F., Hsuan,J.J., and Courtneidge,S.A. (1994). A target for Src in mitosis. Nature 368, 871-874. Funamoto,S., Meili,R., Lee,S., Parry,L., and Firtel,R.A. (2002). Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109, 611-623. Galjart,N. and Perez,F. (2003). A plus-end raft to control microtubule dynamics and function. Curr. Opin. Cell Biol. 15, 48-53. Gardiner,E.M., Pestonjamasp,K.N., Bohl,B.P., Chamberlain,C., Hahn,K.M., and Bokoch,G.M. (2002). Spatial and temporal analysis of Rac activation during live neutrophil chemotaxis. Curr. Biol. 12, 2029-2034. Glading,A., Lauffenburger,D.A., and Wells,A. (2002). Cutting to the chase: calpain proteases in cell motility. Trends Cell Biol. 12, 46-54. Goldberg,J. (1998). Structural basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching. Cell 95, 237-248. Gonzalez-Garcia,A., Pritchard,C.A., Paterson,H.F., Mavria,G., Stamp,G., and Marshall,C.J. (2005). RalGDS is required for tumor formation in a model of skin carcinogenesis. Cancer Cell 7, 219-226. Gullick,W.J. and Srinivasan,R. (1998). The type 1 growth factor receptor family: new ligands and receptors and their role in breast cancer. Breast Cancer Res. Treat. 52, 43-53. Gumienny,T.L., Brugnera,E., Tosello-Trampont,A.C., Kinchen,J.M., Haney,L.B., Nishiwaki,K., Walk,S.F., Nemergut,M.E., Macara,I.G., Francis,R., Schedl,T., Qin,Y., Van,A.L., Hengartner,M.O., and Ravichandran,K.S. (2001). CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107, 27-41. Haegebarth,A., Heap,D., Bie,W., Derry,J.J., Richard,S., and Tyner,A.L. (2004). The nuclear tyrosine kinase BRK/Sik phosphorylates and inhibits the RNA-binding activities of the Sam68-like mammalian proteins SLM-1 and SLM-2. J. Biol. Chem. 279, 54398-54404. Hagel,M., George,E.L., Kim,A., Tamimi,R., Opitz,S.L., Turner,C.E., Imamoto,A., and Thomas,S.M. (2002). The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol. Cell Biol. 22, 901-915. Haglund,K. and Dikic,I. (2005). Ubiquitylation and cell signaling. EMBO J. 24, 3353-3359. Hahn,W.C. and Weinberg,R.A. (2002). Modelling the molecular circuitry of cancer. Nat. Rev. Cancer 2, 331-341. Hanahan,D. and Weinberg,R.A. (2000). The hallmarks of cancer. Cell 100, 57-70. Hanks,S.K. and Polte,T.R. (1997). Signaling through focal adhesion kinase. Bioessays 19, 137-145. Haskell,M.D., Nickles,A.L., Agati,J.M., Su,L., Dukes,B.D., and Parsons,S.J. (2001). Phosphorylation of p190 on Tyr1105 by c-Src is necessary but not sufficient for EGF-induced actin disassembly in C3H10T1/2 fibroblasts. J. Cell Sci. 114, 1699-1708. Heldin,C.H. (1995). Dimerization of cell surface receptors in signal transduction. Cell 80, 213-223. Hendey,B., Klee,C.B., and Maxfield,F.R. (1992). Inhibition of neutrophil chemokinesis on vitronectin by inhibitors of calcineurin. Science 258, 296-299. Herbrand,U. and Ahmadian,M.R. (2006). p190-RhoGAP as an integral component of the Tiam1/Rac1-induced downregulation of Rho. Biol. Chem. 387, 311-317. Hernandez,S.E., Settleman,J., and Koleske,A.J. (2004). Adhesion-dependent regulation of p190RhoGAP in the developing brain by the Abl-related gene tyrosine kinase. Curr. Biol 14, 691-696. Hu,J., Liu,J., Ghirlando,R., Saltiel,A.R., and Hubbard,S.R. (2003). Structural basis for recruitment of the adaptor protein APS to the activated insulin receptor. Mol. Cell 12, 1379-1389. Hu,K.Q. and Settleman,J. (1997). Tandem SH2 binding sites mediate the RasGAP-RhoGAP interaction: a conformational mechanism for SH3 domain regulation. EMBO J. 16, 473-483. Hubbard,S.R. (1997). Crystal structure of the activated insulin receptor tyrosine kinase in complex with peptide substrate and ATP analog. EMBO J. 16, 5572-5581. Hubbard,S.R. and Till,J.H. (2000). Protein tyrosine kinase structure and function. Annu. Rev. Biochem. 69, 373-398. Hunter,T. (2000). Signaling--2000 and beyond. Cell 100, 113-127. Hussain,N.K., Jenna,S., Glogauer,M., Quinn,C.C., Wasiak,S., Guipponi,M., Antonarakis,S.E., Kay,B.K., Stossel,T.P., Lamarche-Vane,N., and McPherson,P.S. (2001). Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat. Cell Biol. 3, 927-932. Hynes,N.E. and Stern,D.F. (1994). The biology of erbB-2/neu/HER-2 and its role in cancer. Biochim. Biophys. Acta 1198, 165-184. Ihle,J.N. (2001). The Stat family in cytokine signaling. Curr. Opin. Cell Biol. 13, 211-217. Inoki,K., Li,Y., Zhu,T., Wu,J., and Guan,K.L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 4, 648-657. Inoki,K., Ouyang,H., Li,Y., and Guan,K.L. (2005). Signaling by target of rapamycin proteins in cell growth control. Microbiol. Mol. Biol. Rev. 69, 79-100. Insall,R.H., Borleis,J., and Devreotes,P.N. (1996). The aimless RasGEF is required for processing of chemotactic signals through G-protein-coupled receptors in Dictyostelium. Curr. Biol. 6, 719-729. Irby,R.B., Mao,W., Coppola,D., Kang,J., Loubeau,J.M., Trudeau,W., Karl,R., Fujita,D.J., Jove,R., and Yeatman,T.J. (1999). Activating SRC mutation in a subset of advanced human colon cancers. Nat. Genet. 21, 187-190. Ishibe,S., Joly,D., Zhu,X., and Cantley,L.G. (2003). Phosphorylation-dependent paxillin-ERK association mediates hepatocyte growth factor-stimulated epithelial morphogenesis. Mol. Cell 12, 1275-1285. Itoh,R.E., Kurokawa,K., Ohba,Y., Yoshizaki,H., Mochizuki,N., and Matsuda,M. (2002). Activation of Rac and Cdc42 Video Imaged by Fluorescent Resonance Energy Transfer-Based Single-Molecule Probes in the Membrane of Living Cells. Mol. Cell. Biol. 22, 6582-6591. Itzen,A., Pylypenko,O., Goody,R.S., Alexandrov,K., and Rak,A. (2006). Nucleotide exchange via local protein unfolding--structure of Rab8 in complex with MSS4. EMBO J. 25, 1445-1455. Jacinto,E., Loewith,R., Schmidt,A., Lin,S., Ruegg,M.A., Hall,A., and Hall,M.N. (2004). Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 6, 1122-1128. Jaffe,A.B. and Hall,A. (2005). Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247-269. Kamalati,T., Jolin,H.E., Fry,M.J., and Crompton,M.R. (2000). Expression of the BRK tyrosine kinase in mammary epithelial cells enhances the coupling of EGF signalling to PI 3-kinase and Akt, via erbB3 phosphorylation. Oncogene 19, 5471-5476. Kamalati,T., Jolin,H.E., Mitchell,P.J., Barker,K.T., Jackson,L.E., Dean,C.J., Page,M.J., Gusterson,B.A., and Crompton,M.R. (1996). Brk, a breast tumor-derived non-receptor protein-tyrosine kinase, sensitizes mammary epithelial cells to epidermal growth factor. J. Biol. Chem. 271, 30956-30963. Kane,L.P., Shapiro,V.S., Stokoe,D., and Weiss,A. (1999). Induction of NF-kappaB by the Akt/PKB kinase. Curr. Biol. 9, 601-604. Kang,K.N., Kim,M., Pae,K.M., and Lee,S.T. (2002). Characterization of the 5'-flanking region of the human PTK6 gene. Biochim. Biophys. Acta 1574, 365-369. Kasprzycka,M., Majewski,M., Wang,Z.J., Ptasznik,A., Wysocka,M., Zhang,Q., Marzec,M., Gimotty,P., Crompton,M.R., and Wasik,M.A. (2006). Expression and oncogenic role of Brk (PTK6/Sik) protein tyrosine kinase in lymphocytes. Am. J. Pathol. 168, 1631-1641. Katoh,H. and Negishi,M. (2003). RhoG activates Rac1 by direct interaction with the Dock180-binding protein Elmo. Nature 424, 461-464. Kawakami,Y., Nishimoto,H., Kitaura,J., Maeda-Yamamoto,M., Kato,R.M., Littman,D.R., Leitges,M., Rawlings,D.J., and Kawakami,T. (2004). Protein kinase C betaII regulates Akt phosphorylation on Ser-473 in a cell type- and stimulus-specific fashion. J. Biol. Chem. 279, 47720-47725. Kiosses,W.B., Shattil,S.J., Pampori,N., and Schwartz,M.A. (2001). Rac recruits high-affinity integrin alphavbeta3 to lamellipodia in endothelial cell migration. Nat Cell Biol 3, 316-320. Kitamura,T., Onishi,M., Kinoshita,S., Shibuya,A., Miyajima,A., and Nolan,G.P. (1995). Efficient screening of retroviral cDNA expression libraries. Proc. Natl. Acad. Sci. U. S. A 92, 9146-9150. Klemke,R.L., Leng,J., Molander,R., Brooks,P.C., Vuori,K., and Cheresh,D.A. (1998). CAS/Crk coupling serves as a 'molecular switch' for induction of cell migration. J. Cell Biol. 140, 961-972. Klinghoffer,R.A., Sachsenmaier,C., Cooper,J.A., and Soriano,P. (1999). Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459-2471. Kohn,A.D., Takeuchi,F., and Roth,R.A. (1996). Akt, a pleckstrin homology domain containing kinase, is activated primarily by phosphorylation. J. Biol. Chem. 271, 21920-21926. Kundra,V., Escobedo,J.A., Kazlauskas,A., Kim,H.K., Rhee,S.G., Williams,L.T., and Zetter,B.R. (1994). Regulation of chemotaxis by the platelet-derived growth factor receptor-beta. Nature 367, 474-476. Kundra,V., nand-Apte,B., Feig,L.A., and Zetter,B.R. (1995). The chemotactic response to PDGF-BB: evidence of a role for Ras. J. Cell Biol. 130, 725-731. Lambert,J.M., Lambert,Q.T., Reuther,G.W., Malliri,A., Siderovski,D.P., Sondek,J., Collard,J.G., and Der,C.J. (2002). Tiam1 mediates Ras activation of Rac by a PI(3)K-independent mechanism. Nat. Cell Biol. 4, 621-625. Lamorte,L., Rodrigues,S., Sangwan,V., Turner,C.E., and Park,M. (2003). Crk associates with a multimolecular Paxillin/GIT2/beta-PIX complex and promotes Rac-dependent relocalization of Paxillin to focal contacts. Mol. Biol. Cell 14, 2818-2831. Larsen,M., Tremblay,M.L., and Yamada,K.M. (2003). Phosphatases in cell-matrix adhesion and migration. Nat Rev Mol Cell Biol 4, 700-711. Lauffenburger,D.A. and Horwitz,A.F. (1996). Cell migration: a physically integrated molecular process. Cell 84, 359-369. Laukaitis,C.M., Webb,D.J., Donais,K., and Horwitz,A.F. (2001). Differential dynamics of alpha 5 integrin, paxillin, and alpha-actinin during formation and disassembly of adhesions in migrating cells. J. Cell Biol. 153, 1427-1440. Lawrence,J.C., Jr. and Brunn,G.J. (2001). Insulin signaling and the control of PHAS-I phosphorylation. Prog. Mol Subcell. Biol 26, 1-31. Leduc,I. and Meloche,S. (1995). Angiotensin II stimulates tyrosine phosphorylation of the focal adhesion-associated protein paxillin in aortic smooth muscle cells. J. Biol. Chem. 270, 4401-4404. Lee,J., Ishihara,A., Oxford,G., Johnson,B., and Jacobson,K. (1999a). Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400, 382-386. Lee,S., Comer,F.I., Sasaki,A., McLeod,I.X., Duong,Y., Okumura,K., Yates,J.R., III, Parent,C.A., and Firtel,R.A. (2005). TOR complex 2 integrates cell movement during chemotaxis and signal relay in Dictyostelium. Mol. Biol. Cell 16, 4572-4583. Lee,S., Parent,C.A., Insall,R., and Firtel,R.A. (1999b). A novel Ras-interacting protein required for chemotaxis and cyclic adenosine monophosphate signal relay in Dictyostelium. Mol. Biol. Cell 10, 2829-2845. Levitzki,A. (2001). The selectivity of small molecules towards protein tyrosine kinases. Ernst. Schering. Res. Found. Workshop 71-80. Lewis,J.M. and Schwartz,M.A. (1998). Integrins regulate the association and phosphorylation of paxillin by c-Abl. J. Biol. Chem. 273, 14225-14230. Li,W. and Sumpio,B.E. (2005). Strain-induced vascular endothelial cell proliferation requires PI3K-dependent mTOR-4E-BP1 signal pathway. Am. J. Physiol Heart Circ. Physiol 288, H1591-H1597. Li,Z., Hannigan,M., Mo,Z., Liu,B., Lu,W., Wu,Y., Smrcka,A.V., Wu,G., Li,L., Liu,M., Huang,C.K., and Wu,D. (2003). Directional Sensing Requires G[beta][gamma]-Mediated PAK1 and PIX[alpha]-Dependent Activation of Cdc42. Cell 114, 215-227. Liang,X., Draghi,N.A., and Resh,M.D. (2004). Signaling from Integrins to Fyn to Rho Family GTPases Regulates Morphologic Differentiation of Oligodendrocytes. J. Neurosci. 24, 7140-7149. Lim,C.J., Spiegelman,G.B., and Weeks,G. (2001). RasC is required for optimal activation of adenylyl cyclase and Akt/PKB during aggregation. EMBO J. 20, 4490-4499. Lin,H.S., Berry,G.J., Fee,W.E., Jr., Terris,D.J., and Sun,Z. (2004). Identification of tyrosine kinases overexpressed in head and neck cancer. Arch. Otolaryngol. Head Neck Surg. 130, 311-316. Liu,L., Gao,Y., Qiu,H., Miller,W.T., Poli,V., and Reich,N.C. (2006). Identification of STAT3 as a specific substrate of breast tumor kinase. Oncogene 25, 4904-4912. Llor,X., Serfas,M.S., Bie,W., Vasioukhin,V., Polonskaia,M., Derry,J., Abbott,C.M., and Tyner,A.L. (1999). BRK/Sik expression in the gastrointestinal tract and in colon tumors. Clin. Cancer Res. 5, 1767-1777. Lu,M., Kinchen,J.M., Rossman,K.L., Grimsley,C., deBakker,C., Brugnera,E., Tosello-Trampont,A.C., Haney,L.B., Klingele,D., Sondek,J., Hengartner,M.O., and Ravichandran,K.S. (2004). PH domain of ELMO functions in trans to regulate Rac activation via Dock180. Nat. Struct. Mol. Biol. 11, 756-762. Lu,M., Kinchen,J.M., Rossman,K.L., Grimsley,C., Hall,M., Sondek,J., Hengartner,M.O., Yajnik,V., and Ravichandran,K.S. (2005). A Steric-inhibition model for regulation of nucleotide exchange via the Dock180 family of GEFs. Curr. Biol. 15, 371-377. Lu,Z., Hornia,A., Joseph,T., Sukezane,T., Frankel,P., Zhong,M., Bychenok,S., Xu,L., Feig,L.A., and Foster,D.A. (2000). Phospholipase D and RalA cooperate with the epidermal growth factor receptor to transform 3Y1 rat fibroblasts. Mol. Cell Biol. 20, 462-467. Lu,Z., Jiang,G., Blume-Jensen,P., and Hunter,T. (2001). Epidermal growth factor-induced tumor cell invasion and metastasis initiated by dephosphorylation and downregulation of focal adhesion kinase. Mol. Cell Biol. 21, 4016-4031. Lukong,K.E. and Richard,S. (2003). Sam68, the KH domain-containing superSTAR. Biochim. Biophys. Acta 1653, 73-86. Malliri,A., Symons,M., Hennigan,R.F., Hurlstone,A.F., Lamb,R.F., Wheeler,T., and Ozanne,B.W. (1998). The transcription factor AP-1 is required for EGF-induced activation of rho-like GTPases, cytoskeletal rearrangements, motility, and in vitro invasion of A431 cells. J. Cell Biol. 143, 1087-1099. Malliri,A., van der Kammen,R.A., Clark,K., van,d., V, Michiels,F., and Collard,J.G. (2002). Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 417, 867-871. Manning,G., Whyte,D.B., Martinez,R., Hunter,T., and Sudarsanam,S. (2002). The protein kinase complement of the human genome. Science 298, 1912-1934. Manser,E., Loo,T.H., Koh,C.G., Zhao,Z.S., Chen,X.Q., Tan,L., Tan,I., Leung,T., and Lim,L. (1998). PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1, 183-192. Marcoux,N. and Vuori,K. (2003). EGF receptor mediates adhesion-dependent activation of the Rac GTPase: a role for phosphatidylinositol 3-kinase and Vav2. Oncogene 22, 6100-6106. Margarit,S.M., Sondermann,H., Hall,B.E., Nagar,B., Hoelz,A., Pirruccello,M., Bar-Sagi,D., and Kuriyan,J. (2003). Structural evidence for feedback activation by Ras.GTP of the Ras-specific nucleotide exchange factor SOS. Cell 112, 685-695. Martin,D.E., Soulard,A., and Hall,M.N. (2004). TOR Regulates Ribosomal Protein Gene Expression via PKA and the Forkhead Transcription Factor FHL1. Cell 119, 969-979. Matsuda,M., Nagata,S., Tanaka,S., Nagashima,K., and Kurata,T. (1993). Structural requirement of CRK SH2 region for binding to phosphotyrosine-containing proteins. Evidence from reactivity to monoclonal antibodies. J. Biol. Chem. 268, 4441-4446. McCann,A.H., Dervan,P.A., O'Regan,M., Codd,M.B., Gullick,W.J., Tobin,B.M., and Carney,D.N. (1991). Prognostic significance of c-erbB-2 and estrogen receptor status in human breast cancer. Cancer Res. 51, 3296-3303. Meric,F., Lee,W.P., Sahin,A., Zhang,H., Kung,H.J., and Hung,M.C. (2002). Expression profile of tyrosine kinases in breast cancer. Clin. Cancer Res. 8, 361-367. Merlot,S. and Firtel,R.A. (2003). Leading the way: Directional sensing through phosphatidylinositol 3-kinase and other signaling pathways. J. Cell Sci. 116, 3471-3478. Meyer,C.A., Jacobs,H.W., Datar,S.A., Du,W., Edgar,B.A., and Lehner,C.F. (2000). Drosophila Cdk4 is required for normal growth and is dispensable for cell cycle progression. EMBO J. 19, 4533-4542. Minoguchi,M., Minoguchi,S., Aki,D., Joo,A., Yamamoto,T., Yumioka,T., Matsuda,T., and Yoshimura,A. (2003). STAP-2/BKS, an adaptor/docking protein, modulates STAT3 activation in acute-phase response through its YXXQ motif. J. Biol. Chem. 278, 11182-11189. Mitchell,P.J., Barker,K.T., Martindale,J.E., Kamalati,T., Lowe,P.N., Page,M.J., Gusterson,B.A., and Crompton,M.R. (1994). Cloning and characterisation of cDNAs encoding a novel non-receptor tyrosine kinase, brk, expressed in human breast tumours. Oncogene 9, 2383-2390. Mitchell,P.J., Barker,K.T., Shipley,J., and Crompton,M.R. (1997). Characterisation and chromosome mapping of the human non receptor tyrosine kinase gene, brk. Oncogene 15, 1497-1502. Mitchell,P.J., Sara,E.A., and Crompton,M.R. (2000). A novel adaptor-like protein which is a substrate for the non-receptor tyrosine kinase, BRK. Oncogene 19, 4273-4282. Mitin,N., Rossman,K.L., and Der,C.J. (2005). Signaling interplay in Ras superfamily function. Curr. Biol. 15, R563-R574. Mor,A. and Philips,M.R. (2006). Compartmentalized Ras/MAPK signaling. Annu. Rev. Immunol. 24, 771-800. Moran,M.F., Polakis,P., McCormick,F., Pawson,T., and Ellis,C. (1991). Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21ras GTPase-activating protein. Mol Cell Biol 11, 1804-1812. Moreau,V., Frischknecht,F., Reckmann,I., Vincentelli,R., Rabut,G., Stewart,D., and Way,M. (2000). A complex of N-WASP and WIP integrates signalling cascades that lead to actin polymerization. Nat. Cell Biol. 2, 441-448. Moulin,V. (1995). Growth factors in skin wound healing. Eur. J. Cell Biol. 68, 1-7. Nakamura,K., Yano,H., Schaefer,E., and Sabe,H. (2001). Different modes and qualities of tyrosine phosphorylation of Fak and Pyk2 during epithelial-mesenchymal transdifferentiation and cell migration: analysis of specific phosphorylation events using site-directed antibodies. Oncogene 20, 2626-2635. Nakamura,K., Yano,H., Uchida,H., Hashimoto,S., Schaefer,E., and Sabe,H. (2000). Tyrosine phosphorylation of paxillin alpha is involved in temporospatial regulation of paxillin-containing focal adhesion formation and F-actin organization in motile cells. J. Biol. Chem. 275, 27155-27164. Nave,B.T., Ouwens,M., Withers,D.J., Alessi,D.R., and Shepherd,P.R. (1999). Mammalian target of rapamycin is a direct target for protein kinase B: identification of a convergence point for opposing effects of insulin and amino-acid deficiency on protein translation. Biochem. J. 344 Pt 2, 427-431. Neet,K. and Hunter,T. (1996). Vertebrate non-receptor protein-tyrosine kinase families. Genes Cells 1, 147-169. Niehans,G.A., Singleton,T.P., Dykoski,D., and Kiang,D.T. (1993). Stability of HER-2/neu expression over time and at multiple metastatic sites. J. Natl. Cancer Inst. 85, 1230-1235. Noritake,J., Watanabe,T., Sato,K., Wang,S., and Kaibuchi,K. (2005). IQGAP1: a key regulator of adhesion and migration. J. Cell Sci. 118, 2085-2092. Ostrander,J.H., Daniel,A.R., Lofgren,K., Kleer,C.G., and Lange,C.A. (2007). Breast tumor kinase (protein tyrosine kinase 6) regulates heregulin- | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25190 | - |
