Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25158
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡明正
dc.contributor.authorPei-Lin Linen
dc.contributor.author林佩玲zh_TW
dc.date.accessioned2021-06-08T06:03:51Z-
dc.date.copyright2007-08-08
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citationAberg G. Toxicological and local anaesthetic effects of optically active isomers of two local anaesthetic compounds. Acta Pharmacol Toxicol. 1972; 31:273-86.
Åckerman B, Hellberg IB, Trossvik C. Primary evaluation of the local anaesthetic properties of the amino amide agent ropivacaine (LEA 103). Acta Anaesthesiol Scand 1988; 32: 571–8.
Af Ekenstam B, Egner B, Petersson G. Local anaesthetics: 1. N-alkyl pyrrolidine and N-alkyl piperidine carboxylic amides. Acta Chem Scand 1957; 11: 1183–90.
Akata T. General anesthetics and vascular smooth muscle: direct actions of general anesthetics on cellular mechanisms regulating vascular tone. Anesthesiology. 2007; 106: 365-91.
Albright GA. Cardiac arrest following regional anesthesia with etidocaine or bupivacaine. Anesthesiology 1979; 51: 285–7.
Arlock P. Actions of three local anaesthetics: lidocaine, bupivacaine and ropivacaine on guinea pig papillary muscle sodium channels (Vmax). Pharmacol Toxocol 1988; 63: 96–104.
Armand V, Louvel J, Pumain R, Ronco G, Villa P. Effects of various valproic acid derivatives on low-calcium spontaneous epileptiform activity in hippocampal slices. Epilepsy Res. 1995; 22: 185-92.
Arvanov VL, Chen RC, Chen YH, Liou HH, Chan YC, Arvanova VA, Tsai MC. Modulation of pentylenetetrazol induced bursting activity by electrogenic Na pump in Achatina fulica neurons. Asia Pacific J Pharmacol. 1994; 9: 37-42.
Bader AM, Datta S, Flanagan H, Covino BG. Comparison of bupivacaine- and ropivacaine-induced conduction blockade in the isolated rabbit vagus nerve. Anesth Analg 1989; 68: 724-7.
Bariskaner H, Tuncer S, Taner A, Dogan N. Effects of bupivacaine and ropivacaine on the isolated human umbilical artery. Int J Obstet Anesth. 2003; 12: 261-5.
Berman RS, Martin PE, Evans WH, Griffith TM. Relative contributions of NO and gap junctional communication to endothelium-dependent relaxations of rabbit resistance arteries vary with vessel size. Microvasc Res. 2002; 63: 115-28.
Brayden JE. Potassium channels in vascular smooth muscle. Clin Exp Pharmacol Physiol. 1996; 23: 1069-76.
Bryan RM Jr, You J, Golding EM, Marrelli SP. Endothelium-derived hyperpolarizing factor: a cousin to nitric oxide and prostacyclin. Anesthesiology. 2005; 102: 1261-77.
Cardone C, Szenohradszky J, Yost S, Bickler PE. Activation of brain acetylcholine receptors by neuromuscular blocking drugs. A possible mechanism of neurotoxicity. Anesthesiology. 1994; 80: 1155-61.
Cederholm I, Evers H, Lofstrom JB. Skin blood flow after intradermal injection of ropivacaine in various concentrations with and without epinephrine evaluated by laser Doppler flowmetry. Reg Anesth. 1992; 17: 322-8.
Channon JY, Leslie CC. A calcium-dependent mechanism for associating a soluble arachidonoyl-hydrolyzing phospholipase A2 with membrane in the macrophage cell line RAW 264.7. J Biol Chem. 1990; 265: 5409-13.
Chazalon P, Tourtier JP, Villevielle T, Giraud D, Saissy JM, Mion G, Benhamou D. Ropivacaine-induced cardiac arrest after peripheral nerve block: successful resuscitation. Anesthesiology. 2003; 99: 1449-51.
Chen GF, Suzuki H. Calcium dependency of the endothelium-dependent hyperpolarization in smooth muscle cells of the rabbit carotid artery. J Physiol. 1990; 421: 521-34.
Chen YH, Tsai MC. Bursting firing of action potentials in central snail neurons elicited by d-amphetamine: role of cytoplasmic second messengers. Neurosci Res. 1997; 27: 295-304.
Chen YH, Tsai MC. Action potential bursts in central snail neurons elicited by d-amphetamine: roles of ionic currents. Neuroscience. 2000; 96: 237-48.
Christensen KL, Mulvany MJ. Location of resistance arteries. J Vasc Res. 2001; 38: 1-12.
Clarkson CW, Hondeghem LM.Mechanism for bupivacaine depression of cardiac conduction: fast block of sodium channels during the action potential with slow recovery from block during diastole. Anesthesiology. 1985; 62: 396-405.
Edwards G, Weston AH. EDHF -- are there gaps in the pathway? J Physiol. 2001; 531: 299.
Emerson GG, Segal SS. Electrical coupling between endothelial cells and smooth muscle cells in hamster feed arteries: role in vasomotor control. Circ Res. 2000; 87: 474-9.
Faraci FM, Sobey CG, Chrissobolis S, Lund DD, Heistad DD, Weintraub NL. Arachidonate dilates basilar artery by lipoxygenase-dependent mechanism and activation of K+ channels. Am J Physiol Regul Integr Comp Physiol. 2001; 281: R246-53.
