請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25142完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 管傑雄 | |
| dc.contributor.author | Wei-Lun Sun | en |
| dc.contributor.author | 孫偉倫 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:03:25Z | - |
| dc.date.copyright | 2007-07-26 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-24 | |
| dc.identifier.citation | [1] Y.-C. King, T.-J. King, and C. Hu, “Charge-trap memory device fabrication by
oxidation of Si1-XGeX,” IEEE Trans. Electron Devices, vol. 48, pp. 696-699, Apr. 2001. [2] W. K. Choi, V. Ng, S. P. Ng, H. H. Thio, Z. X. Shen and W. S. Li, “Raman characterization of germanium nanocrystals in amorphous silicon oxide films synthesized by rapid thermal annealing,” J. Appl. Phys., vol. 86, no. 3, pp. 1398-1403, 1999. [3] K. S. Min, K. V. Shcheglov, C. M. Yang, H. Atwater, M. L. Brongersman and A. Polman, “ The role of quantum-confined excitons vs defects in the visible luminescence of SiO2 films containing Ge nanocrystals,” Appl. Phys. Lett., vol. 68, pp. 2511-2513, 1996. [4] D. Frohman-Bentchkowsky, “Memory behavior in a floating – gate avalanche- injection MOS (FAMOS) structure,” Appl. Phys. Lett., vol.18, p.332,1971. [5] J. D. Blauwe, “Nanocrystal Nonvolatile Memory Devices,” IEEE Trans. Nanotechnol, vol.1 (1), p.72, 2002. [6] Z. Liu, C. Lee, V. Narayanan, G. Pei and K. Kan, “Metal Nanocrystal Memories—Part I: Device Design and Fabrication,” IEEE Trans. Electron Devices, vol.49 (9), p.1606, 2002. [7] Aaron Thean and Jean-Pierre Leburton, “Flash memory: towards single- electronics,” IEEE Potentials, p.35, 2002. [8] H. I. Hanafi, S. Tiwari, and I. Khan, “Fast and Long Retention-Time Nano-Crystal Memory,” IEEE Trans. Electron Devices, vol.43 (9), p.1553, 1996. [9] S. Tiwari, F. Rana, H. Hanafi, A. Harstein, E. F. Crabbé, and K.Chan, “A silicon nanocrystals based memory,” Appl. Phys. Lett., vol.68 (10), p.1377, 1996. [10] K. F. Schuegraf, C. C. King, and C. Hu, “Ultra-thin Silicon Dioxide Leakage Current and Scaling Limit,” Symp. VLSI Technology, Dig. Tech. Papers, p.18, 1992. [11] S.M.Sze.”Semiconductor device physics and technology”,New York:Wiley,1985. [12] S.M.Sze.”Physics of semiconductor device”,New York:Wiley,1981. [13] Kanaan Kano.“Semiconductor device”, Prentice-Hall,1998. [14] Neamen,D.A.”Semiconductor physics and device basic principles”,Mc Graw Hill,2002. [15] Pankove,J.I.”Optical proesses in semiconductor”,Prentice-Hall,1971. [16] Kittle,C.”Introduction to solid state physics”,New York:Wiley,2005. [17] E.H.Nicollain and J.R.Brews,”MOS physics and technology”New York,1982. [18] J. J. Chang, “Nonvolatile semiconductor memory device,”, IEEE Trans. Electron Devices, vol. 64, no.7, 1976. [19] G. Franzo, A. Irrera, E.C. Moreira, M. Miritello, F. Iacona, D. Sanfilippo, G. Di Stefano, P.G. Fallica, F. Priolo, “Electroluminescence of Silicon nanocrystals in MOS structures,” Appl. Phys. A, vol. 74, pp. 1-5, 2002 [20] 呂紹維,”A Study of Metal-Oxide-Semiconductor Structure with Embedded Ge Nanocrystals by Using A Trap Model”國立台灣大學電子工程研究所碩士論文,2005. [21] S. Huang, S. Banerjee, R. T. Tung, and S. Oda, “Electron trapping, storing, and emission in nanocrystalline Si dots by capacitance-voltage and conductance voltage measurements,” J. Appl. Phys., vol. 93, no. 1, pp.576-581,2003 [22] C.H.Liu,M.H.Lee,C.F.Lin,I.C.Lin,W.T.Liu and H.H.Lin,”Light emission and detection by metal oxide silicon tunneling diodes” IEDM 99-740~752,1999. [23] 李嗣涔,管傑雄,孫台平。”半導體元件物理”,三民書局,1995. [24] C.W.Liu,”Room-temperature electroluminescence from electron-hole Plasma in the meta oxide silicon tunneling diode”Appl.Phys.Lett, Vol.76,2000. [25] C.H.Lin,C.H.Liu,M.J.Chen and I.C.Lin,”Electroluminescense at Si band gap energy based on metal-oxide-silicon structure” J.Appl.Phys.87,2000. [26] Richard Turton”The quantum dot a journey into the future of Micro-Electronics ”University of Newcastle upon tyne,1996. [27] J.Lambe and S.I.McCarthy,”Light Emission from Inelastic electron tunneling”Phys.Rew.Lett,923. [28] C. L. Heng, W. W. Tjiu, and T. G. Finstad, “Charge-storage effects in a metal-insulator-semiconductor structure containing germanium nanocrystals formed by rapid thermal annealing of an electron-beam evaporated germanium layer;” Appl. Phys. A : Material Science & Processing, vol. 78, pp. 1181-1186,2004 [29] J. H. Chen, Y. Q. Wang, W. J. Yoo, Y.-C. Yeo, Ganesh, D. SH Chan, A. Y. Du, and D.-L. Kwong, “Nonvolatile Flash Memory Device Using Ge Nanocrystals Embedded in HfAlO high-k Tunneling and control oxide: Device Fabrication and Electrical performance,” IEEE Trans. Electron Devices, vol. 51, no. 11, pp. 1840-1848, 2004 [30] Y. Shi, K. Saito, H. Ishikuro and T. Hiramoto, “Effects of Interface Traps on Charge Retention Characteristics in Silicon-Quantum-Dot-Based Metal -Oxide-Semiconductor Diodes,” Jpn. J. Appl. Phys., vol. 38, pp. 425-428,1999. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25142 | - |
| dc.description.abstract | 矽鍺光電元件具有與矽積體化電路整合的優點,這是因為矽鍺光電元件具有1.3至1.55 um 的波長,它可以提升光纖通訊應用的重要性。隨著各種元件的製程已經相當成熟,如在矽鍺發光元件、調變器和光偵測器等元件製程,這些都將有助於矽光電元件和光電積體電路的研究與發展。
本研究中吾人利用電激發光的量測方法,來量測元件的發光頻譜以及強度,然後藉由L-I曲線來計算元件的外部量子效率,藉此來比較元件的發光效率。吾人利用三種不同的製程參數,包含了控制氧化層的厚度、金屬沉積後退火的時間、以及濺鍍鍺的厚度,來找出不同參數對元件發光特性的最佳參數。然後再從不同製程參數來討論對元件發光的物理機制,提出合理的解釋及想法。 | zh_TW |
| dc.description.abstract | The advantage of the optoelectronic component of silicon germanium is fully compatible with the Si-based microelectronic chips. Because SiGe-based optoelectronic devices can be tailored from 1.3 to 1.55 um, it increases the importance of this material system to fiber communication applications. With the ripe process technology of the several key devices like SiGe-based light emitters, photodetectors, modulators, and waveguides, it also opens the door for Si-based optical and electronic integrated circuits (OEICs).
In this study, we use electro-luminescence measurement(EL) to measure light spectrum and light intensity. And use L-I curve to measure external quantum efficiency to compare light efficiency from device. I use three different fabrication parameters, including the thickness of control oxide, the time of PMA(Post-metallization-anneal), different thickness of sputtered Ge to find the optimum parameters for light emission. Then we propose a model to explain the physical mechanisms in the device. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:03:25Z (GMT). No. of bitstreams: 1 ntu-96-R94943131-1.pdf: 3983408 bytes, checksum: 3883748f73c44af61aa9aadd15c9c9d5 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 誌謝.................................................. iii
中文摘要.............................................. iv 英文摘要.............................................. v 第一章................................................ 1 1.1研究動機........................................... 1 1.2論文簡介........................................... 3 第二章 簡介........................................... 4 2.1鍺奈米粒子的製作................................... 4 2.2非揮發性奈米晶體記憶體............................. 6 2.3奈米晶體非揮發性記憶體的發光機制................... 8 2.3.1通道熱電子寫入(Channel Hot Electron programming). 9 2.3.2富勒-羅得漢穿透抹除 (Fowler-Nordheim erase)...... 9 第三章 元件製程及量測流程............................. 12 3.1 簡介.............................................. 12 3.2 元件製作.......................................... 12 3.3 量測儀器架設...................................... 21 3.3.1 Current-Voltage (I-V)........................... 21 3.3.2 Luminescence Intensity (L-I).................... 22 3.3.3 Electroluminescence (EL) spectrum............... 22 第四章 實驗結果....................................... 25 4.1 不同控制氧化層的比較.............................. 25 4.2 不同快速熱退火時間的比較.......................... 31 4.3 不同鍺薄膜厚度的比較.............................. 37 第五章 實驗結果討論................................... 45 5.1 鍺量子點金屬-氧化層-半導體結構的發光機制.......... 45 5.2 不同控制氧化層厚度與發光強度的關係................ 50 5.3 不同快速熱退火時間對發光強度的關係................ 53 5.4 不同鍺薄膜厚度與發光強度的關係.................... 58 第六章 結論........................................... 65 參考文獻.............................................. 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 電激發光 | zh_TW |
| dc.subject | 矽鍺元件 | zh_TW |
| dc.subject | 鍺量子點 | zh_TW |
| dc.subject | 光電積體電路 | zh_TW |
| dc.subject | 金屬沈積熱退火 | zh_TW |
| dc.subject | EL | en |
| dc.subject | SiGe device | en |
| dc.subject | Ge quantum dot | en |
| dc.subject | OEIC | en |
| dc.subject | PMA | en |
| dc.title | 在金氧半元件之鍺奈米粒子的發光特性 | zh_TW |
| dc.title | Metal-Oxide-Semiconductor Structure with Embedded Ge Nanocrystals for Light Emission | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊吉,孫允武,林致廷,陳邦旭 | |
| dc.subject.keyword | 矽鍺元件,鍺量子點,光電積體電路,金屬沈積熱退火,電激發光, | zh_TW |
| dc.subject.keyword | SiGe device,Ge quantum dot,OEIC,PMA,EL, | en |
| dc.relation.page | 68 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 3.89 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
