Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25012
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林讚標(Tsan-Piao Lin)
dc.contributor.authorYu-Jing Fuen
dc.contributor.author傅俞菁zh_TW
dc.date.accessioned2021-06-08T06:00:13Z-
dc.date.copyright2007-08-28
dc.date.issued2007
dc.date.submitted2007-07-30
dc.identifier.citationGENEVESTIGATOR:https://www.genevestigator.ethz.ch/
Protein Data Bank:http://www.rcsb.org/pdb/home/home.do
Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003 ). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15(1): 63-78.
Allen, M. D., Yamasaki, K., Ohme-Takagi, M., Tateno, M., and Suzuki, M.
(1998). A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. EMBO J. 17: 5484–5496.
Christou, P. (1997). Rice transformation: bombardment. Plant Mol. Biol.
35:197-203
Deblaere, R., Reynaerts, A., Hofte, H., Hernalsteens, J.P., Leemans, J., and
Van Montagu, M. (1987). Vectors for cloning in plant cells. Meth. Enzymol.
153:277-292
Fujimoto, S. Y., Ohta, M., Usui, A., Shinshi, H., and Ohme-Takagi, M.
(2000). Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC box-mediated gene expression. Plant Cell 12: 393–404.
Fujita, M. F. Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme-Takagi, M.,
Tran, L.S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2004 ). A
dehydration- induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39(6): 863-76.
Fujimoto, S. Y., M. O., Usui, A., Shinshi, H., and Ohme-Takagi, M. (2000).
Arabidopsis ethylene-responsive element binding factors act as transcriptional activators or repressors of GCC Box–mediated gene expression. Plant Cell 12: 393–404.
Fujita, Y., M. F., Satoh, R., Maruyama, K., Parvez, M. M., Seki, M.,
Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17: 3470–3488.
Hao, D., Ohme-Takagi, M., and Sarai, A. (1998). Unique mode of GCC box
recognition by the DNA-binding domain of ethylene-responsive element-binding factor (ERF domain) in plant. J. Biol. Chem. 273: 26857–26861.
Hao, D., Yamasaki, K., Sarai, A., and Ohme-Takagi, M. (2002).
Determinants in the sequence specific binding of two plant transcription factors, CBF1 and NtERF2, to the DRE and GCC motifs. Biochemistry 41: 4202–4208.
Hiei, Y., Ohta, S., Komari, T., and Kumashiro, T. (1994). Efficient
transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J. 6:271-282
Hoekema, A., Hirsch, P.R., Hooykaas, P.J.J., and Schilperoort, R.A.
(1983). Binary vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179-180
Jofuku, K. D., Den Boer, B. G., Van Montagu, M., and Okamuro, J. K.
(1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6: 1211–1225.
Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K.,
Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., and Shinozaki, K. (2002). Monitoring the expression proles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31(3): 279-292
Kang, J. Y., Choi, H. I., Im, M.Y., and Kim, S. Y. (2002). Arabidopsis basic
leucine zipper proteins that mediate stress-responsive Abscisic Acid signaling. Plant Cell 14: 343–357.
Kasuga, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004).
A Combination of the Arabidopsis DREB1A Gene and Stress-Inducible rd29A Promoter Improved Drought- and Low-Temperature Stress Tolerance in Tobacco by Gene Transfer. Plant Physiol. 45(3): 346–350
Kizis, D. L. V., and Pagès, M. (2001). Role of AP2/EREBP transcription
factors in gene regulation during abiotic stress. FEBS. Letters 498: 187-189.
Koroleva, O. A., Tomlinson, M. L., Leader, D., Shaw, P., and Doonan, J. H. (2005). High-throughput protein localization in Arabidopsis using Agrobacterium-mediated transient expression of GFP-ORF fusions. Plant J. 41: 162–174.
Liu, Q. K. M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K.,
and Shinozaki, K. (1998 ). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10(8): 1391-406.
Maruyama, K. S. Y., Kasuga, M., Ito, Y., Seki, M., Goda, H., Shimada, Y.,
Yoshida, S., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J. 38(6): 982-93.
Nakano, T., Shinozaki, K., Fujimura, T., and Shinshi, H. (2006 ).
Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol. 140(2): 411-32.
Nakashima, K., Sakuma, Y., Seki, M., Miura, S., Shinozaki, K., and
Yamaguchi-Shinozaki, K. (2000 ). Organization and expression of two Arabidopsis DREB2 genes encoding DRE-binding proteins involved in dehydration- and high-salinity-responsive gene expression. Plant Mol. Biol. 42(4): 657-65.
Riechmann, J. L., and Meyerowitz, E. M. (1998). The AP2/EREBP family of
plant transcription factors. Biol. Chem. 379(6): 633-46.
Sakuma, Y., Maruyama, K., Osakabe, Y., Qin, F., Seki, M., Shinozaki, K.,
and Yamaguchi-Shinozaki, K. (2006). Functional analysis of an Arabidopsis transcription factor, DREB2A, involved in drought-responsive gene expression. Plant Cell 18: 1292–1309.
Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y.,Sakuma, Y., Liu, Q., Dubouzet, J. G., Abe, H., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2002). DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration and cold-inducible gene expression. Bio. Chem. 290: 998–1009.
Shinozaki, K., and Kim, S. Y. (2007). Gene networks involved in drought
stress response and tolerance. J. Exp. Bot. 58(2): 221–227.
Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6(5): 410-7.
Stockinger, E. J., Gilmour, S. J., and Thomashow, M. F. (1997).
Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc. Natl. Acad. Sci. USA 94: 1035–1040.
Toledo-Ortiz, G., Huq, E., and Quail, P. H. (2003). The Arabidopsis
basic/helix-loop-helix transcription factor family. Plant Cell 15: 1749–1770.
Uno, Y. F. T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi- Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcriptional transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc. Natl. Acad. Sci. USA 97: 11632–11637.
Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cis-acting
element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6: 251–264.
Yamaguchi-Shinozaki, K., and Shinozaki, K. (2005). Organization of
cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 10(2): 88-94.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25012-
dc.description.abstract當植物暴露在不同逆境時會有大量的基因被誘導出來,而這些基因產物具有不同的功能以不同方式幫助植物對抗逆境。我們從Shinozaki在2002年發表的微矩陣序列分析資料中得到At2g20880基因的表現量在乾旱逆境下比正常生長狀況高出24倍。At2g20880轉錄因子被歸類為DREB subfamily一員,功能大多跟植物對抗逆境有關。利用RT-PCR發現At2g20880在根、莖、葉、花都有表現,但是在花的表現量較低。利用northern blot及RT-PCR確定在兩週大的阿拉伯芥野生型植株中At2g20880基因的表現量只有在乾旱逆境才會增加,不會受到高溫逆境及ABA的誘導而大量表現。我們利用RNAi(RNA interfering)方式專一性地抑制At2g20880基因,並確定At2g20880基因表現量下降;另外,將At2g20880基因全長構築於pB2GW7載體持續大量表現At2g20880基因。比較在正常生長狀況下,兩週大野生型、At2g20880突變株以及At2g20880大量表現轉植株的外表型態並無太大差異。接著觀察兩週大野生型以及At2g20880大量表現轉植株的耐旱能力,發現在乾旱環境下,轉植株的生長狀況比野生型好,存活率也比較高,證明在阿拉伯芥大量表現At2g20880基因可提高植物對乾旱的忍受力。ABA處理後,At2g20880基因表現量沒有上升;讓野生型與At2g20880大量表現轉植株生長在有ABA的情況下, 兩者之種子萌發率及根部生長狀況沒有差異,表示At2g20880大量表現轉植株對ABA敏感性沒有改變。將At2g20880基因全長構築於GFP蛋白表現載體(pK7WGF2)中。利用CaMV 35S啟動子表現GFP及At2g20880蛋白質。以基因槍將載體打入洋蔥表皮細胞,發現At2g20880在細胞質中有表現。由本篇實驗結果得知At2g20880會參與乾旱訊息傳導路徑,屬於ABA-independent pathway,在阿拉伯芥大量表現此基因可以提高植物耐旱能力,因此推測At2g20880為乾旱反應的正向調控者。zh_TW
dc.description.abstractPlants often meet many biotic and abiotic stresses throughout their life cycle. Assortments of genes with diverse functions are influenced by dehydration stresses. Most of their gene products may function in stress responses and tolerance at the cellular level. The predominant mechanism for controlling plant gene expression is regulated at the transcriptional level and is mediated by transcription factors (TFs). According to the microarray data of (Kamiya et al., 2002), we selected a dehydration-induced gene At2g20880 to study more detail in this paper. At2g20880 contains one highly conserved AP2 domain and belongs to DREB subfamily. Using RT-PCR, we found At2g20880 gene was expressed in root, stem, leaf, but has lower expression levels in flowers. We found that this gene was highly inducible by dehydration but not by high temperature and abscisic acid. The At2g20880 RNAi transgenic plants and At2g20880-overexpressing plants exhibited the same phenotype as wild-type under normal growth conditions. At2g20880-overexpressing plants, however, survived better than wild-type under water deficient condition. The expression of At2g20880 gene was not influenced by ABA treatment; and there is no difference in seed germination rate and root growth between At2g20880-overexpressing transgenic plants and wild type in the presence of ABA, suggesting that the ABA sensitivity of At2g20880-overexpressing transgenic plants was not altered. Localization study using a fusion protein consisting of the full length of At2g20880 coding region and GFP fusion under the control of 35S promoter revealed that the GFP fluorescence was detected in the cytoplasm but not in the nucleus. In this study, we found At2g20880 is involved in dehydration-induced signaling transduction in an ABA-independent manner. Overexpressing At2g20880 gene enhanced dehydration tolerance in Arabidopsis. Our study provides evidence that At2g20880 is a positive regulator in dehydration stress response.en
dc.description.provenanceMade available in DSpace on 2021-06-08T06:00:13Z (GMT). No. of bitstreams: 1
ntu-96-R94b42021-1.pdf: 2443083 bytes, checksum: ea029e3f7ea5c62308e340f1ea37d3a1 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
中文摘要 1
ABSTRACT 2
縮寫對照表 4
第一章 序論 5
植物對抗逆境的反應 5
乾旱逆境的訊息傳導 5
在阿拉伯芥中AP2/ERF SUPERFAMILY轉錄因子介紹 6
在阿拉伯芥中AP2/ERF SUPERFAMILY轉錄因子的功能 7
實驗起源與策略 7
第二章 材料與方法 9
實驗材料: 9
實驗方法: 9
一、阿拉伯芥之種植與生長: 9
阿拉伯芥之種植與生長 9
二、基因表現分析: 10
阿拉伯芥total RNA之萃取 10
RT-PCR 11
北方點墨法 12
三、載體與基因建構(CONSTRUCTION): 15
PCR(Polymerase Chain Reaction)擴大基因片段 15
TA cloning 16
大腸桿菌之轉型 16
質體之製備 16
限制酶切割反應 17
LR重組反應 17
四、阿拉伯芥之農桿菌轉殖: 18
農桿菌的轉型作用 18
花序浸染法 19
阿拉伯芥轉殖株之篩選 19
阿拉伯芥genomic DNA之萃取 20
轉殖株快速檢測法 21
五、 基因表現定位: 21
基因槍法 22
六、 啟動子活性分析: 24
啟動子序列準備 24
報導基因GUS活性染色 25
第三章 結果 27
一、以生物資訊方式調查阿拉伯芥AT2G20880基因背景 27
二、以北方點墨法及反轉錄-聚合酶連鎖反應方式分析AT2G20880基因在 乾旱、高溫及ABA處理後的表現量 27
三、阿拉伯芥AT2G20880基因植物器官表現的位置 28
四、阿拉伯芥AT2G20880基因表現分析 28
五、在阿拉伯芥中大量表現AT2G20880影響植株對ABA的敏感性探討 30
六、阿拉伯芥AT2G20880在細胞內表現的位置 31
第四章 討論 32
第五章 圖表 37
參考文獻 52
附錄 56











圖表目錄
圖一 乾旱與高鹽逆境訊息傳導路徑圖…………………………………………37
圖二 At2g20880基因親緣演化關係圖…………………………………………38
圖三 GENEVESTIGATOR分析At2g20880在不同器官表現量 …………………39
圖四 GENEVESTIGATOR分析At2g20880在不同生長階段表現量 ……………40
圖五 At2g20880之AP2/ERF domain特徵 ……………………………………41
圖六 以北方點墨法及反轉錄-聚合酶連鎖反應(RT-PCR)方式分析At2g20880
基因在乾旱、高溫及ABA處理後的表現量……………………………………42
圖七 阿拉伯芥At2g20880基因在植物組織表現的位置………………………43
圖八 At2g20880 promoter::GUS轉殖株篩選…………………………………43
圖九 以T-DNA insertion方式專一性抑制At2g20880基因表現……………44
圖十 以RNAi方式專一性抑制At2g20880基因表現 …………………………45
圖十一 以CaMV 35S promoter大量表現At2g20880基因……………………46
圖十二 野生型、at2g20880突變株與AT2G20880大量轉殖株的性狀………47
圖十三 在阿拉伯芥中大量表現AT2G20880影響植株對ABA的敏感性探討…49
圖十四 阿拉伯芥AT2G20880蛋白質在細胞內表現的位置……………………50
圖十五 推論At2g20880參與在乾旱訊息傳導路徑圖示………………………51
dc.language.isozh-TW
dc.subject轉錄因子zh_TW
dc.subjecttranscription factoren
dc.title阿拉伯芥中受乾旱誘導之轉錄因子At2g20880功能分析zh_TW
dc.titleFunctional analysis of an Arabidopsis transcription factor, At2g20880, induced by drought stress.en
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee謝旭亮(Hsu-Liang Hsieh),吳克強(Keqiang Wu),馮騰永(Teng-Yung Feng),余天心(Tien-Shin Yu)
dc.subject.keyword轉錄因子,zh_TW
dc.subject.keywordtranscription factor,en
dc.relation.page64
dc.rights.note未授權
dc.date.accepted2007-07-31
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
2.39 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved