請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25141完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡懷楨(Huai-Jen Tsai) | |
| dc.contributor.author | Shaio-Wen Chen | en |
| dc.contributor.author | 陳筱雯 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:03:23Z | - |
| dc.date.copyright | 2011-08-10 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-05 | |
| dc.identifier.citation | Allen, N.J., and Barres, B.A. (2009). Neuroscience: Glia - more than just brain glue. Nature 457, 675-677.
Ando, S., and Murakami, K. (1985). [Cerebellar degeneration in chronic alcoholism: with special reference to an autopsied case showing the restricted form of cerebellar cortical degeneration (Victor)]. No To Shinkei 37, 329-336. Annunziato, L., Amoroso, S., Pannaccione, A., Cataldi, M., Pignataro, G., D'Alessio, A., Sirabella, R., Secondo, A., Sibaud, L., and Di Renzo, G.F. (2003). Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett 139, 125-133. Argon, Y., and Simen, B.B. (1999). GRP94, an ER chaperone with protein and peptide binding properties. Semin Cell Dev Biol 10, 495-505. Back, S.H., Lee, K., Vink, E., and Kaufman, R.J. (2006). Cytoplasmic IRE1alpha-mediated XBP1 mRNA splicing in the absence of nuclear processing and endoplasmic reticulum stress. J Biol Chem 281, 18691-18706. Back, S.H., Schroder, M., Lee, K., Zhang, K., and Kaufman, R.J. (2005). ER stress signaling by regulated splicing: IRE1/HAC1/XBP1. Methods 35, 395-416. Beard, N.A., Laver, D.R., and Dulhunty, A.F. (2004). Calsequestrin and the calcium release channel of skeletal and cardiac muscle. Prog Biophys Mol Biol 85, 33-69. Bernardos, R.L., and Raymond, P.A. (2006). GFAP transgenic zebrafish. Gene Expr Patterns 6, 1007-1013. Bertolotti, A., Zhang, Y., Hendershot, L.M., Harding, H.P., and Ron, D. (2000). Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2, 326-332. Calvo, S.E., Pagliarini, D.J., and Mootha, V.K. (2009). Upstream open reading frames cause widespread reduction of protein expression and are polymorphic among humans. Proc Natl Acad Sci U S A 106, 7507-7512. Caspersen, C., Pedersen, P.S., and Treiman, M. (2000). The sarco/endoplasmic reticulum calcium-ATPase 2b is an endoplasmic reticulum stress-inducible protein. J Biol Chem 275, 22363-22372. Chakravarthi, S., Jessop, C.E., and Bulleid, N.J. (2006). The role of glutathione in disulphide bond formation and endoplasmic-reticulum-generated oxidative stress. EMBO Rep 7, 271-275. Chang, T.Y., Chang, C.C., Ohgami, N., and Yamauchi, Y. (2006). Cholesterol sensing, trafficking, and esterification. Annu Rev Cell Dev Biol 22, 129-157. Chen, B.P., Wolfgang, C.D., and Hai, T. (1996). Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol 16, 1157-1168. Chen, G., Fan, Z., Wang, X., Ma, C., Bower, K.A., Shi, X., Ke, Z.J., and Luo, J. (2007). Brain-derived neurotrophic factor suppresses tunicamycin-induced upregulation of CHOP in neurons. J Neurosci Res 85, 1674-1684. Chen, X., Shen, J., and Prywes, R. (2002). The luminal domain of ATF6 senses endoplasmic reticulum (ER) stress and causes translocation of ATF6 from the ER to the Golgi. J Biol Chem 277, 13045-13052. Chu, J., Tong, M., and de la Monte, S.M. (2007). Chronic ethanol exposure causes mitochondrial dysfunction and oxidative stress in immature central nervous system neurons. Acta Neuropathol 113, 659-673. Cnop, M., Ladriere, L., Hekerman, P., Ortis, F., Cardozo, A.K., Dogusan, Z., Flamez, D., Boyce, M., Yuan, J., and Eizirik, D.L. (2007). Selective inhibition of eukaryotic translation initiation factor 2 alpha dephosphorylation potentiates fatty acid-induced endoplasmic reticulum stress and causes pancreatic beta-cell dysfunction and apoptosis. J Biol Chem 282, 3989-3997. Dawson, T.M., and Snyder, S.H. (1994). Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14, 5147-5159. Deng, J., Lu, P.D., Zhang, Y., Scheuner, D., Kaufman, R.J., Sonenberg, N., Harding, H.P., and Ron, D. (2004). Translational repression mediates activation of nuclear factor kappa B by phosphorylated translation initiation factor 2. Mol Cell Biol 24, 10161-10168. Fawcett, T.W., Martindale, J.L., Guyton, K.Z., Hai, T., and Holbrook, N.J. (1999). Complexes containing activating transcription factor (ATF)/cAMP-responsive-element-binding protein (CREB) interact with the CCAAT/enhancer-binding protein (C/EBP)-ATF composite site to regulate Gadd153 expression during the stress response. Biochem J 339 ( Pt 1), 135-141. Fewell, S.W., Travers, K.J., Weissman, J.S., and Brodsky, J.L. (2001). The action of molecular chaperones in the early secretory pathway. Annu Rev Genet 35, 149-191. Friedlander, R., Jarosch, E., Urban, J., Volkwein, C., and Sommer, T. (2000). A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2, 379-384. Giralt, A., Friedman, H.C., Caneda-Ferron, B., Urban, N., Moreno, E., Rubio, N., Blanco, J., Peterson, A., Canals, J.M., and Alberch, J. (2010). BDNF regulation under GFAP promoter provides engineered astrocytes as a new approach for long-term protection in Huntington's disease. Gene Ther 17, 1294-1308. Guerri, C., Montoliu, C., and Renau-Piqueras, J. (1994). Involvement of free radical mechanism in the toxic effects of alcohol: implications for fetal alcohol syndrome. Adv Exp Med Biol 366, 291-305. Hahn, J.S., Hu, Z., Thiele, D.J., and Iyer, V.R. (2004). Genome-wide analysis of the biology of stress responses through heat shock transcription factor. Mol Cell Biol 24, 5249-5256. Harding, H.P., Calfon, M., Urano, F., Novoa, I., and Ron, D. (2002). Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 18, 575-599. Harding, H.P., Zhang, Y., Zeng, H., Novoa, I., Lu, P.D., Calfon, M., Sadri, N., Yun, C., Popko, B., Paules, R., et al. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11, 619-633. Hetz, C., Bernasconi, P., Fisher, J., Lee, A.H., Bassik, M.C., Antonsson, B., Brandt, G.S., Iwakoshi, N.N., Schinzel, A., Glimcher, L.H., et al. (2006). Proapoptotic BAX and BAK modulate the unfolded protein response by a direct interaction with IRE1alpha. Science 312, 572-576. Hoffman, P.L., Iorio, K.R., Snell, L.D., and Tabakoff, B. (1995). Attenuation of glutamate-induced neurotoxicity in chronically ethanol-exposed cerebellar granule cells by NMDA receptor antagonists and ganglioside GM1. Alcohol Clin Exp Res 19, 721-726. Howard, L.A., Miksys, S., Hoffmann, E., Mash, D., and Tyndale, R.F. (2003). Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. Br J Pharmacol 138, 1376-1386. Jiang, H.Y., Wek, S.A., McGrath, B.C., Scheuner, D., Kaufman, R.J., Cavener, D.R., and Wek, R.C. (2003). Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation of NF-kappaB in response to diverse cellular stresses. Mol Cell Biol 23, 5651-5663. Jousse, C., Bruhat, A., Carraro, V., Urano, F., Ferrara, M., Ron, D., and Fafournoux, P. (2001). Inhibition of CHOP translation by a peptide encoded by an open reading frame localized in the chop 5'UTR. Nucleic Acids Res 29, 4341-4351. Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F. (1995). Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310. Kondo, S., Murakami, T., Tatsumi, K., Ogata, M., Kanemoto, S., Otori, K., Iseki, K., Wanaka, A., and Imaizumi, K. (2005). OASIS, a CREB/ATF-family member, modulates UPR signalling in astrocytes. Nat Cell Biol 7, 186-194. Korner, C., Knauer, R., Holzbach, U., Hanefeld, F., Lehle, L., and von Figura, K. (1998). Carbohydrate-deficient glycoprotein syndrome type V: deficiency of dolichyl-P-Glc:Man9GlcNAc2-PP-dolichyl glucosyltransferase. Proc Natl Acad Sci U S A 95, 13200-13205. Kozak, M. (1987). An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15, 8125-8148. Krone, P.H., Lele, Z., and Sass, J.B. (1997). Heat shock genes and the heat shock response in zebrafish embryos. Biochem Cell Biol 75, 487-497. Lai, E., Teodoro, T., and Volchuk, A. (2007). Endoplasmic reticulum stress: signaling the unfolded protein response. Physiology (Bethesda) 22, 193-201. Lassen, N., Estey, T., Tanguay, R.L., Pappa, A., Reimers, M.J., and Vasiliou, V. (2005). Molecular cloning, baculovirus expression, and tissue distribution of the zebrafish aldehyde dehydrogenase 2. Drug Metab Dispos 33, 649-656. Lees Murdock, D.J., Barnett, Y.A., and Barnett, C.R. (2004). DNA damage and cytotoxicity in pancreatic beta-cells expressing human CYP2E1. Biochem Pharmacol 68, 523-530. Liu, C.Y., Schroder, M., and Kaufman, R.J. (2000). Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem 275, 24881-24885. Liu, Y., and Chang, A. (2008). Heat shock response relieves ER stress. EMBO J 27, 1049-1059. Lin, K.Y. (2008). The Characterization of chop uORF-mediated translation inhibition during zebrafish development. 國立台灣大學生命科學院分子與細胞生物學研究所碩士論文 Liu, Y. W. (2010). Novel animal model to study the ER and ER-associated stresses: Using zebrafish transgenic line carrying the human uORFchop cassette. 國立台灣大學生命科學院分子與細胞生物學研究所碩士論文 Lovinger, D.M. (1993). Excitotoxicity and alcohol-related brain damage. Alcohol Clin Exp Res 17, 19-27. Lu, P.D., Harding, H.P., and Ron, D. (2004). Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol 167, 27-33. Ma, Y., Brewer, J.W., Diehl, J.A., and Hendershot, L.M. (2002). Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318, 1351-1365. Ma, Y., and Hendershot, L.M. (2004). ER chaperone functions during normal and stress conditions. J Chem Neuroanat 28, 51-65. Magistretti, P.J., and Pellerin, L. (1999). Astrocytes Couple Synaptic Activity to Glucose Utilization in the Brain. News Physiol Sci 14, 177-182. Marciniak, S.J., Yun, C.Y., Oyadomari, S., Novoa, I., Zhang, Y., Jungreis, R., Nagata, K., Harding, H.P., and Ron, D. (2004). CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev 18, 3066-3077. Meusser, B., Hirsch, C., Jarosch, E., and Sommer, T. (2005). ERAD: the long road to destruction. Nat Cell Biol 7, 766-772. Morimoto, R.I. (1998). Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12, 3788-3796. Netzeband, J.G., Trotter, C., Caguioa, J.N., and Gruol, D.L. (1999). Chronic ethanol exposure enhances AMPA-elicited Ca2+ signals in the somatic and dendritic regions of cerebellar Purkinje neurons. Neurochem Int 35, 163-174. Nishitoh, H., Saitoh, M., Mochida, Y., Takeda, K., Nakano, H., Rothe, M., Miyazono, K., and Ichijo, H. (1998). ASK1 is essential for JNK/SAPK activation by TRAF2. Mol Cell 2, 389-395. Novoa, I., Zeng, H., Harding, H.P., and Ron, D. (2001). Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol 153, 1011-1022. Okada, T., Yoshida, H., Akazawa, R., Negishi, M., and Mori, K. (2002). Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem J 366, 585-594. Palam, L.R., Baird, T.D., and Wek, R.C. (2011). Phosphorylation of eIF2 facilitates ribosomal bypass of an inhibitory upstream ORF to enhance CHOP translation. J Biol Chem 286, 10939-10949. Phillips, S.C., Harper, C.G., and Kril, J. (1987). A quantitative histological study of the cerebellar vermis in alcoholic patients. Brain 110 ( Pt 2), 301-314. Ron, D. (2002). Translational control in the endoplasmic reticulum stress response. J Clin Invest 110, 1383-1388. Ron, D., and Habener, J.F. (1992). CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev 6, 439-453. Saris, N., Holkeri, H., Craven, R.A., Stirling, C.J., and Makarow, M. (1997). The Hsp70 homologue Lhs1p is involved in a novel function of the yeast endoplasmic reticulum, refolding and stabilization of heat-denatured protein aggregates. J Cell Biol 137, 813-824. Schmitt-Ney, M., and Habener, J.F. (2000). CHOP/GADD153 gene expression response to cellular stresses inhibited by prior exposure to ultraviolet light wavelength band C (UVC). Inhibitory sequence mediating the UVC response localized to exon 1. J Biol Chem 275, 40839-40845. Schroder, M., and Kaufman, R.J. (2005). ER stress and the unfolded protein response. Mutat Res 569, 29-63. Shamu, C.E., and Walter, P. (1996). Oligomerization and phosphorylation of the Ire1p kinase during intracellular signaling from the endoplasmic reticulum to the nucleus. EMBO J 15, 3028-3039. Shen, J., Chen, X., Hendershot, L., and Prywes, R. (2002). ER stress regulation of ATF6 localization by dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev Cell 3, 99-111. Shi, Y., Vattem, K.M., Sood, R., An, J., Liang, J., Stramm, L., and Wek, R.C. (1998). Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 18, 7499-7509. Sidrauski, C., and Walter, P. (1997). The transmembrane kinase Ire1p is a site-specific endonuclease that initiates mRNA splicing in the unfolded protein response. Cell 90, 1031-1039. Stevens, F.J., and Argon, Y. (1999). Protein folding in the ER. Semin Cell Dev Biol 10, 443-454. Tajiri, S., Oyadomari, S., Yano, S., Morioka, M., Gotoh, T., Hamada, J.I., Ushio, Y., and Mori, M. (2004). Ischemia-induced neuronal cell death is mediated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death Differ 11, 403-415. Torvik, A., and Torp, S. (1986). The prevalence of alcoholic cerebellar atrophy. A morphometric and histological study of an autopsy material. J Neurol Sci 75, 43-51. Travers, K.J., Patil, C.K., Wodicka, L., Lockhart, D.J., Weissman, J.S., and Walter, P. (2000). Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101, 249-258. Umek, R.M., Friedman, A.D., and McKnight, S.L. (1991). CCAAT-enhancer binding protein: a component of a differentiation switch. Science 251, 288-292. Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H.P., and Ron, D. (2000). Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664-666. Urbanska, E.M., Tomczyk, T., Haberek, G., Pilip, S., Matyska, J., Turski, W.A., Kleinrok, Z., and Czuczwar, S.J. (1999). NMDA- but not kainate-mediated events reduce efficacy of some antiepileptic drugs against generalized tonic-clonic seizures in mice. Epilepsia 40, 1507-1511. Vabulas, R.M., Raychaudhuri, S., Hayer-Hartl, M., and Hartl, F.U. (2010). Protein folding in the cytoplasm and the heat shock response. Cold Spring Harb Perspect Biol 2, a004390. Voellmy, R., and Boellmann, F. (2007). Chaperone regulation of the heat shock protein response. Adv Exp Med Biol 594, 89-99. Watanabe, D., Yamada, K., Nishina, Y., Tajima, Y., Koshimizu, U., Nagata, A., and Nishimune, Y. (1994). Molecular cloning of a novel Ca(2+)-binding protein (calmegin) specifically expressed during male meiotic germ cell development. J Biol Chem 269, 7744-7749. Wu, D., and Cederbaum, A.I. (2003). Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 27, 277-284. Yorimitsu, T., and Klionsky, D.J. (2007). Endoplasmic reticulum stress: a new pathway to induce autophagy. Autophagy 3, 160-162. Yoshida, H., Matsui, T., Hosokawa, N., Kaufman, R.J., Nagata, K., and Mori, K. (2003). A time-dependent phase shift in the mammalian unfolded protein response. Dev Cell 4, 265-271. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T., and Mori, K. (2001). XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107, 881-891. Yoshida, H., Okada, T., Haze, K., Yanagi, H., Yura, T., Negishi, M., and Mori, K. (2000). ATF6 activated by proteolysis binds in the presence of NF-Y (CBF) directly to the cis-acting element responsible for the mammalian unfolded protein response. Mol Cell Biol 20, 6755-6767. Yueh, A., and Schneider, R.J. (2000). Translation by ribosome shunting on adenovirus and hsp70 mRNAs facilitated by complementarity to 18S rRNA. Genes Dev 14, 414-421. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25141 | - |
| dc.description.abstract | 在in vitro狀態下,腦部組織細胞遭遇到環境壓力,像是熱誘導( heat shock )或是酒精(alcohol stress)等內質網相關壓力(Endoplasmic reticulum-associated stress),會開啟內質網逆境反應(ER stress response)來應對逆境。然而目前研究對於腦部組織不同細胞種類,在heat shock 或alcohol stress處理後的in vivo反應的情況缺乏探討。因此本篇研究利用,huORFZ基因轉殖斑馬魚品系作為實驗模式動物,來觀察在in vivo情況下,受到heat shock 或 alcohol stress處理後不同種類的腦細胞的反應是否有差異。huORFZ基因轉殖斑馬魚,為利用CMV promoter驅動,帶有人類chop 基因5’ UTR 的upstream open reading frame (huORFchop),後接上GFP報導基因的表現載體的斑馬魚品系。利用免疫螢光染色標定GFP實驗,證實在正常情況下,huORFZ胚胎的報導基因GFP蛋白質表現完全會受到huORFchop抑制;在對huORFZ胚胎處以heat shock 或alcohol stress後,觀察到在腦部組織皆會被誘導出GFP 表現。在利用whole mount in situ hybridization 也發現斑馬魚内生性ER stress response genes perk、 xbp-1、 atf3和 zfchop的 mRNAs 會在腦部組織增量表現,顯示腦部組織有壓力反應(stress response)。利用免疫螢光染色標定星狀細胞(Astrocytes)特有的GFAP marker或神經細胞(Neurons)特有的HuC marker,來分析腦部這些GFP-positive的細胞種類。發現heat shock所誘導的GFP-positive細胞部分為星狀細胞,而非神經細胞;但由alcohol stress所誘導的GFP-positive細胞部分則為星狀細胞及神經細胞。利用fluorescence in situ hybridization (FISH)實驗,標定星狀細胞特有gfap mRNA marker,或神經細胞特有huc mRNA marker,然後分析在腦部組織增量表現的那些內生性zfchop mRNA細胞種類:發現被誘導增量表現的zfchop mRNA細胞種類,在heat shock處理後部分也是星狀細胞,而非神經細胞;而在alcohol stress 處理後部分也是星狀細胞及神經細胞。顯示,在星狀細胞和神經細胞對於熱誘導及酒精不同的逆境,是具有細胞特異性。接著利用免疫螢光染色標定受逆境誘導表現的GFP-positive細胞及TUNEL assay 標定
apoptosis細胞:發現heat shock及alcohol stress所誘導的GFP-positive細胞,絕大多數不為apoptotic細胞;即使以更強的heat shock逆境處理huORFZ胚胎,其所誘導的GFP-positive細胞,(>90%)均不為apoptotic細胞。顯示絕大多數GFP-positive細胞不會發生apoptosis,並不是因為逆境強度不夠而造成。另一方面,在70 min的heat shock 逆境處理huORFZ胚胎中,可觀察到原先在60 min的逆境強度會被誘導表現綠螢光的細胞外,有更多的細胞會隨著逆境強度的增強而被誘導表現綠螢光。顯示先表現綠螢光的細胞,比起因逆境強度增強而被誘導表現綠螢光的細胞;及會被誘導表現綠螢光的細胞比未凋亡但沒有表現綠螢光的細胞,對於逆境的反應是更為stress-sensitive。綜合以上結果發現,星狀細胞及神經細胞,對於heat shock 或alcohol stress具有細胞專一性的壓力反應,且在in vivo情況中,不同逆境處理之下會誘導不同種類細胞有壓力反應。而heat shock 或alcohol stress所誘導表現的綠螢光細胞,絕大部分不會發生apoptosis,且表現綠螢光的細胞是一群對逆境較為敏感,具有stress-sensitive特性的細胞。 | zh_TW |
| dc.description.abstract | It has been reported that the brain cells which are exposed in vitro to the environmental stresses such as heat-shock and alcohol induce the ER stress response. However, there is no in vivo evidence to demonstrate whether the different cell-types of brain tissue respond under heat-shock and alcohol stresses. To address this issue, we employed a transgenic line of zebrafish we generated, designated as huORFZ, in which the upstream open reading frame located at 5’UTR of human chop is added to the leader of GFP and driven by a cytomegarovirus promoter. Using immunostaining, we proved that the translation of GFP in embryos derived from huORFZ was completely inhibited during normal condition. But, when embryos were treated with either heat-shock or alcohol, the GFP reporter was induced in the brain. In addition, the transcripts of endogenous ER-stress-response genes such as perk, xbp-1, atf3, and zfchop were increased in the brain of huORFZ embryos treated with stresses. Furthermore, we found that the GFP-positive cells in hindbrain induced by heat-shock were astrocytes only; whereas the GFP-positive cells in hindbrain induced by alcohol were astrocytes and neurons. This result was consistent with performing fluorescence in situ hybridization using astrocytes-specific gfap marker and neurons-specific huc marker, indicating that astrocytes and neurons respond to heat-shock and alcohol stresses in a cell-type specific manner. We also confirmed that most of the GFP-positive cells (over 90%) induced by either heat-shock or alcohol were not apoptotic cells. These induced GFP-positive cells did not go further apoptosis even when embryos were treated with more severe heat- shock. Interestingly, we found that the number of GFP-positive cells increased when more severe heat-shock was employed, suggesting that the GFP-positive cells induced by low strength of stress might be more stress-sensitive than those alive GFP-negative cells. Taken together, we concluded that different cell-types in brain are respondent to different ER-associated stresses, and the induced non-apoptotic GFP-positive cells might be a group of cells having stress-sensitivity. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:03:23Z (GMT). No. of bitstreams: 1 ntu-100-R98b43010-1.pdf: 2747915 bytes, checksum: 95dcf65b0f48d2392240eb62444d448b (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 中文摘要………………………………………………………………1
英文摘要………………………………………………………………3 文獻回顧………………………………………………………………5 前言………………………………………………………………………14 實驗材料與方法…………………………………………………16 結果………………………………………………………………………31 討論………………………………………………………………………40 參考文獻………………………………………………………………46 圖表………………………………………………………………………55 附錄………………………………………………………………………67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 內質網壓力 | zh_TW |
| dc.subject | 內質網相關壓力 | zh_TW |
| dc.subject | chop | zh_TW |
| dc.subject | upstream open reading frame | zh_TW |
| dc.subject | 細胞凋亡 | zh_TW |
| dc.subject | ER stress | en |
| dc.subject | apoptosis | en |
| dc.subject | upstream open reading frame | en |
| dc.subject | chop | en |
| dc.subject | ER-associated stress | en |
| dc.title | 不同型態的神經源細胞對於不同ER-associated Stress有細胞專一性的逆境反應 | zh_TW |
| dc.title | Cell-type Specific Response to ER-Associated Stress in Brain of Zebrafish Embryos | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂勝春(Sheng-Chung Lee),鄭邑荃(Yi-Chuan Cheng),蕭淑惠(Shu-Huei Hsiao) | |
| dc.subject.keyword | 內質網壓力,內質網相關壓力,chop,upstream open reading frame,細胞凋亡, | zh_TW |
| dc.subject.keyword | ER stress,ER-associated stress,chop,upstream open reading frame,apoptosis, | en |
| dc.relation.page | 72 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-05 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