| dc.description.abstract | 乳癌激酶(Breast tumor kinase, Brk)是1995年自轉移性乳癌腫瘤中所找到的非受體型酪胺酸激酶(non-receptor tyrosine kinase)。由於其氨基酸序列(amino acid sequence)及蛋白質區塊分析(domain structure analysis)都和Src有很高的相似性,因此被列為src酪胺酸激酶家族中的一員。先前的文獻指出,在三分之二的乳癌腫瘤、黑色素細胞瘤以及大腸癌中都可以發現乳癌激酶被大量的表現。這暗示著乳癌激酶極有可能在細胞致癌機轉(oncogenesis)中扮演某種重要的角色。然而,現今的研究對於乳癌激酶的生物功能、調控方式及其受質(substrate)的瞭解仍十分有限。因此,在本篇論文中,我們找到了兩個乳癌激酶的受質以及其所參與的訊息傳遞路徑(signaling pathway),並進而探討乳癌激酶在癌症發生(tumorigenesis)過程中所扮演的角色為何。在論文的第一部份,我們發現表皮生長因子(EGF)會活化乳癌激酶,進而磷酸化paxillin在31和118這兩個位置。這樣的磷酸化會提高CrkII和paxillin的親和力(binding affinity),使得Dock180和Elmo有辦法和已磷酸化的paxillin結合,進而促進Rac1的活性。透過這條訊息傳遞路徑,乳癌激酶可以增加細胞移動以及侵入其他組織(invasion)的能力,並參與傳遞表皮生長因子造成細胞移動能力增加的這條訊息傳遞路徑。在論文的第二部份,我們找到了乳癌激酶的另一個受質─p190RhoGAP。乳癌激酶會磷酸化p190RhoGAP在酪胺酸1105的位置,繼而增強p190RhoGAP以及p120RasGAP的結合能力。當這兩個蛋白質結合之後,一方面會增加p190RhoGAP抑制RhoA活性的能力,進而抑制RhoA的活化;另一方面會抑制p120RasGAP的活性,進而造成Ras的活化。透過這個雙向調控機制,我們發現乳癌激酶確實可以參與表皮生長因子所導致RhoA活性下降的這條訊息傳遞路徑。同時,我們也發現乳癌激酶的確可以抑制壓力纖維(stress fiber)的產生,這個現象和我們所觀察到RhoA的活性下降所造成的生物功能是一致的。此外,我們還證明了p190RhoGAP的存在對乳癌激酶在細胞移動上的調控是必須的。因此,本篇論文揭露了乳癌激酶尚未被人發現的生物功能(biological function),也提供了洞察癌化分子機轉的方式。希望透過這個研究,能提供現今目標導向的癌症治療的一個新的思考方向。 | zh_TW |
| dc.description.abstract | Brk (Breast tumor kinase), a nonreceptor tyrosine kinase, was originally identified from a functional screen for identifying the tyrosine kinases overexpressed in metastatic breast cancers. Previous studies have shown that Brk is overexpressed in two-thirds of breast tumors and several other cancer types. However, the molecular mechanism in which this kinase participates with respect to tumorigenesis remains poorly characterized. In this thesis, we identified two substrates of Brk and raveled their signaling pathways to dissect Brk’s role in tumor progression. In the first part of study, we demonstrate that EGF stimulation activates the catalytic activity of Brk, which in turn phosphorylates paxillin at Y31 and Y118. These phosphorylation events provide the binding site for CrkII which recruits DOCK180-Elmo to promote the activation of small GTPase Rac1. Through this pathway, Brk possesses the ability to promote cell migration and invasion and functions as a mediator of EGF-induced migratory occurrence. In the second part of this thesis, we identified that p190RhoGAP is another substrate of Brk. Brk phosphorylates p190RhoGAP at the Y1105 residue, thereby promoting p190RhoGAP association with p120RasGAP. This complex formation between p190RhoGAP and p120RasGAP stimulates the ability of p190RhoGAP to downregulate RhoA, while inhibits p120RasGAP activity toward Ras inactivation. As a result, Brk oppositely regulates RhoA and Ras and mediates EGF-induced RhoA inactivation. Consistent with its inactivation of RhoA, Brk inhibits stress fiber formation. Furthermore, we demonstrated that p190RhoGAP is required for Brk-induced chemotactic migration towards EGF. Together, our findings reveal previously unknown function of Brk in regulating three small GTPases─Rho, Rac, Ras via phosphorylating paxillin and p190RhoGAP. The identification of these signaling pathways transduced by Brk would shed light on the role of Brk in tumor progression. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:04:45Z (GMT). No. of bitstreams: 1 ntu-96-D91448005-1.pdf: 6149533 bytes, checksum: 40e3f975f8953cc262fe5f9c92bece65 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Table of Contents ........................................ 2
