請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25044完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王維新(Way-Seen Wang) | |
| dc.contributor.author | Hung-Chih Lu | en |
| dc.contributor.author | 盧鴻智 | zh_TW |
| dc.date.accessioned | 2021-06-08T06:00:57Z | - |
| dc.date.copyright | 2007-08-02 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-07-28 | |
| dc.identifier.citation | 參考文獻
[1] L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: Principles and applications,” J. Lightwave Technol., vol. 13, no.4, pp. 615-627, 1995. [2] T. Rasmnssen, A. Bjarklev, and J. H. Povlsen, “Length requirements for power splitters in optical communication systems,” IEEE Electronics Lett., vol. 30, no. 7, pp. 583-584, 1994. [3] M. K. Smit and C. V. Dam, “Phasar-based WDM-devices: principles, design, and applications,” IEEE J. Select. Topics Quantum Electron., vol.2, no.2, pp. 236-250, 1996. [4] P. Besse, E. Gini, M. Bachmann, and H. Melchior, “New 2×2 and 1×3 multimode interference couplers with free selection of power splitting ratios,” J. Lightwave Technol., vol. 14, no. 10, pp.2286-2292, 1996. [5] D. Levy, R. Scarmozzino, and R. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett., vol. 10, no. 6, pp. 830-832, 1998. [6] M. R. Paiam and R. I. MacDonald, “Design of phased-array wavelength division multiplexers using multimode interference couplers,” Appl. Opt., vol. 36, no. 21, pp. 5097-5108, 1997. [7] S. R. Sakamoto, A. Jackson, and N. Dagli, “Substrate removed GaAs-AlGaAs electrooptic modulators,” IEEE Photon. Technol. Lett., vol. 11, no. 10, pp. 1244-1246, 1999. [8] N. S. Lagali, M. R. Paiam, R. I. MacDonald, K. Wörhoff, and A. Driessen, “Analysis of generalized Mach-Zehnder interferometers for variable-ratio power splitting and optimized switching,” J. Lightwave Technol., vol. 17, no. 12, pp.2542-2550, 1999. [9] H-C. Chien and R. V. Ramaswamy, “Symmetrical directional coupler as a wavelength multiplexer-demultiplexer: theory and experiment,” J. Quantum Electronics, vol. 27, no.3, pp. 567-574, 1991. [10] J. Park, Y. Chung, S. Baek, and H-J. Lee, “New design for low-loss star couplers and arrayed waveguide grating devices,” IEEE Photon. Technol. Lett., vol. 14, no. 5, pp. 651-653, 2002. [11] D. Levy, R. Scarmozzino, Y. Li, and R. Osgood, “A new design for ultra-compact multimode interference-based 2×2 couplers,” IEEE Photon. Technol. Lett., vol. 10, no. 1, pp. 96-98, 1998. [12] D. Levy, K. H. Park, R. Scarmozzino, and R. Osgood, “Fabrication of ultra-compact 3-dB 2×2 MMI splitters,” IEEE Photon. Technol. Lett., vol. 11, no. 8, pp. 1009-1011, 1999. [13] Hisato Uetsuka, “AWG Technologies for dense WDM applications,” IEEE J. Select. Topics Quantum Electron., vol.10, no.2, pp. 393-402, 2004. [14] C. R. Doerr, H. K. Kim, L. W. Stulz, M. Cappuzzo, L. Gomez, A. Paunescu, E. Laskowski, L. Boivin, and S. Shunk, “40-channel multi/demultiplexer with dynamic passband shape compensation,” IEEE Photon. Technol. Lett., vol. 13, no. 7, pp. 690-692, 2001. [15] Q. Wang, S. He, and L. Wang, “A low-loss Y-branch with a multimode waveguide transition section,” IEEE Photon. Technol. Lett., vol. 14, no. 8, pp. 1124-1126, 2002. [16] M. T. Hill, X. J. M. Leijtens, G. D. Khon, and M. K. Smit, “Optimizing imbalance and loss in 2×2 3-dB multimode interference couplers via access waveguide width,” J. Lightwave Technol., vol. 21, no.10, pp. 2305-2313, 2003. [17] Tim Bestwick, “ASOCTM- A silicon-based integrated optical manufacturing technology,” Electron. Component and Technol. Conf., vol. 20, no.11, pp. 566-571, 1998 [18] Telcordia (Bellcore) GR-1209-CORE, “Generic requirements for fiber optic branching components,” issue 2, February 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25044 | - |
| dc.description.abstract | 中文摘要
以往多模干涉結構的元件,僅止於廣泛的學術應用;因具有一些缺點,所以主要功能僅僅只是分光而已。然而多模干涉結構的許多優點,卻是不可取代的,因此改進這些缺點對實際的應用上,是極其重要的。 多模干涉元件的第一個缺點為波長敏感,此缺點會限制其在實際上的用途;因元件在網路上的應用時,通常都需要降低波長敏感性,以減低對光源波長準確性的要求;有鑑於此,本論文提出多模干涉分光器的寬頻標準;基本原理是建立在縮短其多模干涉區的長度差,並使之小於建設性干涉的光點大小;透過模擬後發現,操作頻寬可涵蓋光纖通信全波段(1.26-1.61um),且長度小於Y形分支結構的分光器。 一般多模干涉元件,只有全相等與完全不相等的分光功能而已;當元件被要求需要不同比例的分光時,若使用一般多模干涉元件,只能使用串接來達成,如此將造成製作成本過高;此限制即為多模干涉元件的第二個缺點。 所以本論文提出一個寬度函數為任意次方二元函數的多模干涉耦合器,而其中包含了傳統的、蝴蝶形的、與拋物線形的結構,使得新提出的多模干涉元件,可以用來等功率與不等功率的分光,只需選擇適當的次方,即可實現許多不同形式的等功率與不等功率的分光功能。 最後,將新提出的多模干涉結構與波導陣列光柵元件,兩者結合為一,以顯現應用在週期性波導陣列光柵元件,其效能上之提升。而主要的創意是,新提出的週期性波導陣列光柵元件,其每一個傳輸波導,都是由多模干涉結構與錐形波導所構成;模擬結果證實,新提出的週期性波導陣列光柵元件,1dB的頻寬可達通道間隔的ㄧ半,且不均勻度小於1dB。因此成功得到具有平坦化傳輸頻帶與均勻化頻譜響應的週期性波導陣列光柵元件 簡而言之,本論文將多模干涉的結構改良,以提升其效能,使之同時在學術與實際的用途上,都有極大的優勢。 | zh_TW |
| dc.description.abstract | Abstract
Multimode interference (MMI) structures were widely studied previously. The functions of interest were mainly for power splitting due to some disadvantages. However, the MMI structures have many advantages which are not replaceable. Therefore, it is important to improve the disadvantages for practical applications. The first disadvantage of MMI device is wavelength sensitive, which leads to restricted applications. To reduce the wavelength insensitivity in optical network applications, the demand of light source with a specific wavelength is needed, especially for power splitters. For this reason, a wideband criterion for MMI splitter is proposed. The basic principle is based on reducing the interference length difference and making it shorter than the spot size for constructive mode interference. Simulation results show the spectra of proposed MMI splitter is wide enough (1.26-1.61um) to cover the fiber communication band and the size of the splitter is more compact than that of the conventional MMI or Y-branch splitter. MMI devices were usually used for all-equal or all-unequal power splitting. When the device is used for different varieties of power splitting, interconnection of the devices make the fabrication cost to high to be realizable. These limitations are the second disadvantage of MMI device. In this work, MMI couplers with a width of arbitrary-exponent binomial function are proposed. The proposed structure includes the conventional, butterfly, and parabolic structure such that the proposed MMI device can be used for equal and unequal power splitting. With a proper choice of the exponent of a binomial function, several equal and unequal optical powers splitting ratio can be obtained. For comparison, the optical power splitting ratios, total transmission, and coupler length of the proposed MMI couplers are discussed. Finally, proposed MMI structures and arrayed waveguide grating (AWG) devices are combined to demonstrate the application in the improvement of cyclic arrayed waveguide grating devices. The basic idea is that each access waveguide of the proposed cyclic AWG consists of an MMI region and a taper waveguide. Simulation results show that the 1dB-bandwidth of the proposed device can be as wide as one half of the channel spacing and the corresponding nonuniformity is smaller than 1dB. Therefore, flat-top passband and uniform spectral response can be obtained. The improvement of the performance of MMI structure makes it of great interest for both academic studies and practical applications. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T06:00:57Z (GMT). No. of bitstreams: 1 ntu-96-D89941002-1.pdf: 1631008 bytes, checksum: 672d1aa9839530385d46a1b186a922fe (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | 目 錄
中文摘要……………………………………………………………… i 英文摘要…………………………………………………………… iii 附表目錄……………………………………………………………… v 附圖目錄…………………………………………………………… vii 第一章 主要光元件導論…………………………………………… 1 1.1簡介……………………………………………………………… 1 1.2 Y形分支結構…………………………………………………… 2 1.3方向耦合器結構………………………………………………… 4 1.4多模干涉結構…………………………………………………… 7 1.5波導陣列光柵元件……………………………………………… 10 1.6研究動機………………………………………………………… 12 1.7內容概述………………………………………………………… 12 第二章 多模干涉分光器的寬頻標準……………………………… 13 2.1網路應用上的需求……………………………………………… 13 2.2元件的寬頻標準………………………………………………… 14 2.3元件效能最佳化與頻譜分析…………………………………… 19 2.4與傳統結構的頻寬比較………………………………………… 25 第三章 寬度函數為任意次方二元函數的多模干涉耦合器……… 31 3.1先前技術的簡介………………………………………………… 31 3.2元件的結構與公式……………………………………………… 32 3.3元件的三種類型分光功能……………………………………… 37 3.4元件性能的分析與討論………………………………………… 45 第四章 具有平頂化傳輸頻帶與均勻化頻譜響應的 週期性波導陣列光柵元件…………………………………………… 49 4.1簡介波導陣列光柵元件的應用………………………………… 49 4.2元件的結構與設計公式………………………………………… 50 4.3元件的設計與頻譜結果的比較………………………………… 55 第五章 結論………………………………………………………… 68 參考文獻……………………………………………………………… 71 中英名詞對照………………………………………………………… 75 主要著作……………………………………………………………… 79 | |
| dc.language.iso | zh-TW | |
| dc.subject | 多模干涉 | zh_TW |
| dc.subject | 寬度變化 | zh_TW |
| dc.subject | 分光器 | zh_TW |
| dc.subject | 均勻化 | zh_TW |
| dc.subject | 平頂化 | zh_TW |
| dc.subject | 光耦合器 | zh_TW |
| dc.subject | 寬頻 | zh_TW |
| dc.subject | 任意次方 | zh_TW |
| dc.subject | 波導陣列光柵 | zh_TW |
| dc.subject | multimode interference | en |
| dc.subject | varied-width | en |
| dc.subject | MMI | en |
| dc.subject | arrayed waveguide grating | en |
| dc.subject | AWG | en |
| dc.subject | coupler | en |
| dc.subject | splitter | en |
| dc.subject | wideband | en |
| dc.subject | arbitrary-exponent | en |
| dc.subject | flat-top | en |
| dc.subject | uniform | en |
| dc.title | 具寬度變化的多模干涉元件 | zh_TW |
| dc.title | Varied-Width Multimode Interference Devices | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 李清庭,黃遠東,張宏鈞,胡振國,彭隆瀚 | |
| dc.subject.keyword | 寬度變化,多模干涉,波導陣列光柵,光耦合器,分光器,寬頻,任意次方,平頂化,均勻化, | zh_TW |
| dc.subject.keyword | varied-width,multimode interference,MMI,arrayed waveguide grating,AWG,coupler,splitter,wideband,arbitrary-exponent,flat-top,uniform, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-07-30 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 1.59 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