Ferrendelli JA, Blank AC, Gross RA. Relationships between seizure activity and cyclic nucleotide levels in brain. Brain Res. 1980; 200: 93-103.
Ferrendelli JA. Roles of biogenic amines and cyclic nucleotides in seizure mechanisms. Ann Neurol. 1984; 16: S98-S103.
Friederich P, Benzenberg D, Urban BW. Bupivacaine inhibits human neuronal Kv3 channels in SH-SY5Y human neuroblastoma cells. Br J Anaesth. 2002 Jun; 88: 864-6.
Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999; 399: 597-601.
Garthwaite J, Southam E, Boulton CL, Nielsen EB, Schmidt K, Mayer B. Potent and selective inhibition of nitric oxide-sensitive guanylyl cyclase by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one. Mol Pharmacol. 1995; 48: 184-8.
Gherardini G, Samuelson U, Jernbeck J, Aberg B, Sjostrand N. Comparison of vascular effects of ropivacaine and lidocaine on isolated rings of human arteries. Acta Anaesthesiol Scand. 1995; 39: 765-8.
Golding EM, Marrelli SP, You J, Bryan RM Jr. Endothelium-derived hyperpolarizing factor in the brain: a new regulator of cerebral blood flow? Stroke. 2002; 33: 661-3.
Gorman AL, Hermann A. Quantitative differences in the currents of bursting and beating molluscan pace-maker neurones. J Physiol. 1982; 333: 681-99.
Graf BM, Zausig Y, Zink W. Current status and clinical relevance of studies of minimum local-anaesthetic concentration (MLAC). Curr Opin Anaesthesiol. 2005; 18: 241-5.
Greengard P. Phosphorylated proteins as physiological effectors. Science. 1978; 199: 146-52.
Groban L, Deal DD, Vernon JC, James RL, Butterworth J. Cardiac resuscitation after incremental overdosage with lidocaine, bupivacaine, levobupivacaine, and ropivacaine in anesthetized dogs. Anesth Analg. 2001; 92: 37-43.
Guglielmetti F, Rattray M, Baldessari S, Butelli E, Samanin R, Bendotti C. Selective up-regulation of protein kinase C epsilon in granule cells after kainic acid-induced seizures in rat. Brain Res Mol Brain Res. 1997; 49: 188-96.
Hara M, Kai Y, Ikemoto Y. Local anesthetics reduce the inhibitory neurotransmitter-induced current in dissociated hippocampal neurons of the rat. Eur J Pharmacol. 1995; 283: 83-9.
Harrison DG, Cai H. Endothelial control of vasomotion and nitric oxide production. Cardiol Clin. 2003; 21: 289-302.
Higashima M, Ohno K, Koshino Y. Cyclic AMP-mediated modulation of epileptiform afterdischarge generation in rat hippocampal slices. Brain Res. 2002; 949: 157-61.
Hoepfl B, Rodenwaldt B, Pohl U, De Wit C. EDHF, but not NO or prostaglandins, is critical to evoke a conducted dilation upon ACh in hamster arterioles. Am J Physiol Heart Circ Physiol. 2002; 283:H996-H1004.
Holmes GL. Seizure-induced neuronal injury: animal data. Neurology. 2002; 59: S3-6.
Horowitz A, Menice CB, Laporte R, Morgan KG. Mechanisms of smooth muscle contraction. Physiol Rev. 1996 ; 76: 967-1003.
Huang YF, Pryor ME, Veering BT, Mather LE. Cardiovascular and central nervous system effects of intravenous levobupivacaine and bupivacaine in sheep. Anesth Analg 1998; 86: 797–804.
Huet O, Eyrolle LJ, Mazoit JX, Ozier YM. Cardiac arrest after injection of ropivacaine for posterior lumbar plexus blockade. Anesthesiology. 2003; 99: 1451-3.
Hughes AD, Wijetunge S. Role of tyrosine phosphorylation in excitation-contraction coupling in vascular smooth muscle. Acta Physiol Scand. 1998; 164: 457-69.
Hurd WW, Natarajan V, Fischer JR, Singh DM, Gibbs SG, Fomin VP. Magnesium sulfate inhibits the oxytocin-induced production of inositol 1,4,5-trisphosphate in cultured human myometrial cells. Am J Obstet Gynecol. 2002; 187: 419-24.
Iadarola MJ, Raines A, Gale K. Differential effects of n-dipropylacetate and amino-oxyacetic acid on gamma-aminobutyric acid levels in discrete areas of rat brain. J Neurochem. 1979; 33: 1119-23.
Ikeda M, Dohi T, Tsujimoto A. Protection from local anesthetic-induced convulsions by gamma-aminobutyric acid. Anesthesiology. 1982; 56: 365-8.
Ikeda M, Dohi T, Tsujimoto A. Inhibition of gamma-aminobutyric acid release from synaptosomes by local anesthetics. Anesthesiology. 1983; 58: 495-9.
Ingvar M, Shapiro HM. Selective metabolic activation of the hippocampus during lidocaine-induced pre-seizure activity. Anesthesiology. 1981; 54: 33-7.
Jayr C, Beaussier M, Gustafsson U, Leteurnier Y, Nathan N, Plaud B, Tran G, Varlet C, Marty J. Continuous epidural infusion of ropivacaine for postoperative analgesia after major abdominal surgery: comparative study with i.v. PCA morphine. Br J Anaesth. 1998; 81: 887-92.
Jin W, Sugaya A, Tsuda T, Ohguchi H, Sugaya E. Relationship between large conductance calcium-activated potassium channel and bursting activity. Brain Res. 2000; 860: 21-8.
Kadowaki D, Kinno I, Kadoya K, Mori A, Hiramatsu M. (+-)-1-Amino-1,3-cyclopentane-trans-dicarboxylic acid (trans-ACPD) induced inositol triphosphoric acid formation in the brain of iron-induced epileptic rats and epileptic El mice. Res Commun Chem Pathol Pharmacol. 1994; 84: 163-73.
Kerkut GA, Lambert JDC, Gayton RJ, Loker JE, Walker RJ. Mapping of nerve cells in the subesophageal ganglia of Helix aspersa. Comp. Biochem. Physiol. 1975; 50A: 1-25.
Khodorova A, Navarro B, Jouaville LS, Murphy JE, Rice FL, Mazurkiewicz JE, Long-Woodward D, Stoffel M, Strichartz GR, Yukhananov R, Davar G. Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nat Med. 2003; 9: 1055-61.
Kim KH, Takeuchi H, Kamatani Y, Minakata H, Nomoto K. Slow inward current induced by achatin-I, an endogenous peptide with a D-Phe residue. Eur J Pharmacol. 1991; 194: 99-106.
Kitamura K, Yamazaki J. Chloride channels and their functional roles in smooth muscle tone in the vasculature. Jpn J Pharmacol. 2001; 85: 351-7.
Knudsen K, Beckman-Suurkula M, Blomberg S, Sjövall J, Edvardsson N. Central nervous and cardiovascular effects of i.v. infusions of ropivacaine, bupivacaine and placebo in volunteers. Br J Anaesth 1997; 78: 507–14.
Kopacz DJ, Carpenter RL, Mackey DC. Effect of ropivacaine on cutaneous capillary blood flow in pigs. Anesthesiology. 1989; 71: 69-74.
Korman B, Riley RH. Convulsions induced by ropivacaine during interscalene brachial plexus block. Anesth Analg. 1997; 85: 1128-9.
Lacassie HJ, Columb MO, Lacassie HP, Lantadilla RA. The relative motor blocking potencies of epidural bupivacaine and ropivacaine in labor. Anesth Analg. 2002; 95: 204-8.
Lacza Z, Puskar M, Kis B, Perciaccante JV, Miller AW, Busija DW. Hydrogen peroxide acts as an EDHF in the piglet pial vasculature in response to bradykinin. Am J Physiol Heart Circ Physiol. 2002; 283: H406-11.
Lancaster B, Nicoll RA. Properties of two calcium-activated hyperpolarizations in rat hippocampal neurones. J Physiol. 1987; 389: 187-203.
Leibowitz MD, Sutro JB, Hille B. Voltage-dependent gating of veratridine-modified Na channels. J Gen Physiol. 1986; 87: 25-46.
Lin CH, Wu CL, Lin MS, Liu MC, Lin PJ, Tsai MC. Effects of 2,3-butanedione monoxime on induction of action potential bursts in central snail neurons: direct and indirect modulations of ionic currents. Pharmacology. 2005; 73: 57-69.
Liu BG, Zhuang XL, Li ST, Xu GH, Brull SJ, Zhang JM. Effects of bupivacaine and ropivacaine on high-voltage-activated calcium currents of the dorsal horn neurons in newborn rats. Anesthesiology. 2001; 95: 139-43.
Liu PL, Feldman HS, Giasi R, Patterson MK, Covino BG. Comparative CNS toxicity of lidocaine, etidocaine, bupivacaine and tetracaine in awake dogs following rapid intravenous administration. Anesth Analg 1983; 62: 375-9.
Marrelli SP. Mechanisms of endothelial P2Y(1)- and P2Y(2)-mediated vasodilatation involve differential [Ca2+]i responses. Am J Physiol Heart Circ Physiol. 2001; 281: H1759-66.
Mayer B, Brunner F, Schmidt K. Inhibition of nitric oxide synthesis by methylene blue. Biochem Pharmacol. 1993; 45: 367-74.
Mazoit JX, Boico O, Samii K. Myocardial uptake of bupivacaine: pharmacodynamics of bupivacaine enantiomers in the isolated perfused rabbit heart. Anesth Analg 1993; 77: 477–82.
McClure JH. Ropivacaine. Br J Anaesth 1996; 76: 300–7.
McCormick DA, Contreras D. On the cellular and network bases of epileptic seizures. Annu Rev Physiol. 2001; 63: 815-46.
McFarlane C, Warner DS, Dexter F, Todd MM. Glutamatergic antagonism: effects on lidocaine-induced seizures in the rat. Anesth Analg. 1994; 79: 701-5.
Michel JB, Feron O, Sacks D, Michel T. Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem. 1997; 272: 15583-6.
