請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25122
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 薛文証 | |
dc.contributor.author | Kai-Yi Tang | en |
dc.contributor.author | 湯凱驛 | zh_TW |
dc.date.accessioned | 2021-06-08T06:02:52Z | - |
dc.date.copyright | 2007-07-27 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-24 | |
dc.identifier.citation | [1]. E. Yablonovithch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett, Vol. 58, pp. 2059-2062, 1987.
[2]. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett, Vol. 58, pp. 2486-2489,1987. [3]. E. Yablonovithch, T. J. Gmitter and K. M. Leung, “Photonic band structure:The face-centered-cubic case employing nonspherical atoms,” Phys. Rev. Lett, Vol. 67, pp. 2295-2298, 1991. [4]. E. Yablonovithch, T. J. Gmitter and R. Bhat, “Inhibited and enhanced spontaneous emission from optically thin AlAs/GaAs double heterostructures,” Phys. Rev. Lett, Vol. 61, pp. 2546-2549, 1988. [5]. K. M. Ho, C. T. Chen, and C. M. Soukoulis, “Existence of a photonic gap in periodic dielectric structures,” Phys. Rev. Lett , Vol. 65, pp. 3152-3155, 1990. [6]. S. Tamura, D. C. Hurley, and J. P. Wolfe, “Acoustic-phonon propagation in superlattics,” Phys. Rev. B, Vol. 38, pp. 1427, 1988. [7]. H. L. Stormer, M. A. Chin, A. C. Gossard , and W. Wiegamm, “Selective Transmission of High-Frequency Phonons by a superlattice: The Dielectric phonon Filter,”.Phys. Rev. Lett, Vol. 43, pp. 2012, 1979. [8]. S. Mizuno, and S. Tamura , “Impurity levels resonant transmission of acoustic phonons in a double-barrier system,” Phys. Rev. B, Vol. 45, pp. 13423, 1992. [9]. M. S. Kushwaha, P. Halevi, L. Dobrzynsi, B. Djafari-Rouhani, “Acoustic band structure of periodic elastic composites,” Phys. Rev. Lett, Vol. 71, pp. 2022-2025, 1993. [10]. B. Djafari-Rouhani, A. A. Maradudin, and R. F Wallis, “Rayleigh Waves on a superlattice Stratified Normal to the Surface,” Phys. Rev. B, Vol. 29, pp. 6454-6462, 1983. [11]. B. Djafari-Rouhani, L. Dobrzynski, and O. Hardouin Duparc, et al, “Sagittal Elastic Waves in Infinite and Semi-Infinite superlattices,” Phys. Rev. B, Vol. 28, pp. 1711-1719, 1983. [12]. R. E. Camley, B. Djafari-Rouhani, L. Dobrzynski, et al, “Tansverse Elastic Waves in Periodically Layered Infinite and Semi-Infinite Media,” Phys. Rev. B, Vol. 27, pp. 7318-7329, 1983. [13]. F. Meseguer, M. Holgado, D. Caballero, et al, “Rayleigh-Wave Attenuation by a Semi-Infinite Two-dimensional Elastic-band-gap Crystal,” Phys. Rev. B, Vol. 59, pp. 12619, 1999. [14]. P. G. Luan, and Z. Ye, “Acoustic wave propagation in one-dimensional layered system,” Phys. Rev. E, Vol. 63, pp. 066611, 2001. [15]. E. H. El Boudouti, B. Djafari-Rouhani, E. M. Khourdifi, and L. Dobrzynski, “Surface and interface elastic waves in superlattices: Transverse localized and resonant modes,” Phys. Rev. B, Vol. 48, pp. 10987-10996, 1993. [16]. E. H. El Boudouti, B. Djafari-Rouhani, and A. Akjouj, “Resonant guided elastic waves in an adsorbed bilayer: Theoretical analysis of the density of states,” Phys. Rev. B, Vol. 55, pp. 4442-4447, 1997. [17]. E. H. El Boudouti, B. Djafari-Rouhani, A. Akjouj, and L. Dobrzynski, “Theory of surface and interface transverse elastic waves in N-layer superlattices,” Phys. Rev. B, Vol. 54, pp. 14728-14741, 1996. [18]. W. X. Li, K. Q. Chen, W. Duan, J. Wu, B. L. Gu,“Impact of structural defect on the localized acoustic wave in superlattices,” Phys. Lett. A, Vol. 