Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25155
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林宗賢(Tzong-Shyan Lin)
dc.contributor.authorRuei-Yin Chiuen
dc.contributor.author邱瑞瑩zh_TW
dc.date.accessioned2021-06-08T06:03:46Z-
dc.date.copyright2007-08-28
dc.date.issued2006
dc.date.submitted2007-07-26
dc.identifier.citation中華民國專業者都市改革組織. 2005. 共生藝棧-寶藏巖歷史聚落設置藝術村
計畫委託規劃. 台北市政府文化局. 台北.
李松柏. 2005. 台灣水生植物地圖. p.367、355. 星辰出版社. 台中.
成水平、吴振斌、况琪军. 2002. 人工湿地植物研究. 湖泊科學 14:179-184.
周姿汶. 2005. 氯化鎘對美人蕉與數種蕨類生長及光合作用之影響. 國立台灣大學園藝學研究所碩士論文.
林文華. 2005. 日本紙莎草之栽培與利用. 花蓮區農業專訊. 52:2-5.
徐德元.1970. 科學聚寶盆-化糞池真相. 科學月刊.10.
陳有祺. 2005. 溼地生態工程. 滄海書局. 台中.
張淑賢. 1981. 本省現行植物分析法. p. 53-59. 作物需肥診斷技術. 台灣省農業試驗所. 台中.
張文亮、張尊國、陳秋楊、林裕彬、遊進裕、徐貴新. 2004. 水質自然淨化工法彙編. 行政院環保署.台北.
黃敏展. 2002. 亞熱帶花卉學總論. p.110. 國立中興大學園藝系. 台中.
鲁敏、曾庆福. 2004. 七种植物的人工湿地处理生活汙水的研究. 武汉科技學院學報 17(2):32-35.
韩阳、李雪梅、朱延姝. 2005. 植物污染與植物功能. p.133-137. 化學工业出版社. 北京.
楊遠波、顏聖紘、林仲剛. 2001. 台灣水生植物圖誌. p.1-6. 行政院農委會. 台北.
歐文生. 2005. 生活汙水應用人工溼地處理及再利用之研究. 國立成功大學建築研究所博士論文.
Aoi, T. and T. Hayashi. 1996. Nutrient removal by water lettuce (Pisitia stratiotes). Wat. Sci. Tech. 34:407-412.
Association of Official Chemists. 1970. Official methods of analysis. 12th ed. p.204.
Ayaz, S. C. and Ö. Saygin. 1996. Hydroponic tertiary treatment. Wat. Res. 30: 1295-1298.
Belmont, M. A., E. Cantellano, S. Thompson, M. Williamson, A. Sánchez, and C. D. Metcalfe. 2004. Treatment of domestic wastewater in a pilot-scale natural treatment system in central Mexico. Ecol. Eng. 23:299-311.
Bloom, A. J. 1997. Interaction between inorganic nitrogen nutrition and root development. Z. Pflanzenernähr. Bodenkd. 160:253-259.
Boon, A. G. 1985. Report of a visit by members and staff of WRC to Germany (GFR) to investigate the root zone method for treatment of wastewaters. 376-S/1 Water Research Center. Processes. Stevenage. Hertfordshire. UK.
Breen, P. F. 1990. A mass balance method for assessing the potential of artificial wetlands for wastewater treatment. Wat. Res. 24: 689-697.
Bremner, J. N. and C. S. Mulvaney. 1982. Salicylic acid-thiosulfate modification on Kjeldahl method to include nitrate and nitrite. In: Page, A. L. (eds.) Methods of Soil Analysis Part 2 Chemical and Microbiological Properties. 2nd. p.621-622. Academic Press, NY., USA.
Brix, H. 1987. Treatment of wastewater in rhizosphere of wetland plant-the root-zone method. Wat. Sci. Tech. 19:107-188.
Brix, H. 1993a. Wastewater treatment in constructed wetlands: system design, removal processes, and treatment performance.. In:Moshiri ,G. A. (eds.) Constructed Wetlands for Water Quality Improvement. p.15 Lewis Publishers, Boca Raton, FL., USA.
Brix, H. 1993b. Macrophyte-mediated oxygen transfer in wetlands: transport mechanism and rates. In: Moshiri ,G. A. eds. Constructed Wetlands for Water Quality Improvement. p.391-398. Lewis Publishers. Boca Raton. FL., USA.
Campbell, C. S. and M. H. Ogden. 1999. Constructed Wetlands in the Sustainable Landscape. John Wiley & Sons, Inc., USA.
Coleman, J., K. Hench, K. Garbutt, A. Sextone, G. Bissonnette, and J. Skousen. 2001. Treatment of domestic wastewater by three plant species in constructed wetlands. Water air soil pollut.128:283-295.
Conley, L. M., R. I. Dick and L. W. Lion. 1991. An assessment of the root zone method of wastewater treatment. Res. J. Water Pollut. Control fed. 63:239-247.
Cooper, P. F. 1993. The use of reed bed systems to treat domestic sewage: the Europesn design and operations guidelines for reed bed treatment systems. In: Moshiri ,G. A. eds. Constructed Wetlands for Water Quality Improvement. p.203-217. Lewis Publishers. Boca Raton. FL., USA.
EPA Victoria Publication. 2006. Reuse options for household wastewater. EPA Victoria Publication 812.2. Australia.
Faulkner, S. P. and C. J. Richardson. 1989. Physical and chemical characteristics of freshwater soils. In: Hammer, D. A. eds. Constructed Wetlands for Wastewater Treatment. p.52-53. Lewis Publishers, Inc., USA.
Gerberg, R. M., B. V. Elkins, S. R. Lyon, and C. R. Goldman. 1986. Role of aquatic plants in wastewater treatment by artificial wetlands. Wat. Res. 20: 363-368.
Good, B. J. and W. H. Patrick. 1987. Root-water-sediment interface processes. In:Eddy. K. R. and W. H. Simth. eds. Aquatic Plants for Water Treatment and Resource Recovery. p.359. Magnolia Publishing Inc., La., USA.
Guntenspergen, G. R., F. Stearns, and J. A. Kadlec. 1989. Wetland vegetation. In: Hammer, D. A. eds. Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural. p.78-88. Lewis Publishers, Inc., Mich., USA.
Hammer, M. J. and M. H. Hammer., Jr. 2001. Water and Wastewater Technology. 4thed. Prentice-Hall, Inc., Upper Saddle River, NJ., USA.
Hansen, J. I. and F. O. Andersen. 1981. Effects of Phragmites australis roots and rhizomes on redox potential, nitrification, and bacterial number in the sediments. In:Broberg, A. and T. Tiren eds. Proceedings of the 9th Nordic Symposium on Sediments. p.72-93. Scripta Limnological, Norr Malmo, Sweden.
Hocking, P. J. 1985. Effects of sodium and potassium chlorides on the growth and accumulation of mineral ions by Cyperus involucratus Rottb. Aquat. bot. 21:210-217.
International Water Association. 2000. Constructed Wetlands for Pollution Control- Process, Performance, Design and Operation. p.156. IWA Publishing, London.
Juwarkar, A. S., B. Oke, A. Juwarkar, and S. M. Patnaik. 1995. Domestic wastewater treatment through constructed wetland in India. Wat. Sci. Tech. 32:291-294.
Kadlec, R. H. and R. L. Knight. 1996. Treatment Wetlands. CRC Press LLC, Boca Raton, FL., USA.
Kadlec, R. H. 1997. An autobiotic wetland phosphorus model. Ecol. Eng. 8: 145-172.
Karl, T. R. and R. W. Knight. 1998. Secular trends of precipitation amount, frequency, and intensity in the United Stated. Bull. Am. Meteorol. Soc. 79: 231-241.