Minamoto Y, Nakamura K, Toda H, Miyawaki I, Kitamura R, Vinh VH, Hatano Y, Mori K. Suppression of acetylcholine-induced relaxation by local anesthetics and vascular NO-cyclic GMP system. Acta Anaesthesiol Scand. 1997; 41: 1054-60.
Miura H, Bosnjak JJ, Ning G, Saito T, Miura M, Gutterman DD. Role for hydrogen peroxide in flow-induced dilation of human coronary arterioles. Circ Res. 2003; 92: e31-40.
Moller R, Covino BG. Cardiac electrophysiologic properties of bupivacaine and lidocaine compared with those of ropivacaine, a new amide local anaesthetic. Anesthesiology 1990; 72: 322–9.
Moncada S, Gryglewski R, Bunting S, Vane JR. An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 1976; 263: 663-5.
Mousa SA, Machelska H, Schafer M, Stein C. Co-expression of beta-endorphin with adhesion molecules in a model of inflammatory pain. J Neuroimmunol. 2000; 108: 160-70.
Muller M, Litz RJ, Huler M, Albrecht DM. Grand mal convulsion and plasma concentrations after intravascular injection of ropivacaine for axillary brachial plexus blockade. Br J Anaesth. 2001; 87: 784-7.
Naguib M, Magboul MM, Samarkandi AH, Attia M. Adverse effects and drug interactions associated with local and regional anaesthesia. Drug Saf. 1998; 18: 221-50.
Nahorski SR. Inositol polyphosphates and neuronal calcium homeostasis. Trends Neurosci. 1988; 11: 444-8.
Nakamura K, Toda H, Kakuyama M, Nishiwada M, Yamamoto M, Hatano Y, Mori K. Direct vascular effect of ropivacaine in femoral artery and vein of the dog. Acta Anaesthesiol Scand. 1993; 37: 269-73.
Nau C, Strichartz GR. Drug chirality in anesthesia. Anesthesiology. 2002; 97: 497-502.
Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science. 1992; 258: 607-14.
Okutomi T, Zhang Y, Cooper TB, Morishima HO. Magnesium and bupivacaine-induced convulsions in awake pregnant rats. Int J Obstet Anesth. 2005; 14: 32-6.
Onozuka M, Imai S, Furuichi H, Ozono S. A specific 70K protein found in epileptic rat cortex: induction of bursting activity and negative resistance by its intracellular application in Euhadra neurons. J. Neurobiol. 1991a; 22: 287-297.
Onozuka M, Kishii K, Furuichi H, Sugaya E. Behavior of intracellular cyclic nucleotide and calcium in pentylenetetrazole-induced bursting activity in snail neurons. Brain Res 1983; 269: 277-86.
Onozuka M, Kubo KY, Ozono S. The molecular mechanism underlying pentylenetetrazole-induced bursting activity in Euhadra neurons: involvement of protein phosphorylation. Comp Biochem Physiol C. 1991b; 100: 423-32.
Pfister SL, Spitzbarth N, Edgemond W, Campbell WB. Vasorelaxation by an endothelium-derived metabolite of arachidonic acid. Am J Physiol. 1996; 270: H1021-30.
Polley LS, Columb MO, Naughton NN, Wagner DS, van de Ven CJ. Relative analgesic potencies of ropivacaine and bupivacaine for epidural analgesia in labor: implications for therapeutic indexes. Anesthesiology. 1999; 90: 944-50.
Punke MA, Friederich P. Retigabine stimulates human KCNQ2/Q3 channels in the presence of bupivacaine. Anesthesiology. 2004; 101:430-8.
Reiz S, Haggmark S, Johansson G, Nath S. Cardiotoxicity of ropivacaine – a new amide local anaesthetic agent. Acta Anaesthesiol Scand. 1989; 33: 93–8.
Rosenberg PH, Heinonen E. Differential sensitivity of A and C nerve fibres to long-acting amide local anaesthetics. Br J Anaesth. 1983; 55: 163-7.
Ruetsch YA, Fattinger KE, Borgeat A. Ropivacaine-induced convulsions and severe cardiac dysrhythmia after sciatic block. Anesthesiology. 1999; 90: 1784-6.
Ruetsch YA, Boni T, Borgeat A. From cocaine to ropivacaine: the history of local anesthetic drugs. Curr Top Med Chem. 2001; 1: 175-82.
Satoh M, Matsuo K, Takanashi Y, Takayanagi I. Effects of acute and short-term repeated application of fullerene C60 on agonist-induced responses in various tissues of guinea pig and rat. Gen Pharmacol. 1995; 26: 1533-8.
Sawaki K, Ohno K, Miyamoto K, Hirai S, Yazaki K, Kawaguchi M. Effects of anticonvulsants on local anaesthetic-induced neurotoxicity in rats. Pharmacol Toxicol. 2000; 86: 59-62.
Scholz KP, Byrne JH. Intracellular injection of cAMP induces a long-term reduction of neuronal K+ currents. Science. 1988; 240: 1664-6.
Scott DA, Chamley DM, Mooney PH, Deam RK, Mark AH, Hagglof B. Epidural ropivacaine infusion for postoperative analgesia after major lower abdominal surgery--a dose finding study. Anesth Analg. 1995; 81: 982-6.
Scott DB, Lee A, Fagan D, Bowler GMR, Bloomfield P, Lundh R. Acute toxicity of ropivacaine compared with that of bupivacaine. Anesth Analg. 1989; 69: 563–9.
Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature. 1994; 372: 231-6.
Stone WE, Javid MJ. Anticonvulsive and convulsive effects of lidocaine: comparison with those of phenytoin, and implications for mechanism of action concepts. Neurol Res. 1988; 10: 161-8.
Stringer JL, Lothman EW. Cholinergic and adrenergic agents modify the initiation and termination of epileptic discharges in the dentate gyrus. Neuropharmacology. 1991; 30: 59-65.
Sugaya A, Sugaya E, Tsujitani M. Pentylenetetrazol-induced intracellular potential changes of the neuron of the Japanese land snail Euhadra peliomphala. Jpn J Physiol. 1973; 23: 261-74.
Sugaya E, Goldring S, O'leary JL. Intracellular potentials associated with direct cortical response and seizure discharge in cat. Electroencephalogr Clin Neurophysiol. 1964; 17: 661-9.
Sugaya E, Onozuka M. Intracellular calcium: its movement during pentylenetetrazole-induced bursting activity. Science. 1978; 200: 797-9.
Sugimoto M, Uchida I, Fukami S, Takenoshita M, Mashimo T, Yoshiya I. The alpha and gamma subunit-dependent effects of local anesthetics on recombinant GABA(A) receptors. Eur J Pharmacol. 2000; 401: 329-37.
Sztark F, Malgat M, Dabadie P, Mazat JP. Comparison of the effects of bupivacaine and ropivacaine on heart cell mitochondrial bioenergetics. Anesthesiology. 1998; 88: 1340-9.
Takeuchi H, Araki Y, Emaduddin M, Zhang W, Han XY, Salunga TL, Wong SM. Identifiable Achatina giant neurones: their localizations in ganglia, axonal pathways and pharmacological features. Gen. Pharmacol. 1996; 27: 3-32.
Taylor HJ, Chaytor AT, Edwards DH, Griffith TM. Gap junction-dependent increases in smooth muscle cAMP underpin the EDHF phenomenon in rabbit arteries. Biochem Biophys Res Commun. 2001; 283: 583-9.
Timponi CF, Oliveira NE, Arruda RM, Meyrelles SS, Vasquez EC. Effects of the local anaesthetic ropivacaine on vascular reactivity in the mouse perfused mesenteric arteries. Basic Clin Pharmacol Toxicol. 2006; 98: 518-20.
Toda N, Ayajiki K, Okamura T. Interaction of endothelial nitric oxide and angiotensin in the circulation. Pharmacol Rev. 2007; 59: 54-87.
Tomioka H, Hattori Y, Fukao M, Watanabe H, Akaishi Y, Sato A, Kim TQ, Sakuma I, Kitabatake A, Kanno M. Role of endothelial Ni2+-sensitive Ca2+ entry pathway in regulation of EDHF in porcine coronary artery. Am J Physiol Heart Circ Physiol. 2001; 280: H730-7.
Tsai MC, Chen ML. A new method for screening anticonvulsants: Eeffects of anticonvulsants on pentylenetetrazol-induced neuronal activity of the giant African snail, Achatina fulica Ferussac. Asia Pacific J. Pharmacol. 1989; 4: 203-207.
Tsai MC, Chen YH. Bursting firing of action potentials in central snail neurons elicited by d-amphetamine: role of the electrogenic sodium pump. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol. 1995; 111: 131-41.
Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox AP. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci. 1988; 11: 431-8.
Van Rooijen LA, Vadnal R, Dobard P, Bazan NG. Enhanced inositide turnover in brain during bicuculline-induced status epilepticus. Biochem Biophys Res Commun. 1986; 136: 827-34.
Vaandrager AB, de Jonge HR. Signalling by cGMP-dependent protein kinases. Mol Cell Biochem. 1996; 157: 23-30.
Vanhoutte F, Vereecke J, Verbeke N, Carmeliet E. Stereoselective effects of the enantiomers of bupivacaine on electrophysiological properties of the guinea-pig papillary muscle. Br J Pharmacolol. 1991; 103: 1275–81.
Villar IC, Francis S, Webb A, Hobbs AJ, Ahluwalia A. Novel aspects of endothelium-dependent regulation of vascular tone. Kidney Int. 2006; 70: 840-53.
Watanabe K, Funase K. Cyclic AMP elicits biphasic current whose activation is mediated through protein phosphorylation in snail neurons. Neurosci Res. 1991; 10: 64-70.
Weksler BB, Marcus AJ, Jaffe EA. Synthesis of prostaglandin I2 (prostacyclin) by cultured human and bovine endothelial cells. Proc Natl Acad Sci U S A. 1977; 74: 3922-6.
Willatts DG, Reynolds F. Comparison of the vasoactivity of amide and ester local anaesthetics. An intradermal study. Br J Anaesth. 1985; 57: 1006-11.
Wong RK, Traub RD, Miles R. Cellular basis of neuronal synchrony in epilepsy. Adv Neurol. 1986; 44: 583-92.
Wu NY, Chen YH, Huang SS, Tsai MC. Effects of d-amphetamine on the frequency of the spontaneous contraction of the portal vein in rat. Gen Pharmacol. 1998; 30: 669-83.
You J, Johnson TD, Marrelli SP, Bryan RM Jr. Functional heterogeneity of endothelial P2 purinoceptors in the cerebrovascular tree of the rat. Am J Physiol. 1999; 277: H893-900.
Yu J, Ogawa K, Tokinaga Y, Mizumoto K, Kakutani T, Hatano Y. The inhibitory effects of isoflurane on protein tyrosine phosphorylation-modulated contraction of rat aortic smooth muscle. Anesthesiology. 2004; 101: 1325-31.
Zaric D, Nydahl PA, Philipson L, Samuelsson L, Heierson A, Axelsson K. The effect of continuous lumbar epidural infusion of ropivacaine (0.1%, 0.2%, and 0.3%) and 0.25% bupivacaine on sensory and motor block in volunteers: a double-blind study. Reg Anesth. 1996; 21: 14-25.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25158-
dc.description.abstractRopivacaine是第一個由單純S型態的鏡像異構物發展出來的長效醯銨類局部麻醉劑,其結構和麻醉效果和bupivacaine類似,提供在中樞神經系統、心臟血管系統方面較低的毒性,且具有感覺與運動阻礙分離明顯的特性。自從1996年上市以來,ropivacaine普遍使用於硬膜外麻醉、周圍神經阻斷麻醉、術後止痛、無痛分娩等,但仍有不少因為使用ropivacaine不慎而引起全身痙攣等中樞神經系統中毒以及心跳停止等心血管系統中毒的案例發生。本文除了利用蝸牛的神經元尋找ropivacaine誘發神經毒性的可能作用機轉,另一部份則觀察ropivacaine對天竺鼠的胸主動脈環的反應以了解ropivacaine對血管張力的影響。
本文在探討ropivacaine誘發神經毒性的可能作用機轉,乃利用非洲大蝸牛(Achatina fulica Ferussac) 食道下神經節(suboesophageal ganglion)中的RP4神經元為實驗標本,以一般藥理學與電生理學的方法,觀察ropivacaine及其他藥物對非洲大蝸牛食道下神經節RP4神經元的膜電位、振福、頻率的改變。在正常生理溶液灌流下,RP4神經元會產生自發性單一規則的動作電位,當細胞外投予ropivacaine (900μM),RP4神經元的自發性動作電位會由單一規則性的形式轉變成猝發性(bursting)的形式,此猝發性的動作電位 (burst firing) 是可逆性的,且無法被(1) 投予prazosin (100 μM)、propranolol (100 μM)、atropine (1 mM)、d-tubocurarine (100 μM),(2) 事先灌流缺鈣生理溶液 (Ca2+-free solution),(3) 事先投予PKA 抑制劑H89 (10μM),(4) 事先投予PKC抑制劑chelerythrine chloride (10 μM)所抑制。代表ropivacaine所引起動作電位的猝發現象並非經由(1)腎上腺素受器及膽鹼素受器,(2) 細胞外鈣離子,(3) PKA相關的訊息傳遞路徑,(4) PKC相關的訊息傳遞路徑。但動作電位的猝發現象卻可以被(1) 事先投予PLC 抑制劑U73122 (30 μM),(2) 投予neomycin (3.5 mM),(3) 投予高鎂生理溶液 (30 mM)所抑制。顯示猝發現象可能與PLC的活化有關,也就代表ropivacaine誘發的神經毒性很可能與PLC的活性的大小有密切的關連。
觀察ropivacaine對天竺鼠胸主動脈環的反應以了解ropivacaine對血管平滑肌的影響。利用不同濃度的ropivacaine分別作用於保存內皮細胞和去除內皮細胞的主動脈環以觀察張力的改變,結果發現ropivacaine對保存內皮細胞的主動脈環無張力的變化,但是ropivacaine對去除內皮細胞的主動脈環卻有收縮的反應,代表內皮細胞對ropivacaine造成血管放鬆的反應佔有重要的地位。比較不同濃度的ACh 或ropivacaine在保存內皮細胞且受到phenylephrine (10-5 M)先行處理的主動脈環的張力變化,結果顯示ropivacaine的放鬆作用遠大於ACh。先用yohimbine (α-adrenergic antagonist)、propranolol (β-adrenergic antagonist)、atropine (cholinergic antagonist)等抑制劑分別將主動脈環灌流20分鐘,再用phenylephrine預先處理,之後再給予各種不同濃度的ropivacaine觀察其反應,結果發現yohimbine、propranolol、atropine三者皆不會影響ropivacaine對血管的放鬆反應,代表ropivacaine引起保存內皮細胞的主動脈環的血管放鬆反應,應與α-、β-腎上腺素受器及膽鹼素受器無關。先用indomethacin將主動脈環灌流20分鐘,再用phenylephrine預先處理,之後再給予不同濃度的ropivacaine觀察張力的改變,結果發現indomethacin可以明顯減少ropivacaine (3 x10-4到10-2 M) 對血管的放鬆反應,代表ropivacaine對保存內皮細胞主動脈環的血管放鬆反應與prostaglandin system有關。另外用L-NAME(NOS抑制劑)、ODQ (guanylyl cyclase抑制劑)、methylene blue (既是NOS抑制劑,也是guanylyl cyclase抑制劑)等分別將主動脈環灌流20分鐘,再用phenylephrine預先處理,之後再給予各種不同濃度的ropivacaine來觀察張力變化,結果發現L-NAME、ODQ、methylene blue三者皆可以明顯減少ropivacaine (3 x10-4到10-2 M)對血管的放鬆反應,代表ropivacaine對保存內皮細胞的主動脈環的血管放鬆反應與NO-cGMP pathway有關。換句話說,ropivacaine可以引發保存內皮細胞的主動脈環血管放鬆,而造成血管放鬆的機制,應與prostaglandin system和NO-cyclic GMP pathway有密切的關係。
總結此論文,ropivacaine雖然具有較高的安全性,一旦使用不慎,仍可能發生中樞神經或心血管系統方面嚴重的併發症,在中樞神經系統方面,ropivacaine所誘發的神經毒性很可能與PLC的活性的大小有密切的關連,或許可以用PLC 抑制劑處理或避免全身性痙攣的發生;在心血管系統方面,ropivacaine對含有內皮細胞的主動脈環,可能經由NO–cGMP和prostaglandin system的途徑引發血管放鬆的反應,提供臨床上因大量血管吸收可能引發血液動力改變(hemodynamic change)之參考。
zh_TW
dc.description.abstractRopivacaine, a pure S-enantiomer, is a long-acting amide local anesthetic agent. It is similar to bupivacaine in chemical structure and anesthetic action. Ropivacaine produces sensory-motor differential blockade and results in less cardiac and neurotoxicity than bupivacaine. Since its clinical introduction in 1996, it is widely used for epidural anesthesia, nerve blockade, postoperative analgesia, and painless labor. Several reports have documented ropivacaine-induced convulsion and some have reported cardiotoxicity, such as cardiac arrest. The purposes of the study are as follows: (1) to investigate the possible mechanisms of ropivacaine-induced neurotoxicity using the central neuron of snail; (2) to identify the effects of ropivacaine in vasomotor tone on endothelium-dependent guinea pig aorta.
The effects of ropivacaine on a central neuron (RP4) of giant African snail (Achatina fulica Ferussac) were recorded by pharmacological and electrophysiological technique. The RP4 neuron showed spontaneous firing of action potential. Extra-cellular application of ropivacaine (900μM) reversibly elicited bursts of potential on RP4 neuron. The bursts of potential elicited by ropivacaine were not blocked after administration of (1) prazosin (100 μM), propranolol (100 μM), atropine (1 mM), d-tubocurarine (100μM), (2) pretreatment with calcium-free solution, (3) pretreatment with H89 (10μM), and (4) pretreatment with chelerythrine (10 μM). The bursts of potential elicited by ropivacaine were blocked by pretreatment with U73122 (30 μM) or additions of neomycin (3.5 mM) or high magnesium solution (30 mM). Ropivacaine-elicited bursts of potential are closely associated with the phospholipase C activity, not directly related to (1) adrenergic or cholinergic receptors, (2) the extra-cellular calcium ion fluxes, (3) the PKA activity and (4) the PKC activity in the neuron. It suggests ropivacaine-induced neurotoxicity may be associated with phospholipase C activity.
Isolated guinea pig aortic rings were suspended for isometric tension recordings. Ropivacaine (3 x 10-4 to 10-2 M) produced vasoconstriction in endothelium-denuded aortic rings, whereas no such response was observed in aortic rings with intact endothelium. In phenylephrine (10-5 M) precontracted intact aortic rings, ropivacaine induced a greater degree of vasorelaxation than acetylcholine. Yohimbine (10-6 M), propranolol (10-6 M) and atropine (10-6 M) all failed to affect the relaxation responses induced by ropivacaine. Pretreatment with indomethacin (10-5 M; cyclooxygenase inhibitor), L-NAME (10-3 M; nitric oxide synthase inhibitor), methylene blue (10-6 M; nitric oxide synthase and soluble guanylyl cyclase inhibitors) or ODQ (10-5 M; soluble guanylyl cyclase inhibitor), significantly decreased ropivacaine-induced relaxation of endothelium intact aortic rings (3 x 10-4 to 10-2 M). Ropivacaine elicits an endothelium-dependent vasorelaxation in the phenylephrine precontracted aortic rings via the nitric oxide (NO)-cyclic GMP pathway and the prostaglandin system.
