Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25156
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor薛文証(Wen-Jeng Hsueh)
dc.contributor.authorHao-Hsiang Hungen
dc.contributor.author洪浩翔zh_TW
dc.date.accessioned2021-06-08T06:03:48Z-
dc.date.copyright2007-07-26
dc.date.issued2007
dc.date.submitted2007-07-24
dc.identifier.citation[1] W. P. Mason, Electromechanical Transducers and Wave Filters. 2nd ed. Princeton, NJ: Van Nostrand-Reinhold, 1948.
[2] M. Redwood, “Transient performance of a piezoelectric transducer,” J. Acoust. Soc. Amer., vol. 33, no. 4, pp. 527–536, 1961.
[3] R. Krimholtz, D. A. Leedom, and G. L. Matthei, “New equivalent circuits for elementary piezoelectric transducers,”Electron. Lett., vol. 6, pp. 398-399, 1970.
[4] G. Kossoff, “The effects of backing and matching on the performance of piezoelectric ceramic transducer,” IEEE Trans. Sonics Ultrason., vol. SU-13, pp. 20-31, 1966.
[5] E. K. Sittig, “Effect of bonding and electrode layers on the transmission parameters of piezoelectric transducers used in ultrasonic digital delay lines,” IEEE Trans. Sonics Ultrason., vol. SU-16, pp. 2-10, 1969.
[6] A. H. Meitzier and E. K. Sittig, “Characterization of piezoelectric transducers used in ultrasonic devices operating above 0.1 GHz,” J. Appl. Phys, vol. 40, no.11 pp. 4341-4352, 1969.
[7] T. M. Reeder and D. K. Winslow, “Characteristics of microwave acoustic transducers for volume wave excitation,” IEEE Transactions on Microwave Theory and Techniques, vol. MTT-17, pp. 927-941, 1969.
[8] H. F. Tiersten, “Electromechanical coupling factors and fundamental material constants of thickness vibrating piezoelectric plates,” Ultrasonics, vol. 8, pp. 19-23, 1970.
[9] E. K. Sittig, “Definitions relating to conversion losses in piezoelectric transducers,” IEEE Trans. Sonics Ultrason., vol. SU-18, pp. 231-234, 1971.
[10] C. S. Desilets, J. D. Fraser and G. S. Kino, “The design of efficient broad-band piezoelectric transducers,” IEEE Trans. Sonics Ultrason., vol. 25, pp. 115-125, 1978.
[11] J. Souquet, P. Defranould and J. Desbois, “Design of low-loss wide-band ultrasonic transducers for noninvasive medical application,” IEEE Trans. Sonics Ultrason., vol. 26, pp. 75-81, 1979.
[12] N. Lamberti, “A New Approach for the design of ultrasono-therapy transducers,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 44, pp. 77-84, 1997.
[13] W. J. Hsueh, “Novel graph model and analysis method for piezoelectric thickness-drive transducers,” J. Acoust. Soc. Amer., 108, pp. 2159-2165, 2000.
[14] S. Miyazawa, “Ferroelectric domain inversion in Ti diffused LiNbO3 optical waveguide,” J. Appl. Phys., vol. 50, pp. 4599-4603, 1979.
[15] K. Nakamura , H. Ando, and H. Shimizu, “Ferroelectric domain inversion caused in LiNbO3 plates by heat treatment,” Appl. Phys. Lett., vol. 50, no. 20, pp. 1413-1414, 1987.
[16] K. Nakamura and H. Shimizu, “Local domain inversion in ferroelectric crystals and its application to piezoelectric devices,” Proc. IEEE Ultrason. Symp., pp. 309-318, 1989.
[17] K. Nakamura, “Antipolarity domains formed by heat treatment ferroelectric crystals and their applications. Jpn. J. Appl. Phys., vol. 31, Suppl. 31-1, pp. 9-13, 1992.
[18] K. Nakamura and Y. Kato, “Formation of ferroelectric inverted domains and their applications to ultrasonic transducers,” Trans. IEICE Jpn., vol. J82-C-I, pp. 728 734, 1999.
[19] S. Salto, Y. Kameyama, and K. Nakamura, “Ultrasonic focusing Gaussian source to receive nonlinearly generated second harmonic sound by itself,” Jpn. J. Appl. Phys., vol. 40, pp. 3664-3667, 2001.