Keddy, P. A. 2000. Wetland Ecology: Principles and Conservation. Cambridge University Press. Cambridge, UK.
Keeney, D. R., and D. W. Nelson. 1982. Modified Griess-Ilosvay Method. In: Page, A. L. eds. Methods of Soil Analysis Part 2 Chemical and Microbiological Properties. 2nd. p.684-687. Academic Press, NY., USA.
Lin, Y. F., S. R. Jing, D. Y. Lee, and T. W. Wang. 2002. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture 209:169-184.
Linsley, R. K. and J. B. Franzini. 1979. Water resources engineering. 3rd ed. McGraw-Hill, NY., USA.
Mbuligwe, S. E. 2005. Applicability of a septic tank/ engineered wetland coupled system in the treatment and recycling of wastewater from a small community. Environ. Manage. 35:99-108.
McLeary, K. S. 2005. Domestic sewage.. In: Lehr, J. H. and J. Keeley. eds. Domestic, Municipal, and Industrial Water Supply and Waste Disposal. p.830-832. John Wiley & Sons, Inc., USA.
Mengel, K. and E. A. Kirkby. 2001. Principles of Plant Nutrition. 5thed. Kluwer Academic Publishers, Dordrecht, Netherlands.
Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands. 3rd ed. John Wiley & Sons, Inc., USA.
Nichols, S. 1983. Capacity of natural wetlands to remove nutrients from wastewater. J. Water Pollut. Control Fed. 55:495-505.
Nyakang’o, J. B. and J. J. A. van Bruggen. 1999. Combination of a well functioning constructed wetland with a pleasing landscape design in Nairobi, Kenya. Wat. Sci. Tech. 40:249-256.
Okurut, T. O., G. B. J. Rijs, and J. J. A. van Bruggen. 1999. Design and performance of experimental constructed wetlands in Uganda, planted with Cyprus papyrus and Phragmites mauritianus. Wat. Sci.Tech. 40:265-271.
Philippi, L. S., R. H. R. de Costa, and P. H. Sezerino. 1999. Domestic effluent treatment through integrated system of septic tank and root zone. Wat. Sci. Tech. 40:125-131.
Reed, S. C. and R. W. Crites. 1984. Handbook of Land Treatment Systems for Industrial and Municipal Wastes. Noyes Pub., Park Ridge, NJ., USA.
Reed, S. C., E. J. Middlebrooks, and R. D. Crites. 1988. Natural Systems for Waste Management and Treatment. McGraw-Hill, New York, USA.
Reinhardt, M., B. Müller, R. Gachter, and B. Wehrli. 2006. Nitrogen removal construcred wetland : an isotope mass balance approach. Env. Sci. Tech. 40:3313-3319.
Rieck, A., J. Langston, and K. Van Devender. 1997. Constructed wetlands: an approach for animal waste treatment. Cooperative Extention Service, University of Arkansas. Http:// hermes.ecn.purdue.edu/cgi/convertwq?7068
Stensel, H. D. and J. L. Barnard. 1992. Principles of biological nutrient removal. In:Randall, C. W., J. L. Barnard, and H. D. Stensel. eds. Design and Retrofit of Wastewater Treatment Plants for Biological Nutrient Removal. Technomic Publishing Company, Inc., Lancaster, Pa., USA.
Tanner, C. C. 1996. Plants for constructed wetland treatment systems-a comparison of the growth and nutrient uptake of eight emergent species. Ecol. Eng. 7:59-83.
Tanner, C. C., J. S. Clayton, and M. P. Upsdell. 1995. Effect of loading and planting on treatment of diary farm wastewaters in constructed wetlands- II. removal of nitrogen and phosphorus. Wat. Res. 29: 27-34.
Terpstra, P. M. J. 1999. Sustainable water usage systems: models for the sustainable utilization of domestic water in urban areas. Wat. Sci. Tech. 39:65-72.
U. S. Environmental Protection Agency. 2000. Constructed wetlands treatment of municipal wastewaters. EPA/625/R-99/010. US EPA Office of Research and Development, Cincinnati, OH., USA.
Vaillant, N., F. Monnet, H. Sallanon, A. Coudret, and A. Hitmi. 2004. Use of commercial plant species in a hydroponic system to treat domestic wastewaters. J. Environ. Qual. 33:695-702.
Water Environment Federation. 1994. Wastewater Biology:The Life Processes. Alexandria, VA., USA.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25155-
dc.description.abstract近來人工濕地污水處理設備成本低且易於操作,因而應用於家庭、工業及農業廢水的處理。寶藏巖社區部分住戶因缺乏妥當的生活污水排放處理,污水滲流造成環境的隱憂,因此,為了建立適合處理寶藏巖社區生活污水的人工濕地,本試驗採用社區當地原有的水金英(Hydrocleys nymphoides)、野薑花(Hedychium coronarium)及美人蕉(Canna indica L.),及污水處理常用之長苞香蒲(Typha angustata)和小莎草(Cyperus haspan L.)等五種水生植物作為試驗材料,評估對社區生活污水中污染物的移除效能。試驗結果顯示,五種水生植物皆能適應當地生活污水水質,且能有效移除水中氨態氮、硝酸態氮、總凱氏氮及總磷,其中美人蕉單位面積的移除量分別為0.124 g cm-2 d-1、0.049 g cm-2 d-1、0.167 g cm-2 d-1及0.070 g cm-2 d-1,移除效果最好。
寶藏巖社區人工濕地的試驗結果發現,表面下流人工濕地系統對總氮及總磷的移除率分別為26.2%及16.0%,而表面流系統為12.2%及7.0%,顯示表面下流系統對總氮及總磷的移除效果較佳。氮在表面流系統內呈現有機化(organization)現象,表面下流系統則進行無機化作用(ammonification)。植物吸收利用的氮僅佔0.07,脫氮作用(denitrification)、微生物作用及其它化學作用進行佔人工濕地系統0.93,為氮移除的主要途徑。
本研究根據寶藏巖社區人工濕地的試驗結果初步估算人工濕地所需之面積,表面流人與表面下流人工濕地所需面積分別約為400.7及1683.1平方公尺,顯示原計劃提供之使用面積不足。
zh_TW
dc.description.abstractIt is because of low cost and easy operation, constructed wetlands are used in domestic, industrial and agriculture wastewater treatment recently. Part families’ domestic wastewater could not be treatmented and it was harmful to environment in Treasure- Hill community. In this study, treatment of wastewater from Treasure- Hill community by using Hydrocleys nymphoides,Hedychium coronarium, Canna indica L.,Typha angustata and Cyperus haspan L., and eminating ammonia (NH4+), nitrate(NO3-), total Kjeldahl (TKN) and total phosphorous (TP) removal, respectively. Results of the experiment, indicated these five aquatic plants could remove pollutants from wastewater and grew well in wasterwater from Treasure- Hill community. NH4+, NO3-, TKN, TP were removed by Canna indica L. 0.124 g cm-2 d-1、0.049 g cm-2 d-1、0.167 g cm-2 d-1 and 0.070 g cm-2 d-1, respectively.and removal efficiency was the best among the five aquatic plants.
Results of the experiment on constructed wetlands in Treasure-Hill community, Total nitrogen (TN) and total phosphorous removal efficiency in subsurface flow constructed wetland were 26.2% and 16.0% and in free water flow constructed wetland were 12.2% and 7.0%, respectively. Indicating the TN and TP removal efficiency in subsurface flow constructed wetland was better. Nitrogen was organization in free water flow constructed wetland, and ammonification in subsurface flow constructed wetland. Denitrification, micro- organism and other chemical process were contributed 0.93 to nitrogen removal, while only 0.07 of the removed nitrogen uptaked by aquatic plants.
It was eminated that 400.7 m2 and 1683.1 m2 area was needed in the free water flow and subsurface flow constructed wetland construction, respectively. Indicating that provided area is not enough in Treasure-Hill community originally.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:03:46Z (GMT). No. of bitstreams: 1
ntu-95-R92628108-1.pdf: 5429376 bytes, checksum: 32af44a708fe479335cf76b9653b43ac (MD5)
Previous issue date: 2006
en
dc.description.tableofcontents摘要........................................................................................................................1
Abstract..................................................................................................................2
緒言........................................................................................................................4
前人研究(背景及原理)
第一節 寶藏巖社區.................................................................. ..................8
一、 發展歷史與現況.............................................................. ..............8
二、 景觀溼地計畫.................................................................. ..............9
第二節 家庭生活污水的性質及其對環境的危害...................... ..............9
第三節 濕地與水生植物.......................................................... .................11
一、 濕地與水生植物的定義與種類.................................. .................11
二、 五種水生植物的生育習性.............................. .............................14
三、 濕地與水生植物淨水作用機制....................................................16
四、 溼地的物質平衡理論....................................................................18
第四節 人工濕地........................................................................................19
一、 人工溼地的發展與種類................................................................19
二、 根區效應的作用機制....................................................................20
三、 人工濕地的應用與目前展望........................................................21
圖表..............................................................................................................23
第一章 水生植物淨水功能之研究(批次式試驗)
第一節 前言................................................................................................30
第二節 材料與方法....................................................................................31
第三節 結果................................................................................................34
第四節 討論................................................................................................38
第四節 結論..............................................................................................42
圖表............................................................................................................43
第二章 人工濕地淨水功能之研究(連續式試驗)
第一節 前言..............................................................................................60
第二節 材料與方法..................................................................................61
第三節 結果與討論..................................................................................65
第四節 結論..............................................................................................71
圖表............................................................................................................73
第三章 結論與建議
第一節 結論..............................................................................................86
第二節 建議..............................................................................................86
表................................................................................................................88
參考文獻............................................................................................................89
附錄....................................................................................................................95
dc.language.isozh-TW
dc.subject寶藏巖zh_TW
dc.subject長苞香蒲zh_TW
dc.subject小莎草zh_TW
dc.subject美人蕉zh_TW
dc.subject水金英zh_TW
dc.subject野薑花zh_TW
dc.subject物質平衡zh_TW
dc.subject生活污水zh_TW
dc.subject人工濕地zh_TW
dc.subjectConstructed wetlandsen
dc.subjectTypha angustataen
dc.subjectCyperus haspan L.en
dc.subjectCanna indica L.en
dc.subjectHydrocleys nymphoidesen
dc.subjectHedychium coronariumen
dc.subjectmass balanceen
dc.subjectTreasure-Hill communityen
dc.subjectDomestic wastewateren
dc.title利用人工濕地與水生植物處理寶藏巖社區生活污水zh_TW
dc.titleTreatment of Wastewater from Treasure-Hill Community through Constructed Wetlands and Aquatic Plantsen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.coadvisor吳先琪(Shian-Chee Wu)
dc.contributor.oralexamcommittee楊雯如,張俊彥,張文亮
dc.subject.keyword寶藏巖,人工濕地,生活污水,物質平衡,野薑花,水金英,美人蕉,小莎草,長苞香蒲,zh_TW
dc.subject.keywordTreasure-Hill community,Constructed wetlands,Domestic wastewater,mass balance,Hedychium coronarium,Hydrocleys nymphoides,Canna indica L.,Cyperus haspan L.,Typha angustata,en
dc.relation.page103
dc.rights.note未授權
dc.date.accepted2007-07-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝學研究所zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
ntu-95-1.pdf
  未授權公開取用
5.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved