請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25003
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 彭隆瀚(Lung-Han Peng) | |
dc.contributor.author | Meng-Kuei Hsieh | en |
dc.contributor.author | 謝孟桂 | zh_TW |
dc.date.accessioned | 2021-06-08T06:00:00Z | - |
dc.date.copyright | 2007-07-31 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-07-30 | |
dc.identifier.citation | [1]Ovshinsk. S. R., 'Reversible Electrical Switching Phenomena in Disordered Structures, ' Physical Review Letters, vol. 21, pp. 1450, 1968.
[2]J. H. Coombs, A. P. J. M. Jongenelis, W. Vanesspiekman, and B. A. J. Jacobs, 'Laser-Induced Crystallization Phenomena in GeTe-Based Alloys .1. Characterization of Nucleation and Growth,' Journal of Applied Physics, vol. 78, pp. 4906-4917, Oct 15 1995. [3]L. Chain-Ming, Y. Wen-Shin, C. Jung-Po, and C. Tsung-Shune, 'Performances of phase-change recording disks based on GaSbTe media,' Magnetics, IEEE Transactions on, vol. 41, pp. 1022-1024, 2005. [4]M. Chen, K. A. Rubin, and R. W. Barton, 'Compound Materials for Reversible, Phase-Change Optical-Data Storage,' Applied Physics Letters, vol. 49, pp. 502-504, Sep 1 1986. [5]F. Bedeschi, R. Bez, C. Boffino, E. Bonizzoni, E. C. Buda, G. Casagrande, L. Costa, M. Ferraro, R. O. Gastaldi, S. Khouri, F. Ottogalli, F. Pellizzer, A. Pirovano, C. Resta, G. Torelli, and M. Tosi, '4-Mb MOSFET-selected mu trench phase-change memory experimental chip,' Ieee Journal of Solid-State Circuits, vol. 40, pp. 1557-1565, Jul 2005. [6]M. H. R. Lankhorst, B. W. S. M. M. Ketelaars, and R. A. M. Wolters, 'Low-cost and nanoscale non-volatile memory concept for future silicon chips,' Nature Materials, vol. 4, pp. 347-352, Apr 2005. [7]S. Hanzawa, N. Kitai, K. Osada, A. Kotabe, Y. Matsui, N. Matsuzaki, N. Takaura, M. Moniwa, and T. Kawahara, 'A 512kB Embedded Phase Change Memory with 416kB/s Write Throughput at 100Å Cell Write Current,' in Solid-State Circuits Conference, 2007. ISSCC 2007. Digest of Technical Papers. IEEE International 2007, pp. 474-616. [8]Y. C. Chen, C. T. Rettner, S. Raoux, G. W. Burr, S. H. Chen, R. M. Shelby, M. Salinga, W. P. Risk, T. D. Happ, G. M. McClelland, M. Breitwisch, A. Schrott, J. B. Philipp, M. H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C. F. Chen, E. Joseph, S. Zaidi, B. Yee, H. L. Lung, R. Bergmann, and C. Lam, 'Ultra-Thin Phase-Change Bridge Memory Device Using GeSb,' in Electron Devices Meeting, 2006. IEDM '06. International, 2006, pp. 1-4. [9]N. Matsuzaki, K. Kurotsuchi, Y. Matsui, O. Tonomura, N. Yamamoto, Y. Fujisaki, N. Kitai, R. Takemura, K. Osada, S. Hanzawa, H. Moriya, T. Iwasaki, T. Kawahara, N. Takaura, M. Terao, M. Matsuoka, and M. Moniwa, 'Oxygen-doped GeSbTe phase-change memory cells featuring 1.5 V/100μA standard 0.13 μm CMOS operations,' in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 738-741. [10] Y. Matsui, K. Kurotsuchi, O. Tonomura, T. Morikawa, M. Kinoshita, Y.Fujisaki, N. Matsuzaki, S. Hanzawa, M. Terao, N. Takaura, H. Moriya, T. Iwasaki, M. Moniwa, and T. Koga, 'Ta2O5 Interfacial Layer between GST and W Plug enabling Low Power Operation of Phase Change Memories,' in Electron Devices Meeting, 2006. IEDM '06. International, 2006, pp. 1-4. [11] S. Lai, 'Current status of the phase change memory and its future,' in Electron Devices Meeting, 2003. IEDM '03 Technical Digest. IEEE International, 2003, pp. 10.1.1-10.1.4. [12] C. W. Jeong, S. J. Ahn, Y. N. Hwang, Y. J. Song, J. H. Oh, S. Y. Lee, S. H. Lee,K. C. Ryoo, J. H. Park, J. H. Park, J. M. Shin, F. Yeung, W. C. Jeong, J. I. Kim,G. H. Koh, G. T. Jeong, H. S. Jeong, and K. Kim, 'Highly eliable ring-type contact for high-density phase change memory,' Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 45, pp. 3233-3237, Apr 2006. [13] M. Wuttig, 'Phase-change materials - Towards a uiversal memory?' Nature Materials, vol. 4, pp. 265-266, Apr 2005. [14] D. Adler, M. S. Shur, M. Silver, and S. R. Ovshinsky, 'Threshold Switching in Chalcogenide-Glass Thin-Films,' Journal of Applied Physics, vol. 51, pp.3289-3309, 1980.56 [15] 王菘豊, '氧化銦鎵透明導電膜之研製,' 國立台灣大學光電工程學研究所碩士論文, 2003. [16] Y. F. Lai, B. W. Qiao, J. Feng, Y. Le, L. Z. La, Y. Y. Lin, T. A. Tang, B. C. Cai,and B. M. Chen, 'Nitrogen-doped Ge2Sb2Te5 films for nonvolatile memory,'Journal of Electronic Materials, vol. 34, pp. 176-181, Feb 2005. [17] S. M. Kim, M. J. Shin, D. J. Choi, K. N. Lee, S. K. Hong, and Y. J. Park,'Electrical properties and crystal structures of nitrogen-doped Ge2Sb2Te5 thin film for phase change memory,' Thin Solid Films, vol. 469-470, pp. 322-326,2004. [18] Z.-X. Cheng, X.-B. Dong, Q.-Y. Pan, J.-c. Zhang, and X.-W. Dong,'Preparation and characterization of In2O3 nanorods,' Materials Letters, vol.60, pp. 3137-3140, 2006. [19] N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, 'Rapid-Phase Transitions of GeTe-Sb2 Te3 Pseudobinary Amorphous Thin-Films for and Optical Disk Memory,' Journal of Applied Physics, vol. 69, pp. 2849-2856, Mar 1 1991. [20] W. H. Ho and S. K. Yen, 'Preparation and characterization of indium oxide film by electrochemical deposition,' Thin Solid Films, vol. 498, pp. 80-84, 2006. [21] A. L. Pirovano, A.L.; Merlani, D.; Benvenuti, A.; Pellizzer, F.; Bez, R.;,'Electronic switching effect in phase-change memory cells,' Electron Devices Meeting, 2002. IEDM '02. Digest. International, pp. 923 - 926 8-11 Dec. 2002 [22] A. Dong-Ho, K. Dae-Hwan, C. Byung-ki, K. Hyuk-Soon, K. Min-Ho, L.Tae-Yeon, J. Jeung-hyun, L. Taek Sung, K. In Ho, and K. Ki-Bum, 'A nonvolatile memory based on reversible phase changes between fcc and hcp,' Electron Device Letters, IEEE, vol. 26, pp. 286-288, 2005. [23] A. Pirovano, A. L. Lacaita, A. Benvenuti, F. Pellizzer, and R. Bez, 'Electronic switching in phase-change memories,' Electron Devices, IEEE Transactions on, vol. 51, pp. 452-459, 2004.57 [24] A. Pirovano, A. L. Lacaita, F. Pellizzer, S. A. Kostylev, A. Benvenuti, and R.Bez, 'Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials,' Electron Devices, IEEE Transactions on, vol. 51, pp.714-719, 2004. [25] H. Lee, D. H. Kang, and L. Tran, 'Indium selenide (In2Se3) thin film for phase-change memory,' Materials Science and Engineering B-Solid State Materials for Advanced Technology, vol. 119, pp. 196-201, May 25 2005. [26] K. E. Petersen and D. Adler, 'On State of Amorphous Threshold Switches,'Journal of Applied Physics, vol. 47, pp. 256-263, 1976. [27] H. T. Stokes, T. A. Case, and D. C. Ailion, 'Evidence for Elastic Disorder in the Elastically Ordered Phase of Kcn,' Physical Review Letters, vol. 47, pp.268-271, 1981. [28] S. Privitera, E. Rimini, C. Bongiorno, R. Zonca, A. Pirovano, and R. Bez,'Crystallization and phase separation in Ge2+xSb2Te5 thin films,' Journal of Applied Physics, vol. 94, pp. 4409-4413, Oct 1 2003. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/25003 | - |
dc.description.abstract | 我們提出一個全新的相變化材料—氮銦鎵系氧化物(InGaNO),並以X-射線繞射測定(XRD)、圓形傳輸線法(CTLM)、示差掃描熱分析法(DSC)探討其相變化特性,與鍺銻鍗相變化合金(GST)相比。氮銦鎵系氧化物在攝氏275到290度之間發生一次相變化並結成體心立方(cubic bixbyite)晶體,而鍺銻鍗則是先後在150度及290度結為面心立方(fcc)和六角最密堆積晶體(hcp)。當這兩種不同相變型態的材料應用在記憶元件時,氮銦鎵系氧化物具有較高的開關電阻比。
在0.18微米孔柱之加熱基板成長氮銦鎵系氧化物樣品,當接觸面積為2.06平方微米之元件僅需680微安培的低重置電流(IRESET),在具有類似接觸面積(~2.0 um^2)之相變化元件進行抹寫測試,氮銦鎵系氧化物和鍺銻鍗合金兩者之開關電阻比分別為100和30,抹寫之電壓脈衝寬度為90奈秒。利用本實驗室新開發之100奈米小孔加熱柱結構,可將相變化之臨界功率降到18微瓦以下,抹寫之脈衝寬度隨者尺度縮減降為50奈秒,結果得到氮銦鎵系氧化物可達350次壽命,鍺銻鍗相變化合金則可達500次。 | zh_TW |
dc.description.abstract | We demonstrate a new type of phase change material (PCM) device based on InGaNO. The characteristic changes of InGaON-based PCM were compared with the conventional GST PCM device by using X-ray diffraction (XRD), circular transmission line method (CTLM), and differential scanning calorimeter (DSC). We denote a phase transition from amorphous structure into cubic bixbyite crystal in the InGaON system between 275 to 290 degrees in Celsius, , while for GST a fcc and a hcp phase change occurs at the temperature 150 and 300 degrees in Celsius successively. The InGaNO-based PCM device exhibits a higher ON/OFF resistance ratio of ~100 compared to a ratio of ~30 in the GST PCM system.
Using a 0.18 um-dia heating structure with a contact area of 2.06 um^2, we observed a small reset current of IRESET ~ 680 | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T06:00:00Z (GMT). No. of bitstreams: 1 ntu-96-R94941031-1.pdf: 2643677 bytes, checksum: c70ec531a18446a4e4b97c3f95a5c644 (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 第一章 緒論 1
1.1 相變化記憶體發展歷史 1 1.2 相變化記憶體研究概況 2 1.3 本論文研究動機及論文概述 5 1.3.1 相變材料設計 5 1.3.2 結構設計以提升加熱效率 7 第二章 相變化材料之研製 9 2.1 簡介 9 2.2 相變化材料薄膜鍍製 11 2.2.1 鍺銻鍗相變化合金(GST) 11 2.2.2 氮銦鎵系氧化物(InGaNO) 12 2.3 相變化溫度測定 13 2.3.1 熱烘烤 13 2.3.2 X-射線繞射測定 14 2.3.3 圓形傳輸線法 18 2.3.4 示差掃描熱分析法 23 2.4 薄膜表面之掃描式電子顯微鏡圖片 27 第三章 相變化記憶元件之製作方法 30 3.1簡介 30 3.2 元件結構及製作 32 第四章 相變化記憶元件之電性量測 36 4.1 簡介 36 4.2 脈衝波量測系統架構 39 4.3 元件電性量測結果 41 4.3.1 電壓-電流曲線與接觸面積的關係 41 4.3.2 臨界功率與薄膜厚度的關係 43 4.3.3 脈衝波設置/重置與元件壽命測試 45 4.3.4 各結構之臨界功率比較 50 第五章 結論與未來展望 52 5.1 結論 52 5.2 未來展望 53 | |
dc.language.iso | zh-TW | |
dc.title | 氮銦鎵系氧化物應用於相變化記憶元件之製作與特性研究 | zh_TW |
dc.title | Fabrication and Characterization of InGaNO-based Phase Change Memory Devices | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 李文欽(Wen-Chin Lee),郭光宇(Guang-Yu Guo),張守進(Shoou-Jinn Chang),黃建璋(Jian-Jang Huang) | |
dc.subject.keyword | 相變化,鍺銻鍗,氮銦鎵系氧化物,小孔加熱柱結構, | zh_TW |
dc.subject.keyword | phase change,GST,InGaNO,submicron heating structure, | en |
dc.relation.page | 57 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2007-07-31 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。