中文摘要.................................................. 5 Abstract.................................................. 6 Literature Review ........................................ 7 Tumor Progression........................................ 7 1.1 Proliferation and tumor growth ....................... 7 1.2 Migration and Metastasis ............................ 8 2. Proliferation.......................................... 9 2.1 The Phenomena of Cell Proliferation ................ 9 2.2 The Signaling Network of Cell Proliferation .......... 9 3. Migration ............................................ 13 3.1 The Phenomena of Cell Migration ..................... 13 3.2 The Concept of Migration : The Migration Cycle....... 13 3.3 Involved Signalings in Cell Migration ............... 14 4. Protein Tyrosine Kinases ............................. 21 4.1 Transmembrane Receptor Tyrosine Kinase (RTK)......... 21 4.2 Nonreceptor Tyrosine Kinase (NPTK) .................. 22 5. Small GTPases......................................... 23 5.1 GEFs & GAPs: Critical Controllers of Small GTPase ... 24 5.2 The Ras Subfamily ....................................28 5.3 The Rho Subfamily.................................... 30 6. Brk .................................................. 32 6.1 Identification and genome structure of Brk........... 32 6.2 Domain structure of Brk ............................. 32 6.3 Expression pattern of Brk.............................33 6.4 Biological role of Brk............................... 34 6.5 Identified substrates of Brk .........................35 Chapter I: .............................................. 37 Brk actives Rac1 and Promotes Cell Migration and Invasion by Phosphorylating Paxillin .................................. 37 Abstract................................................. 38 Introduction ............................................ 39 Materials and Methods ................................... 42 Cell culture, transfection, and retroviral infection..... 42 cDNA cloning and plasmid constructions .................. 42 Antibodies and reagents.................................. 43 GST fusion proteins...................................... 43 Production of baculovirus................................ 43 Immunoprecipitations..................................... 44 In vitro kinase assay ................................... 44 Assay for GTP-bound Rac.................................. 44 Immunofluorescence and confocal studies.................. 45 Cell migration assays.................................... 45 Cell invasion assays..................................... 46 Reduction of endogenous Brk expression with siRNA ....... 46 Results ................................................ 47 Brk induces paxillin phosphorylation at Y31 and Y118................................. 47 Brk interacts with paxillin in vivo .................................................................. 48 Paxillin is a direct substrate of Brk.................... 49 Brk promotes Rac1 activation ........................... 49 Brk is activated by EGF signaling....................... 50 Brk mediates EGF-induced paxillin phosphorylation and Rac1 activation ....................................... 50 Brk is colocalized with paxillin at the leading cell edges of migratory cells ..................................... 51 Brk promotes cell migration and invasion and mediates a EGF-induced migratory event.................................. 52 Discussion............................................... 55 Chapter II:................................. 59 Brk oppositely regulates RhoA and Ras by phosphorylating p190RhoGAP............................................. 59 Abstract..................................... 60 Introduction ........................................... 61 Materials and Methods ........................................................................................... 64 Plasmids.......................................................................................................... 64 Cell culture and transfections ......................................................................... 64 Antibodies and reagents.................................................................................. 64 Retroviral and lentiviral infections................................................................. 65 Immunofluoresence ........................................................................................ 65 Immunoprecipitations..................................................................................... 66 Rho and Ras activity assays ........................................................................... 66 Migration assays............................................................................................. 66 Results .................................................................................................................... 68 Brk inhibits serum and Ca2+-induced stress fiber formation .......................... 68 Brk down regulates RhoA activity ................................................................. 68 Brk knockdown inhibits EGF-induced RhoA inactivation............................. 69 p190RhoGAP is a putative substrate of Brk................................................... 69 Brk directly phosphorylates p190RhoGAP at Tyrosine 1105 in vitro ............ 70 Brk increases p120RasGAP binding to p190RhoGAP................................... 70 RhoA downregulation by p190RhoGAP is enhanced by Brk ........................ 71 Brk promotes Ras activity through p190 phosphorylation............................. 71 p190RhoGAP is required for the migratory function of Brk.......................... 71 Discussion............................................................................................................... 73 Reference ................................................................................ 76 Figure .................................................................................... 100 Appendix............................................................................... 129 | |
| dc.language.iso | en | |
| dc.subject | 細胞移動 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | 乳癌激酶 | zh_TW |
| dc.subject | 受質 | zh_TW |
| dc.subject | Invasion | en |
| dc.subject | Brk | en |
| dc.subject | Tyrosine phosphorylation | en |
| dc.subject | Paxillin | en |
| dc.subject | p190RhoGAP | en |
| dc.subject | Migration | en |
| dc.title | 探討乳癌激酶及其受質對細胞移動之調控分析 | zh_TW |
| dc.title | unctional Characterization of Brk and its Substrates in Cell Migration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李芳仁,張智芬,周祖述,孟子青 | |
| dc.subject.keyword | 乳癌激酶,磷酸化,受質,細胞移動, | zh_TW |
| dc.subject.keyword | Brk,Tyrosine phosphorylation,Paxillin,p190RhoGAP,Migration,Invasion, | en |
| dc.relation.page | 131 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-07-25 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 6.01 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