In conclusion, ropivacaine is a safer local anesthetic agent compared with bupivacaine. After accidental intravascular administration, ropivacaine-induced CNS and cardiovascular toxicity will be developed. Ropivacaine-induced neurotoxicity is highly associated with PLC activity and PLC inhibitor may offer a novel therapeutic approach for managing local anesthetic-induced convulsion or other transient neurological toxicity. Ropivacaine elicits an endothelium-dependent vasorelaxation in the phenylephrine precontracted aortic rings via the nitric oxide -cyclic GMP pathway and the prostaglandin system.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:03:51Z (GMT). No. of bitstreams: 1
ntu-96-D87443003-1.pdf: 2288464 bytes, checksum: 8e67c9429f93fcb66e0e094ecbc52dec (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定…………………………………………………… ii
誌謝………………………………………………………………… iii
縮寫表(Abbreviation)…………………………………………… 1
中文摘要…………………………………………………………… 5
英文摘要…………………………………………………………… 9
第一章 緒論 (Introduction)………………………………… 13
第二章 實驗材料與方法(Materials and Methods)
第一節 Ropivacaine 對中樞神經元之影響………………… 22
第二節 Ropivacaine 對血管平滑肌之影響………………… 24
第三章 實驗結果 (Results)
第一節 Ropivacaine 對中樞神經元之影響………………… 27
第二節 Ropivacaine 對血管平滑肌之影響………………… 33
第四章 討論與結論 (Discussion and Conclusion)………… 38
第五章 圖、表 (Figures and Tables)……………………… 60
參考文獻 (References)………………………………………… 90
著作 (Bibliography)…………………………………………… 110

圖目錄
圖1. Ropivacaine和bupivacaine的化學結構式 …………… 61
圖2. 非洲大蝸牛之食道下神經節的背面圖………………… 62
圖3. 神經傳導物質作用在非洲大蝸牛RP4神經元之影響…… 63
圖4. 不同濃度的Ropivacaine作用在RP4神經元之影響…… 64
圖5. Procaine、lidocaine、bupivacaine、ropivacaine作用
在 RP4神經元之影響…………………………………… 65
圖6. Prazosin、propranolol、d-tubocurarine、atropine對
ropivacaine在RP4神經元引發猝發現象之影響……… 66
圖7. 缺鈣溶液對ropivacaine在RP4神經元誘發猝發現象之影
響………………………………………………………… 67
圖8. H89對ropivacaine在RP4神經元誘發猝發現象之影響… 68
圖9. U73122對ropivacaine在RP4神經元誘發猝發現象之影響…69
圖10. Neomycin對ropivacaine在RP4神經元誘發猝發現象之影響70
圖11. 高鎂溶液對ropivacaine在RP4神經元引發猝發現象之影響71
圖12. Chelerythrine對ropivacaine在RP4神經元誘發猝發現象之
影響……………………………………………………… 72
圖13. Ropivacaine在保存內皮細胞或去除內皮細胞的主動脈環之
影響……………………………………………………… 73
圖14. Ropivacaine在預先給予phenylephrine且保存內皮細胞主動
脈環之放鬆反應…………………………………………… 74
圖15. ACh和ropivacaine在預先給予phenylephrine且保存內皮細
胞主動脈環之影響………………………………………… 75
圖16. Yohimbine、propranolol、atropine對ropivacaine在預先
給予phenylephrine且保存含有內皮細胞主動脈環引發放鬆
反應之影響……………………………………………… 76
圖17. Indomethacin對ropivacaine在預先給予phenylephrine且保
存內皮細胞主動脈環引發放鬆反應之影響…………… 77
圖18. L-NAME對ropivacaine在預先給予phenylephrine且保存內皮
細胞主動脈環引發放鬆反應之影響…………………… 78
圖19. ODQ對ropivacaine在預先給予phenylephrine且保存內皮細
胞主動脈環引發放鬆反應之影響………………………… 79
圖20. Methylene blue對ropivacaine在預先給予phenylephrine且
保存內皮細胞主動脈環引發放鬆反應之影響…………… 80
圖21. Ropivacaine在RP4神經元誘發猝發現象之模式圖……… 81
圖22. Ropivacaine在保存內皮細胞主動脈環引發放鬆反應之可能
機轉……………………………………………………… 82

表目錄
表1. 不同濃度的ropivacaine對RP4神經元膜電位、振幅、頻率之
影響……………………………………………………… 83
表2. 缺鈣溶液對ropivacaine作用在RP4神經元膜電位、振幅、頻
率之影響………………………………………………… 84
表3. H89對ropivacaine作用在RP4神經元膜電位、振幅、頻率之影
響………………………………………………………… 85
表4. U73122對ropivacaine作用在RP4神經元膜電位、振幅、頻率
之影………………………………………………………… 86
表5. Neomycin對ropivacaine作用在RP4神經元膜電位、振幅、頻
率之影響…………………………………………………… 87
表6. 高鎂溶液對ropivacaine作用在RP4神經元膜電位、振幅、頻
率之影響………………………………………………… 88
表7. Chelerythrine對ropivacaine作用在RP4神經元膜電位、振
幅、頻率之影響…………………………………………… 89
dc.language.isozh-TW
dc.subject血管放鬆zh_TW
dc.subject羅比卡因zh_TW
dc.subject中樞神經元zh_TW
dc.subject痙攣zh_TW
dc.subject內皮細胞zh_TW
dc.subjectVasorelaxationen
dc.subjectRopivacaineen
dc.subjectCentral neuronen
dc.subjectConvulsionen
dc.subjectEndotheliumen
dc.title羅比卡因在興奮性細胞膜和血管平滑肌藥理學之研究zh_TW
dc.titlePharmacological Studies on Excitable Membrane and Vascular Smooth Muscle by Ropivacaineen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree博士
dc.contributor.oralexamcommittee孫維仁,蔡勝國,邱蔡賢,謝松蒼,簡志誠
dc.subject.keyword羅比卡因,中樞神經元,痙攣,內皮細胞,血管放鬆,zh_TW
dc.subject.keywordRopivacaine,Central neuron,Convulsion,Endothelium,Vasorelaxation,en
dc.relation.page113
dc.rights.note未授權
dc.date.accepted2007-07-25
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.23 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved