請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25097
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 蕭信宏(Shin-Hong Shiao 蕭信宏) | |
dc.contributor.author | Chia-Yu Lai | en |
dc.contributor.author | 賴佳妤 | zh_TW |
dc.date.accessioned | 2021-06-08T06:02:13Z | - |
dc.date.copyright | 2011-10-07 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-08-05 | |
dc.identifier.citation | 1. Akihiko H, Daisuke S, Risbud M.V., Masahiro T, Fumiyuki A, Koichiro A and Mochida J (2010) Enhancement of Intervertebral Disc Cell Senescence by WNT/-Catenin Signaling–Induced Matrix Metalloproteinase Expression. ARTHRITIS & RHEUMATISM 62: 3036-3047.
2. Alphey L. (2009) Natural and engineered mosquito immunity. Journal of Biology 8:40. 3. Attardo G.M., Hansen I.A. and Raikhel A.S. (2005) Nutritional regulation of vitellogenesis in mosquitoes: Implications for anautogeny. Insect Biochemistry and Molecular Biology 35:661–675. 4. Bernadette M.G., Aashish T.K. and Page-McCaw A. (2009) Distinct functions for the catalytic and hemopexin domains of a Drosophila matrix metalloproteinase. PNAS 106: 2659–2664. 5. Bian G, Raikhel A.S. and Zhu J. (2008) Characterization of a juvenile hormone-regulated chymotrypsin-like serine protease gene in Aedes aegypti mosquito. Insect Biochemistry and Molecular Biology 38:190-200. 6. Blandin S.A., Marois E. and Levashina E.A. (2008) Antimalaria response in Anopheles gambiae: from a complement-like protein to a complement-like pathway. Cell Host & Microbe 3:364-374. 7. Blazquez A.B. and Saiz J.C. (2010) West Nile virus (WNV) transmission routes in the murine model: Intrauterine, by breastfeeding and after cannibal ingestion. Virus Research 151:240–243. 8. Buchon N., Poidevin M., Kwon H.M., Guillou A., Sottas V., Lee B.L. and Lemaitre B. (2009) A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway. PNAS 106: 12442–12447. 9. Buechling T., Bartscherer K., Ohkawara B., Chaudhary V., Spirohn K., Niehrs C. and Boutros M. (2010) Wnt/Frizzles signaling requires dPRR, the drosophila homolog of the protein receptor. Current Biology 20. 10. Cadigan K.M. and Nusse R. (1997) Wnt signaling:a common theme in animal development. Gene Dev 11:3286-3305. 11. Chen L., Zhu J., Sun G. and Raikhel A.S. (2004) The early gene Broad is involved in the ecdysteroid hierarchy governing vitellogenesis of the mosquito Aedes aegypti. Journal of Molecular Endocrinology 33: 743-761. 12. Chertemps T., Mitri C., Perrot S., Sautereau J., Jacques J.C., Thiery I., Bourgouin C. and Rosinsli-Chupin I. (2010) Anopheles gambiae PRS1 modulates Plasmodium development at both midgut and salivary gland steps. PLoS One 7. 13. Clemons A., Haugen M., Flannery E., Tomchaney M., Kast K., Jacowski C., Le C., Mori A., Holland W.S., Sarro J., Severson D. and Scheel M.D. (2010) Aedes aegypti: an emerging foe vector mosquito development. Cold Spring Harb Protoc. 2010: pdb.emo 141. 14. Couderc T., Khandoudi T., Grandadam M., Visse C., Gangneux N., Bagot S., Prost J.F. and Lecuit M. (2009) Prophylaxis and Therapy for Chikungunya Virus Infection. The Journal of Infectious Diseases 200:516-23. 15. Eck S.M., Blackburn J.S., Schmucker A.C., Burrage P.S. and Brinckerhoff C.E. (2009) Matrix metalloproteinase and G protein coupled receptors: Co-conspirators in the pathogenesis of autoimmune disease and cancer. Journal of Autoimmunity 33:214-221. 16. Ferrandon D., Imler J.L., Hetru C. and Hoffmann J.A. (2007) The Drosophila systemic immune response: sensing and signaling during bacterial and fungal infections. Nature Reviews Immunology. 17. Garngam P.C. Malaria Parasites and Other Haemosporidia (1996) Oxford: Blackwell. 18. Gulia-Nuss M, Robertson A.E., Brown M.R. and Strand M.R. (2011) Insulin-Like Peptides and the Target of Rapamycin Pathway Coordinately Regulate Blood Digestion and Egg Maturation in the Mosquito Aedes aegypti. PLoS ONE 6:1-9. 19. Hillyer J.F. (2009) Transcription in mosquito hemocytes in response o pathogen exposure. Journal of Biology 88:51. 20. IEthell I.M. and Ethell D.W. (2007) Matrix Metalloproteinases in Brain Development and Remodeling: Synaptic Functions and Targets. Journal of Neuroscience Research 85:2813–2823. 21. Inoki K., Ouyang H., Zhu T., Lindvall C., Wang Y., Zhang X., Yang Q., Bennett, C., Harada Y., Stankunas K., Wang C.Y., He X., MacDougald O.A., You M., Williams B.O. and Guan K.L. (2006) TSC2 Integrates Wnt and Energy Signals via a Coordinated Phosphorylation by AMPK and GSK3 to Regulate Cell Growth. Cell 126:955-968. 22. James T., Kathryn N. and Murray R.J. (2005) Expression of nuclear receptor-transcription factor genes during Aedes aegypti midgut metamorphosis and the effect of methoprene on expression. Insect Biochemistry and Molecular Biology 35:561–573. 23. Llano E., Adam G., Pendas A.M., Quesada V., Sanchez L.M., Santamaria I., Noselli S. and Lopez-Otin C. (2002) Structural and Enzymatic Characterization of Drosophila Dm2-MMP, a Membrane-bound Matrix Metalloproteinase with Tissue-specific Expression. JBC 277: 23321–23329. 24. Lupi O. (2011) Mosquito-Borne Hemorrhagic Fevers. Dermatol Clin 29:33–38. 25. Margam V.M., Gelman D.B. and Palli S.R. (2006) Ecdysteroid titers and developmental expression of ecdysteroid-regulated genes during metamorphosis of the yellow fever mosquito, Aedes aegypti (Diptera: Culicidae). Journal of Insect Physiology 52:558-568. 26. McClure K.D., Sustar A. and Schubiger G. (2008) Three genes control the timing, the site and the size of blastema formation in Drosophila. Developmental Biology 319:68–77. 27. Miller C.M., Liu N., Page-McCaw A. and Broihier H.T. (2011) Drosophila Mmp2 regulates the matrix molecule faulty attraction (Frac) to promote motor axon targeting in Drosophila. 31(14):5335-5347. 28. Miller C.M., Page-McCaw A. and Broihier H.T. (2008) Matrix metalloproteinases promote motor axon fasciculation in the Drosophila embryo. Development 135:95-109. 29. Nojima, Tokunaga C., Eguchi S., Oshiro N., Hidayat S., Yoshino K.I., Hara K., Tanaka N., Avruch J. and Yonezawa K. (2003) The Mammalian Target of Rapamycin (mTOR) Partner, Raptor, Binds the mTOR Substrates p70 S6 Kinase and 4E-BP1 through Their TOR Signaling (TOS) Motif. JBC 278:15461-15464. 30. Page-McCaw A. (2008) Remodeling the model organism: Matrix metalloproteinase functions in invertebrates. Cell & Developmental Biology 19:14-23. 31. Page-McCaw A., Ewald A.J. and Werb Z. (2007) Matrix metalloproteinase and the regulation of tissue remodeling. Nature review molecular cell biology 8:221-233. 32. Patricia A.M., Beurden S.V., Johannes W. and Von D.H. (2005) Zymographic techniques for the analysis of matrix metalloproteinases and their inhibitors. BioTechniques 38:73-83. 33. Peifer M. and Polakis P. (2000) Wnt signaling in oncogenesis and embryogenesis-alook outside the nucleus. Science 287:1606-1609. 34. Peters J.M., McKay R.M., McKay J.P. and Graff J.M. (1999) Casein kinase I transduces Wnt signals. Nature 401:345-350. 35. Polakis P. (2000) Wnt signaling and cancer. Genes Dev 14:1837-1851. 36. Ponnudurai T., Lensen A.H.W. and Ven-Gemart G.J.A. (1991) Feeding behavior and sporozoite ejection by infected Anopheles stephensi. Trans R Soc Trop Med Hyg 87:175-180. 37. Rosenburg R. and Writz R.A. (1990) An estimation of the number of sporozoite ejected by a feeding mosquito. Trans R Soc Trop Med Hyg 84:209-212. 38. Roy S.G., Hansen I.A. and Raikhel A.S. (2007). Effect of insulin and 20-hydroxyecdysone 39. Roy S.G. and Raikhel A.S. (2010) The small.GTPase Rheb is a key component linking amino acid signaling and TOR in the nutritional pathway that control mosquito egg development. Insect Biochemistry and Molecular Biology. 40. Sato H. and Takino T. (2010) Coordinate action of membrane-type matrix metalloproteinase-1 (MT1-MMP) and MMP-2 enhances pericellular proteolysis and invasion. Cancer Sci. 101:843-847. 41. Schmalhofer O., Spaderna S. and Brabletz T. (2008) Native promoter reporters validate transcriptional targets. Elizabeth Vincan 468:111-128. 42. Telang A., Peterson B., Frame L., Baker E. and Brown M.R. (2010) Analysis of molecular markers for metamorphic competency and their response to starvation or feeding in the mosquito, Aedes aegypti (Dipteral: Culicidae) Journal of Insect Physiology. 43. Thein-Han W.W. and Stevens W.F. (2004) Transdermal Delivery Controlled by a Chitosan Membrane. Drug development and industrial pharmacy 30:397–404. 44. Tolle M.A. (2009) Mosquito-borne Diseases. Curr Probl Pediatr Adolesc Health Care 39:97-140. 45. Vidal M., Salavaggione L., Ylagan L., Wilkins M., Watson M., Weilbaecher K. and Cagan R. (2010) A Role for the Epithelial Microenvironment at Tumor Boundaries. American Society for Investigative Pathology 176:3007-3014. 46. Vilcinskas A. and Wedde M. (2002) Insect Inhibitors of Metalloproteinases. IUBMB Life 54:339-343. 47. Wang Q., Uhlirova M. and Bohmann D. (2010) Spatial restriction of FGF signaling by matrix metalloproteinase control branching morphogenesis. Development Cell 18:157-164. 48. Wodarz A. and Nusse R. (1998) Mechanisms of Wnt signaling in development. Annu Rev. Cell Dev Biol 14: 59-88. 49. Yasunaga K., Kanamori T., Morikawa R., Suzuki E. and Emoto K. (2010) Dendrite reshaping of adult Drosophila sensory neurons requires matrix metalloproteinase-mediated modification of the basement membranes. Developmental Cell 18:621–632. 50. Zhu J., Busche J.M. and Zhang X. (2010) Identi fi cation of juvenile hormone target genes in the adult female mosquitoes. Insect Biochemistry and Molecular Biology 40:23-29. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25097 | - |
dc.description.abstract | Matrix metalloproteinases (MMPs)是一酵素蛋白質家族(protein family)的統稱,MMP在哺乳動物中,主要參與了組織間重組(tissue remodeling)的過程,例如:胚胎生長、發育、生殖以及傷口修復等;然而,當個體受外來致病物感染時,免疫系統會活化而降低這些蛋白酶之表現。截至今日,在人類中已發現了超過二十種的MMPs,但和果蠅(Drosophila melanogaster)之MMPs具有同源性(homolorus)的只有兩種。雖然MMP的功能在哺乳動物以及果蠅已有相當多的研究,但是對於病媒蚊MMPs家族之研究幾乎付之闕如。我們在登革熱病媒蚊-埃及斑蚊(Aedes aegypti)體內,發現了共有六種不同的MMPs。而這些MMPs皆有一段序列具有高度保留的活性區以及在N端有一段訊號序列(signal peptide)。對於埃及斑蚊的MMP1(AaMMP1)的研究方面,首先我們分別利用即時定量PCR (quantitative Real-Time PCR)以及西方吸漬法(Western blot)來探討AaMMP1轉錄及轉譯之表現曲線(expression pattern),我們觀察到AaMMP1的mRNA在蛹期早期以及羽化後三天有高量表現,而蛋白質則是只表現在吸血後六小時及十二小時,且主要是在fatbody及中腸(midgut)表現;接著我們利用抑制AaMMP1表現之方式來探討AaMMP1可能具有之功能,利用顯微注射方式,我們將針對AaMMP1設計的雙股RNA(double-stranded RNA)注射進入蚊子體內再進行功能分析。我們發現,若是AaMMP1的表現受到抑制會降低其產卵能力(oviposition rate)。而特別的是,我們發現若是抑制了Wnt signaling pathway中的其中一個蛋白質-Frizzled之表現,Aa MMP1之表現在吸血後則會被完全抑制。我們利用in vitro fat body culture的方式,也發現在AaTOR以及AaFz表現被抑制的情況下,AaMMP1的表現是完全被抑制的。此外我們也發現IMD pathway當中的TAK1會調控AaMMP1的表現。總而言之,我們證明了AaMMP1在埃及斑蚊卵黃發育所扮演之重要角色,以及其牽涉之多個不同信號傳遞路徑調控之機制。 | zh_TW |
dc.description.abstract | Matrix Metalloproteinases (MMPs) are a family of enzymes that play major roles in tissue remodeling, such as embryonic growth, development, reproductive process and wound healing in mammals. In addition, deregulation production of these endopeptidases is associated with a number of pathological conditions resulting in the activation of innate immune responses. To date, more than 20 human MMPs have been identified and characterized and only two homologues are identified in the fruit fly Drosophila melanogaster. In spite of the intensive investigation in mammals and fruit fly, functional roles of MMP family in the mosquito are largely unknown. Recently, we identified six MMPs in the mosquito Aedes aegypti, the major vector of dengue virus. All of these MMPs contain a highly conserved catalytic domain and show signal peptide at the N-terminal part. The transcriptional and translational expression pattern of Ae. aegypti MMP1 (AaMMP1) were examined by quantitative Real-Time PCR and Western blot analysis, respectively. AaMMP1 mRNA is highly expressed at white pupal stage and 3 days post eclosion, whereas AaMMP1 protein is only expressed at 6 and 12 hours after a blood meal. In addition, AaMMP1 is highly expressed at fatbody and midgut after a blood meal. Next, we applied the well established reverse genetic approach by silencing specific MMPs in the mosquitoes to characterize the functions of MMPs. Silence of AaMMP1 by intrathoracically introduced the double-stranded RNA targeted to AaMMP1 revealed that oviposition rate is reduced in the absence of AaMMP1. Surprisingly, silence of Frizzled (Fz), a component of Wnt signaling, prior to blood meal resulted in the complete inhibition of AaMMP1. In addition, we showed that silence of AaTOR and AaFz completely inhibit the expression of AaMMP1 in the in vitro fat body culture. RNAi-mediated silence of the key component in the IMD pathway resulted in the depletion of AaMMP1 in vivo. Taken together, our results demonstrated the crucial role of AaMMP1 in the mosquito vitellogenesis and development, and the multiple regulatory machinery by different signal transduction pathways. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:02:13Z (GMT). No. of bitstreams: 1 ntu-100-R98445204-1.pdf: 1613811 bytes, checksum: 7f8ed5277eca9ddbb753a37c56390b15 (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii 英文摘要 v 第一章 緒論 1.1 蚊類傳播之疾病(Mosquito-born desease) 1 1.2瘧疾簡介 1 1.3 登革熱簡介 2 1.4 埃及斑蚊之發育及卵黃生成過程 3 1.5 現今對於MMP1之研究成果 4 1.6 Wnt signaling pathway簡介 6 1.7 TOR signailing pathway簡介 7 1.8 Wnt singnaling pathway 和TOR signailing pathway之關係 8 1.9 昆蟲變態(Metamorphosis)之過程 8 1.10實驗動機與研究目的 9 第二章 材料與方法 2.1 實驗所使用之試劑及配置方式 11 2.2實驗步驟 2.2.1 埃及斑蚊之培養 12 2.2.2 Avertin之製備 13 2.2.3演化樹(Phylogenetic tree)、蛋白質區域(Protein domain)及立體結構(3D structure)預測 13 2.2.4 Double stranded RNA(dsRNA)之製備 14 2.2.5 Gene Knock-Down之方法 15 2.2.6 RNA萃取 15 2.2.7 RT-PCR(Reverse transcription polymerase chain reaction) 16 2.2.8 即時核酸定量聚合酶連鎖反應(Real-time PCR, Quantitative PCR) 16 2.2.9 Gene Knock-down成效之確認(Knock-down efficiency) 17 2.10西方點墨試驗(Western blot analysis) 17 2.2.11羽化率實驗(Metamorphosis assay) 18 2.2.12產卵率實驗(Oviposition assay) 19 2.2.13 Fat body culture實驗 19 第三章 結果 3.1 MMP基因家族演化樹分析 21 3.2 埃及斑蚊MMP1蛋白質區域及三級結構之預測 21 3.3 埃及斑蚊MMP1在不同發育階段之表現曲線 22 3.4 埃及斑蚊MMP1蛋白質表現分析 23 3.5 埃及斑蚊不同組織中MMP1 mRNA表現分析 23 3.6 埃及斑蚊不同組織中MMP1 蛋白質表現分析 24 3.7 產卵率分析 24 3.8 羽化率分析 26 3.9 埃及斑蚊中MMP1與Wnt signaling pathway及其抑制物TIMP3之關係分析 26 3.10 埃及斑蚊MMP1 mRNA之轉譯調控分析 27 3.11 埃及斑蚊中MMP1與TOR signaling pathway之關係分析 28 3.12 埃及斑蚊中MMP1受到Amino acid以及Hormone的刺激而表現 28 3.13 埃及斑蚊中MMP1與IMD pathway之關係 29 第四章 討論 30 參考文獻 36 附錄 40 | |
dc.language.iso | zh-TW | |
dc.title | 埃及斑蚊MMP1調節卵黃生成作用以及發育過程之特殊功能 | zh_TW |
dc.title | Distinct function of Aedes aegypti MMP1 in the regulation of vitellogenesis and development | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳君泰(June-Tai Wu 吳君泰),李秀香(Hsiu-Hsiang Lee 李秀香),潘俊良(Chun-Liang Pan 潘俊良) | |
dc.subject.keyword | 埃及斑蚊,MMP1,Wnt,卵黃生成,變態, | zh_TW |
dc.subject.keyword | Aedes aegypti,MMP1,Wnt,Vitellogenesis,Metamorphosis, | en |
dc.relation.page | 55 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-08-05 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 1.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。