308, pp. 285-292, 2003. [19]. M. S. Kushwaha, P. Halevi, G. Martinez, et al, “Theory of acoustic band structure of periodic elastic composites,” Phys. Rev. B, Vol. 49, pp. 2313-2322, 1994. [20]. M. M. Sigalas, C. M.Soukoulis, “Elastic-wave propsgation through disorder and/or absorptive systems,” Phys. Rev. B, Vol. 51, pp. 2780, 1995. [21]. K. Q. Chen, X. H. Wang, B. L. Gu,“Localized folded acoustic phonon modes in coupled superlattices with structural defects,” Phys. Rev. B, Vol. 61, pp. 12075 -12081, 2000. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25122 | - |
dc.description.abstract | 本論文主要目的在於研究半無限週期性層狀材料之帶隙結構和表面模態的現象,藉由理論分析來觀察通帶、禁帶的分布,以作為往後設計、運用發展的基礎。本文使用傳輸矩陣法來計算半無限週期性層狀材料之色散關係式和表面模態關係式。最後並分別對兩層週期、四層週期層狀的結構特性進行分析,研究結構材料週期性組合,結構寬度變化,覆蓋層的厚度等參數對帶隙結構和表面模態的影響。 | zh_TW |
dc.description.abstract | The purpose of this article is to research the appearance of band structures and surface modes in semi-infinite periodically layered media. By the analysis, the spread of passing band and forbidden band for the foundation of design is investigated. This article use transfer matrix method to calculate dispersion relation and surface modes in semi-infinite periodically layered media. Finally analyzing characteristics of periodical structures in two-layer and four-layer to research the influence of width, structure, cap layer on band structures and surface modes is presented. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:02:52Z (GMT). No. of bitstreams: 1 ntu-96-R94525046-1.pdf: 886061 bytes, checksum: 931eb09a89f9e250325760e5c4d3e9e5 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 中文摘要……………………………………………………………………i
英文摘要……………………………………………………………………ii 目錄……………………………………………………………………iii 圖目錄…………………………………………………………………v 表目錄…………………………………………………………………ix 符號表…………………………………………………………………x 第一章 導論…………………………………………………………1 1.1 背景與研究動機………………………………………………1 1.2 文獻回顧………………………………………………………2 1.3 論文架構………………………………………………………3 第二章 週期性材料特性…………………………………………4 2.1晶體結構………………………………………………………4 2.2倒晶格向量……………………………………………………5 2.3晶體繞射條件…………………………………………………7 2.4布里淵區………………………………………………………8 2.5布洛赫定理……………………………………………………9 第三章 層狀週期性結構特性………………………………………15 3.1帶隙結構…………………………………………………………15 3.1.1雙層結構………………………………………………………15 3.1.2多層結構………………………………………………………19 3.2表面模態…………………………………………………………20 3.2.1無覆蓋層………………………………………………………20 3.2.2有覆蓋層………………………………………………………21 第四章 模擬分析與比較………………………………………………27 4.1兩層超晶格帶隙結構分析…………………………………………27 4.1.1寬度變化對帶隙結構的影響……………………………………27 4.1.2材料排列對帶隙結構的影響……………………………………29 4.2兩層超晶格表面模態分析…………………………………………30 4.2.1寬度變化對表面模態的影響……………………………………30 4.2.2材料排列對表面模態的影響……………………………………32 4.2.3覆蓋層厚度變化對表面模態的影響……………………………32 4.3四層超晶格分析………………………………………………………33 第五章 結論與展望………………………………………………………76 5.1 結論……………………………………………………………………76 5.2 未來與展望……………………………………………………………77 參考文獻……………………………………………………………………78 | |
dc.language.iso | zh-TW | |
dc.title | 半無限週期性層狀材料之彈性波特性 | zh_TW |
dc.title | Elastic waves in semi-infinite periodically layered media | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李明機,姚昭智,陳永祥 | |
dc.subject.keyword | 彈性波,層狀材料,帶隙結構,表面模態,能帶, | zh_TW |
dc.subject.keyword | elastic wave,layered media,band structure,surface mode,energy band, | en |
dc.relation.page | 80 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2007-07-26 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
顯示於系所單位: | 工程科學及海洋工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 865.29 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。