[20] S. Saito, M. Izumi, and Y. Mine,“A dual frequency ultrasonic probe for medical applications,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 42, pp. 294–300, 1995.
[21] T. Funasaka, M. Furuhata, Y. Hashimoto, and K. Nakamura, “Piezoelectric generator using a LiNbO3 plate with an inverted domain,” Proc. IEEE Ultrason. Symp., pp. 959-962, 1998.
[22] K. Nakamura, K. Fukazawa, K. Yamada, and S. Saitoh, “Broadband ultrasonic transducers using a LiNbO3 plate with a ferroelectric inversion layer,” Proc. IEEE Ultrason. Symp., pp. 1229-1233, 2002.
[23] K. Nakamura, K. Fukazawa, K. Yamada, and S. Saitoh, “Broadband ultrasonic transducers using a LiNbO3 plate with a ferroelectric inversion layer,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 50, no. 11, pp. 1558-1562, 2003.
[24] K. Nakamura, H. Koyama, S. Odakura, K. Yamada and S. Saito, “LiNbO3 ultrasonic transducers with an inverted domain layer for radiation to a solid medium,” Proc. IEEE Ultrason. Symp., vol. 3, pp. 1934-1937, 2004.
[25] Y Estanbouli, G. Hayward and J. C. Barbenel, “A Study of Inversion Layer Transducers,” Proc. IEEE Ultrason. Symp., pp. 1322-1325, 2003.
[26] Y. Estanbouli, G. Hayward, S. N. Ramadas and J. C. Barbeneh, “A linear systems model of the thickness mode piezoelectric transducer containing dual piezoelectric zones,” Proc. IEEE Ultrason. Symp., vol. 3, pp. 1938 1941, 2004.
[27] Y. Estanbouli, G. Hayward, S. N. Ramadas and J. C. Barbenel, “A block diagram model of the thickness mode piezoelectric transducer containing dual oppositely polarized piezoelectric zones,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 53, pp. 1028-1036, 2006.
[28] Q. F. Zhou, J. Cannata, C. Z. Huang, H. K. Guo, V. Marmarelis and K. K. Shung, “Fabrication and modeling of inversion layer ultrasonic transducers using LiNbO3 single crystal,” Proc. IEEE Ultrason. Symp., vol. 1, pp. 1034 1037, 2003.
[29] Q. Zhou, J. M. Cannata, H. Guo, C. Huang, V. Z. Marmarelis and K. K. Shung, “Half-thickness inversion layer high-frequency ultrasonic transducers using LiNbO3 single crystal,” IEEE Trans. Ultrason. Ferroelect. Freq. Contr., vol. 52, pp. 127-133, 2005.
[30] C. Huang, V. Z. Marmarelis, Q. Zhou and K. K. Shung, “An analytical model of multilayer ultrasonic transducers with an inversion layer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Contr., vol. 52, pp. 469-479, 2005.
[31] Q. F. Zhou, J. Cannata and K. Kirk Shung, “Design and modeling of inversion layer ultrasonic transducers using LiNbO3 single crystal,” Ultrasonics, vol. 44, 2006.
[32] O. B. Wilson, Introduction to Theory and Design of Sonar Transducers, CA: Peninsula, 1985.
[33] G. S. Kino, Acoustic Waves: Devices, Imaging, and Analog Signal Processing, Englewood Cliffs, NJ: Prentice Hall, 1987.
[34] J. F. Rosenbaum, Bulk Acoustic Wave Theory and Devices, Boston: Artech House, 1988.
[35] J. Xu, R. Stroud, Acousto-Optic Device: Principles, Design, and Applications, NY: Wiley-Interscience, 1992.
[36] D. Royer, E. Dieulesaint, Elastic Wave in Solids (I), NY: Springer-Verlag, 2000.
[37] D. Royer, E. Dieulesaint, Elastic Wave in Solids (II), NY: Springer-Verlag, 2000.
[38] 丘國鋒,「一種壓電作動器之分析與設計」,國立台灣大學 程科學及海洋工程學研究所碩士論文,民國94年7月。
[39] 吳佳翰,「熱治療超音波換能器設計」,國立台灣大學工程 學及海洋工程學研究所碩士論文,民國95年6月。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25156-
dc.description.abstract具反向層之超音波壓電換能器近年來受到各方重視,被認為是一種設計寬頻換能器的好方法。本文將提出具反向層雙層壓電片之超音波壓電換能器的解析模型,並利用轉移矩陣法來分析有關換能器之電輸入阻抗及效率。
文中說明換能器各結構層,包含單、雙層壓電片且具反向層、背部材料及匹配層等之設計理念,並探討反向層厚度比、背部材料特徵阻抗及有無匹配層對於換能器頻寬及效率之影響,進而找出其中最佳之設計。
本研究成功地以轉移矩陣法模擬出具反向層之多層超音波壓電換能器結構之理論及數值計算,有助於完成雙頻操作模式被使用在大部分超音波應用中之諧波影像或寬頻等特性。
zh_TW
dc.description.abstractRecently, ultrasonic piezoelectric transducer with an inversion layer has been gaining interest in the development of broadband transducer. In this research we present an analytical model for the analysis of double-layer ultrasonic piezoelectric transducers with an inversion layer. We also analyzed electric input impedance and efficiency of transducers by transfer matrix method.

The design of transducers including single and double-layer piezoelectric films with an inversion layer, backing material, and matching layer is presented. Effects of inversion layer ratio and characteristic impedance of backing material on the performace are studied. Whether transducer bandwidth and efficiency have matching layers or not we make sure of those effects.

Finally, numerical calculations of multilayer ultrasonic piezoelectric transducers by transfer matrix method is examined to understand the characteristics of the transducers working in dual-frequency operation mode, which has been used in harmonic image or broadband characteristic of most ultrasonic applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:03:48Z (GMT). No. of bitstreams: 1
ntu-96-R94525038-1.pdf: 1189286 bytes, checksum: 568ae15bda48d57d268fc6215bc54798 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents摘要 i
Abstract ii
目 錄 iii
圖目錄 iv
表目錄 vi
符號表 vii
第一章 序論 1
1-1 背景與研究動機 1
1-2 文獻回顧 3
1-3 論文架構 7
第二章 超音波壓電換能器原理 8
2-1 Mason等效電路 8
2-1-1 壓電材料之波動方程式 8
2-1-2 阻抗矩陣 11
2-2 多層超音波壓電換能器結構 18
第三章 層狀壓電換能器之分析 24
3-1 控制方程式之關係式 24
3-2 轉移矩陣之分析 27
3-3 單層壓電片之解析 30
3-4 雙層壓電片之解析 37
3-5 具匹配層之數值分析 42
第四章 層狀壓電換能器數值模擬 49
4-1 雙層壓電片之數值模擬 49
4-1-1 反向層厚度比之影響 50
4-1-2 背部材料之影響 60
4-2 具匹配層之數值模擬 65
4-2-1 反向層厚度比之影響 65
4-2-2 背部材料之影響 77
第五章 結論與展望 83
5-1 結論 83
5-2 未來展望 84
參考文獻 85
dc.language.isozh-TW
dc.subject超音波壓電換能zh_TW
dc.subject頻寬zh_TW
dc.subject效率zh_TW
dc.subject轉移矩陣法zh_TW
dc.subject反向層zh_TW
dc.subjectefficiencyen
dc.subjectinversion layeren
dc.subjectultrasonic piezoelectric transduceren
dc.subjecttransfer matrix methoden
dc.subjectbandwidthen
dc.title具反向層之多層超音波壓電換能器特性zh_TW
dc.titleCharacteristics of Multilayer Ultrasonic Piezoelectric Transducers with an Inversion Layeren
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor黃維信(Wei-Shien Hwang)
dc.contributor.oralexamcommittee孔慶華(Chin-Hwa Kong),陳永祥(Yung-Hsiang Chen),柯文俊(Wen-Jiunn Ko)
dc.subject.keyword反向層,超音波壓電換能,頻寬,效率,轉移矩陣法,zh_TW
dc.subject.keywordinversion layer,ultrasonic piezoelectric transducer,bandwidth,efficiency,transfer matrix method,en
dc.relation.page89
dc.rights.note未授權
dc.date.accepted2007-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
顯示於系所單位:工程科學及海洋工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved