Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電子工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25120
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor管傑雄
dc.contributor.authorFu-Chuan Chenen
dc.contributor.author陳富權zh_TW
dc.date.accessioned2021-06-08T06:02:49Z-
dc.date.copyright2007-07-27
dc.date.issued2007
dc.date.submitted2007-07-26
dc.identifier.citation[1] Nannapaneni Narayana Rao, “Elements of Engineering electromagnetics,” fifth edition.
[2] 邱國斌、蔡定平,物理雙月刊第二十八卷第二期 p472~483(2006年4月)
[3] 吳民耀、劉威志,物理雙月刊第二十八卷第二期 p486~496(2006年4月)
[4] RW Wood, Philos. Mag. 4, 396 (1902).
[5] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi,T. Thio and P. A. Wolff, ”Extraordinary optical transmission through sub-wavelength hole arrays,” Nature (London), vol. 391, no. 6668, pp. 667-669, February 1998. Hans Lochbihler, Phys. Rev. B 50, 4975-4801(1994).
[6] Barnes W L, Dereux A, Ebbesen T W. “Surface plasmon subwavelength optics.” Nature,2003,424(6950):824-830.
[7] U. Fano, J. Opt. Soc. Am. 31, 213(1941).
[8] A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275(1965).
[9] D. Crouse and P. Keshavareddy, 'Polarization independent enhanced optical transmission in one-dimensional gratings and device applications,' Opt. Express 15, 1415-1427 (2007)
[10] A. Barbara, P. Quemerais, E. Bustarret, and T. Lopez-Rios, “Optical transmission through subwavelength metallic gratings,” Phy. Rev. B, vol. 66, pp. 161403(1)-161403(4), October 2002.
[11] S. Collin, F. Pardo, R. Teissier, and J. Pelouard, 'Horizontal and vertical surface resonances in transmission metallic gratings,” J. Opt. A: Pure Appl. Opt, vol. 4, no.5, pp. S154-S160, October 2002.
[12] J. A. Porto, F. J. Garcia-Vidal, and J. B. Pendry, “Transmission resonances on metallic gratings with very narrow slits,” Phys. Rev. Lett, vol. 83, no. 14, pp. 2845-2848, October 1999.
[13] S. J. Elston, G. P. Bryan-Brown, and J. R. Sambles, “Polarization conversion from diffraction gratings,” Phys. Rev. B 44, 6393 - 6400 (1991)
[14] Y. Takakura, “Optical Resonance in a Narrow Slit in a Thick Metallic Screen,” Phys. Rev. Lett. 86, 5601 - 5603 (2001).
[15] J. A. Porto1 , F. J. García-Vidal2, and J. B. Pendry1, “Transmission Resonances on Metallic Gratings with Very Narrow Slits,” Phys. Rev. Lett. 83, 2845 - 2848 (1999).
[16] Yoichi Kurokawa, and Hideki T. Miyazaki, “Metal-insulator-metal plasmon nanocavities: Analysis of optical properties,” Phys. Rev. B 75, 035411 (2007)
[17] D. Z. Lin, C. K. Chang, Y. C. Chen, D. L. Yang, M. W. Lin, J. T. Yeh, J. M. Liu, C. H. Kuan, C. S. Yeh, and C. K. Lee, 'Beaming light from a subwavelength metal slit surrounded by dielectric surface gratings,' Optics Express 14 , 3503-3511 (2006).
[18] I. R. Hooper and J. R. Sambles, “Coupled surface plasmon polaritons on thin metal slabs corrugated on both surfaces,” Phys. Rev. B 70, 045421 (2004).
[19] Lezec H J,Thio T., “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt.Express,2004,12(16):3629-3651.
[20] W. C. Tan, T. W. Preist, J. R. Sambles, and N. P. Wanstall, 'Flat surface-plasmon-polariton band and resonant optical absorption on short-pitch metal gratings', Phys. Rev. B, 59, 12661-12666, 1999 11.
[21] U. Schroter and D. Heitmann, 'Grating couplers for surface plasmons excited on thin metal films in the Kretschmann-Raether configuration,' Phys. Rev. B 60, 4992-4999 (1999).
[22] H. Lochbihler and R. Depine, “Highly conducting wire gratings in the. resonance region,” Appl. Opt., vol. 32, no. 19, pp. 3459–3465, 1993.
[23] R. Gordon, 'Light in a subwavelength slit in a metal: propagation and reflection,' Phys. Rev. B 73, 153405-1-153405-3 (2006).
[24] A. V. Zayats, and Smolyaninov, II, 'Near-field photonics: surface plasmon polaritons and localized surface plasmons,' J. Opt. A-Pure Appl. Opt. 5 , S16-S50 (2003).
[25] Zayats A V, Smolyaninov I I, Maradudin A A, “Nano-optics of surface plasmon polaritons,” Phys Reports 408(2005):131∼314.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25120-
dc.description.abstract自從1902年Wood發現電磁波在刻有光柵的金屬表面上會產生異常的反射光譜之後,對次波長金屬光柵異常穿透率的研究就沒有中斷過,但絕大數者皆只靠軟體模擬計算,較少去實地製作和量測,因此本論文將以實驗為主,藉由實驗數據中所觀察到的現象,加以分析統整之後而推導出其理論架構。
由於有時需要製作線寬小於微米級的光柵,若用傳統的光學微影術會有執行上的困難,因此我們選擇使用電子束微影術來定義樣品的線寬,再搭配反應式離子蝕刻機和熱蒸鍍系統製作出金屬光柵結構,最後再用傅氏轉換紅外線光譜儀去量測紅外光的穿透率。由於光柵是一維的,造成不同極化方向的入射光所看到的光柵是不一樣的,為了避免兩種狀況互相干擾,我們各別分為TE和TM模態去研究。首先我們討論不改變金屬的情況下,線寬、週期和入射光波長對穿透率的影響,我們先推導電磁波在光柵外、內所存在的模態,再以此去解釋我們所觀察到的現象,得到造成異常穿透率的主因為電磁波和光柵間的耦合作用。接著我們使用不同金屬去製作光柵,發現導電度高的金屬光柵與電磁波間的耦合作用較強,得知耦合作用與金屬表面的電子有關,進而推導出其理論架構。
金屬表面存在許多自由電子,當電磁波照射在金屬上時,電子會隨著其電場方向而振盪,來回振盪的電子則會提供特定頻率的電磁場,由於金屬光柵是週期性結構,造成其產生的電磁場亦為週期性,則可提供水平方向的波向量,而額外獲得水平方向波向量的電磁波在穿透光柵時所造成的影響與直接入射的電磁波不一樣,這便是金屬光柵有異常穿透率的主因。不同極化方向的入射光會讓電子振盪的方向不一樣,不同振盪方向的電子所看到的金屬結構也不一樣,因此造成其穿透率截然不同。
我們發現穿透率增強的現象用表面電漿波理論並不足以完全解釋,推測可能的原因與消散波有關,由於我們的理論架構只稍具雛形,較嚴謹完整的數學理論推導則尚在研究中,目前尚無法完全地解釋所有觀察到的現象,但我們相信我們的研究成果可以提供金屬光柵更多的應用空間!
zh_TW
dc.description.abstractSince 1902, Wood had found the anomalies of reflectance spectrum arose from electromagnetic wave impinging on the surface of metal grating. People never stop studying the transmission anomalies of metal grating. Most of them only simulate by software but do experiments rarely, which is not convictive to me. The main of this thesis is investigated in experiment, and we can build the theoretical model by analyzing the phenomenon which is observed from the data of experiments.
Because we need to make some gratings, whose line width is under micrometer scale, it’s difficult to implement with traditional optical lithography. So we use the e-beam lithography, which is used to design the pattern, RIE and thermal evaporator to make metal gratings. Finally, infrared transmission of metal grating is measured by FTIR. Grating is one dimension, which would make different polarization directions of light encounter different structures. To avoid these situations interfere with each other, we separate into TE and TM mode to study. First, we discuss the effect of line width, period and wavelength without changing metal. The modes of electromagnetic wave can exist in or out of the grating is deduced, which are used to explain the phenomenon we observed. We find that coupling between electromagnetic wave and gratings is the cause of transmission anomalies. Then we make gratings with various metal and find that the coupling between electromagnetic wave and metal grating with high conductivity is stronger. The coupling is corresponding to the electrons of metal surface, and we build the theoretical model.
There are many free electrons on the metal surface. When an electromagnetic wave impinging on metal, electrons will oscillate by the electric field, and the oscillating of electrons will provide electromagnetic field of certain frequency. The periodic structure of metal grating makes the electromagnetic field periodic, which can provide horizontal wave vector. The influences caused by electromagnetic waves which gain additional horizontal wave vector passing through gratings are different from those caused by directly impinging ones and this is why metal gratings have transmission anomalies. Different polarization directions of electromagnetic wave make electrons oscillate in different directions and encounter different metal structure, which make transmission different from each other.
Transmission enhancement can’t be explained sufficiently by surface plasma theorem, and it may be correspond to the evanescent wave. But now we only have a fundamental theoretical model, a serious mathematical model is still studied. Although we can’t explain everything we observe, we believe that our research can provide more applications of metal gratings.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:02:49Z (GMT). No. of bitstreams: 1
ntu-96-R94943048-1.pdf: 3541468 bytes, checksum: 115828eee23122828f648c5700d2ecdc (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書 ......................................................... i
誌謝 ........................................................................ ii
中文摘要 .................................................................... iii
英文摘要 .................................................................... v
目錄 ......................................................................... vii
第一章 導論 ............................................................ 1
第二章 製程介紹 .................................................... 4
2.1 樣品製作流程 ...................................................... 4
2.1.1 樣品準備 ......................................................... 4
2.1.2 電子束微影術製程 ................................................ 5
2.1.3 乾蝕刻製程 .................................................... 8
2.1.4 金屬蒸鍍製程 ................................................ 8
2.1.5 離浮製程 ..................................................... 9
2.2 量測儀器FTIR及量測方法介紹 .................................... 11
2.2.1 FTIR介紹 ................................................. 11
2.2.2 量測方法介紹 ................................................. 12
第三章 單一金屬光柵的比較 ............................................. 13
3.1 集膚深度 ........................................................... 14
3.2 TE模態 .......................................................... 17
3.2.1 TE模態下入射光波長對透光率的影響 .......................... 17
3.2.2 TE模態下狹縫大小對透光率的影響 ........................... 19
3.2.3 TE模態下光柵週期對透光率的影響 ........................... 22
3.3 TM模態 ......................................................... 25
3.3.1 TM模態下入射光波長對透光率的影響 ....................... 25
3.3.2 TM模態下狹縫大小對透光率的影響 ......................... 27
3.3.3 TM模態下光柵週期對透光率的影響 ......................... 28
3.4 TE和TM模態的比較 ............................................. 30
第四章 不同金屬對光柵透光率的比較 ............................... 34
4.1 銀光柵和金鍺鎳合金光柵的比較 ..................................... 34
4.1.1 TE模態 .................................................... 34
4.1.2 TM模態 .................................................... 38
4.1.3 導電度的影響 ................................................ 41
4.2 銀光柵和鉻光柵的比較 ............................................. 42
4.2.1 TE模態 ..................................................... 42
4.2.2 TM模態 ..................................................... 44
4.3 兩層不同金屬的光柵 .............................................. 46
4.4 理論分析 ......................................................... 52
4.4.1 TE模態 ..................................................... 52
4.4.2 TM模態 ..................................................... 53
第五章 結論 .......................................................... 55
參考文獻 ............................................................. 58
dc.language.isozh-TW
dc.subject電子束微影術zh_TW
dc.subject金屬光柵zh_TW
dc.subjectTE和TM模態zh_TW
dc.subject消散波zh_TW
dc.subject表面電漿波zh_TW
dc.subjectsurface plasmaen
dc.subjectmetallic gratingen
dc.subjectE-beam lithographyen
dc.subjectTE and TM modeen
dc.subjectevanescent waveen
dc.title不同金屬光柵於紅外光穿透率之研究zh_TW
dc.titleStudy of Infrared Transmission through Gratings with Various Metalen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳俊吉,孫允武,林致廷,陳邦旭
dc.subject.keyword金屬光柵,電子束微影術,TE和TM模態,消散波,表面電漿波,zh_TW
dc.subject.keywordmetallic grating,E-beam lithography,TE and TM mode,evanescent wave,surface plasma,en
dc.relation.page58
dc.rights.note未授權
dc.date.accepted2007-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電子工程學研究所zh_TW
顯示於系所單位:電子工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
3.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved