請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24964完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭彥彬 | |
| dc.contributor.author | Wei-Ni Lin | en |
| dc.contributor.author | 林威妮 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:59:12Z | - |
| dc.date.copyright | 2011-10-05 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-08-08 | |
| dc.identifier.citation | Abreu, J. G., Ketpura, N. I., Reversade, B. & De Robertis, E. M. (2002) Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nature cell biology 4, 599-604.
Angelopoulos, A. P. & Goaz, P. W. (1972) Incidence of diphenylhydantoin gingival hyperplasia. Oral Surg Oral Med Oral Pathol 34, 898-906. Babic, A. M., Chen, C. C. & Lau, L. F. (1999) Fisp12/mouse connective tissue growth factor mediates endothelial cell adhesion and migration through integrin alphavbeta3, promotes endothelial cell survival, and induces angiogenesis in vivo. Mol Cell Biol 19, 2958-2966. Barclay, S., Thomason, J. M., Idle, J. R. & Seymour, R. A. (1992) The incidence and severity of nifedipine-induced gingival overgrowth. J Clin Periodontol 19, 311-314. Bian, Z. M., Elner, S. G. & Elner, V. M. (2007) Thrombin-induced VEGF expression in human retinal pigment epithelial cells. Investigative ophthalmology & visual science 48, 2738-2746. Bitu, C. C., Sobral, L. M., Kellermann, M. G., Martelli-Junior, H., Zecchin, K. G., Graner, E. & Coletta, R. D. (2006) Heterogeneous presence of myofibroblasts in hereditary gingival fibromatosis. J Clin Periodontol 33, 393-400. Blom, I. E., van Dijk, A. J., de Weger, R. A., Tilanus, M. G. & Goldschmeding, R. (2001) Identification of human ccn2 (connective tissue growth factor) promoter polymorphisms. Molecular pathology : MP 54, 192-196. Bogatkevich, G. S., Ludwicka-Bradley, A., Nietert, P. J., Akter, T., van Ryn, J. & Silver, R. M. (2011) Antiinflammatory and antifibrotic effects of the oral direct thrombin inhibitor dabigatran etexilate in a murine model of interstitial lung disease. Arthritis and rheumatism 63, 1416-1425. Bolzani, G., Della Coletta, R., Martelli Junior, H. & Graner, E. (2000) Cyclosporin A inhibits production and activity of matrix metalloproteinases by gingival fibroblasts. J Periodontal Res 35, 51-58. Bornstein, P. (2000) Matricellular proteins: an overview. Matrix Biol 19, 555-556. Brigstock, D. R., Steffen, C. L., Kim, G. Y., Vegunta, R. K., Diehl, J. R. & Harding, P. A. (1997) Purification and characterization of novel heparin-binding growth factors in uterine secretory fluids. Identification as heparin-regulated Mr 10,000 forms of connective tissue growth factor. The Journal of biological chemistry 272, 20275-20282. Burgess, J. K., Ge, Q., Poniris, M. H., Boustany, S., Twigg, S. M., Black, J. L. & Johnson, P. R. (2006) Connective tissue growth factor and vascular endothelial growth factor from airway smooth muscle interact with the extracellular matrix. American journal of physiology. Lung cellular and molecular physiology 290, L153-161. Chambers, R. C. & Laurent, G. J. (2002) Coagulation cascade proteases and tissue fibrosis. Biochem Soc Trans 30, 194-200. Chambers, R. C., Leoni, P., Blanc-Brude, O. P., Wembridge, D. E. & Laurent, G. J. (2000) Thrombin is a potent inducer of connective tissue growth factor production via proteolytic activation of protease-activated receptor-1. J Biol Chem 275, 35584-35591. Chan, C. P., Chang, M. C., Wang, Y. J., Chen, L. I., Tsai, Y. L., Lee, J. J., Jia, H. W. & Jeng, J. H. (2008) Thrombin activates Ras-CREB/ATF-1 signaling and stimulates c-fos, c-jun, and c-myc expression in human gingival fibroblasts. Journal of periodontology 79, 1248-1254. Chang, M. C., Chan, C. P., Wu, H. L., Chen, R. S., Lan, W. H., Chen, Y. J. & Jeng, J. H. (2001) Thrombin-stimulated growth, clustering, and collagen lattice contraction of human gingival fibroblasts is associated with its protease activity. Journal of periodontology 72, 303-313. Chen, C. C., Chen, N. & Lau, L. F. (2001) The angiogenic factors Cyr61 and connective tissue growth factor induce adhesive signaling in primary human skin fibroblasts. The Journal of biological chemistry 276, 10443-10452. Chen, Y., Blom, I. E., Sa, S., Goldschmeding, R., Abraham, D. J. & Leask, A. (2002) CTGF expression in mesangial cells: involvement of SMADs, MAP kinase, and PKC. Kidney international 62, 1149-1159. Coletta, R. D., Almeida, O. P., Ferreira, L. R., Reynolds, M. A. & Sauk, J. J. (1999) Increase in expression of Hsp47 and collagen in hereditary gingival fibromatosis is modulated by stress and terminal procollagen N-propeptides. Connective tissue research 40, 237-249. Coletta, R. D. & Graner, E. (2006) Hereditary gingival fibromatosis: a systematic review. J Periodontol 77, 753-764. Coughlin, S. R. (2000) Thrombin signalling and protease-activated receptors. Nature 407, 258-264. Davis, R. J. (2000) Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252. Dawes, K. E., Gray, A. J. & Laurent, G. J. (1993) Thrombin stimulates fibroblast chemotaxis and replication. Eur J Cell Biol 61, 126-130. de Andrade, C. R., Cotrin, P., Graner, E., Almeida, O. P., Sauk, J. J. & Coletta, R. D. (2001) Transforming growth factor-beta1 autocrine stimulation regulates fibroblast proliferation in hereditary gingival fibromatosis. Journal of periodontology 72, 1726-1733. di Mola, F. F., Friess, H., Martignoni, M. E., Di Sebastiano, P., Zimmermann, A., Innocenti, P., Graber, H., Gold, L. I., Korc, M. & Buchler, M. W. (1999) Connective tissue growth factor is a regulator for fibrosis in human chronic pancreatitis. Annals of surgery 230, 63-71. Djordjevic, T., Pogrebniak, A., BelAiba, R. S., Bonello, S., Wotzlaw, C., Acker, H., Hess, J. & Gorlach, A. (2005) The expression of the NADPH oxidase subunit p22phox is regulated by a redox-sensitive pathway in endothelial cells. Free radical biology & medicine 38, 616-630. Dooley, A., Shi-Wen, X., Aden, N., Tranah, T., Desai, N., Denton, C. P., Abraham, D. J. & Bruckdorfer, R. (2010) Modulation of collagen type I, fibronectin and dermal fibroblast function and activity, in systemic sclerosis by the antioxidant epigallocatechin-3-gallate. Rheumatology 49, 2024-2036. Ejeil, A. L., Igondjo-Tchen, S., Ghomrasseni, S., Pellat, B., Godeau, G. & Gogly, B. (2003) Expression of matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) in healthy and diseased human gingiva. Journal of periodontology 74, 188-195. Ellis, J. S., Seymour, R. A., Taylor, J. J. & Thomason, J. M. (2004) Prevalence of gingival overgrowth in transplant patients immunosuppressed with tacrolimus. J Clin Periodontol 31, 126-131. Fletcher, J. P. (1966) Gingival Abnormalities of Genetic Origin: A Preliminary Communication with Special Reference to Hereditary Generalized Gingival Fibromatosis. Journal of dental research 45, 597-612. Frazier, K., Williams, S., Kothapalli, D., Klapper, H. & Grotendorst, G. R. (1996) Stimulation of fibroblast cell growth, matrix production, and granulation tissue formation by connective tissue growth factor. The Journal of investigative dermatology 107, 404-411. Giacaman, R. A., Asrani, A. C., Ross, K. F. & Herzberg, M. C. (2009) Cleavage of protease-activated receptors on an immortalized oral epithelial cell line by Porphyromonas gingivalis gingipains. Microbiology 155, 3238-3246. Grotendorst, G. R. (1997) Connective tissue growth factor: a mediator of TGF-beta action on fibroblasts. Cytokine & growth factor reviews 8, 171-179. Guha, M., Xu, Z. G., Tung, D., Lanting, L. & Natarajan, R. (2007) Specific down-regulation of connective tissue growth factor attenuates progression of nephropathy in mouse models of type 1 and type 2 diabetes. The FASEB journal : official publication of the Federation of American Societies for Experimental Biology 21, 3355-3368. Hart, T. C., Zhang, Y., Gorry, M. C., Hart, P. S., Cooper, M., Marazita, M. L., Marks, J. M., Cortelli, J. R. & Pallos, D. (2002) A mutation in the SOS1 gene causes hereditary gingival fibromatosis type 1. American journal of human genetics 70, 943-954. Herkert, O., Diebold, I., Brandes, R. P., Hess, J., Busse, R. & Gorlach, A. (2002) NADPH oxidase mediates tissue factor-dependent surface procoagulant activity by thrombin in human vascular smooth muscle cells. Circulation 105, 2030-2036. Hong, H. H., Uzel, M. I., Duan, C., Sheff, M. C. & Trackman, P. C. (1999) Regulation of lysyl oxidase, collagen, and connective tissue growth factor by TGF-beta1 and detection in human gingiva. Laboratory investigation; a journal of technical methods and pathology 79, 1655-1667. Hou, L., Ravenall, S., Macey, M. G., Harriott, P., Kapas, S. & Howells, G. L. (1998) Protease-activated receptors and their role in IL-6 and NF-IL-6 expression in human gingival fibroblasts. Journal of periodontal research 33, 205-211. Howell, D. C., Johns, R. H., Lasky, J. A., Shan, B., Scotton, C. J., Laurent, G. J. & Chambers, R. C. (2005) Absence of proteinase-activated receptor-1 signaling affords protection from bleomycin-induced lung inflammation and fibrosis. Am J Pathol 166, 1353-1365. Hupp, W. S. (2001) Seizure disorders. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 92, 593-596. Ikawa, Y., Ng, P. S., Endo, K., Kondo, M., Chujo, S., Ishida, W., Shirasaki, F., Fujimoto, M. & Takehara, K. (2008) Neutralizing monoclonal antibody to human connective tissue growth factor ameliorates transforming growth factor-beta-induced mouse fibrosis. J Cell Physiol 216, 680-687. Ilgenli, T., Atilla, G. & Baylas, H. (1999) Effectiveness of periodontal therapy in patients with drug-induced gingival overgrowth. Long-term results. J Periodontol 70, 967-972. Imai, K. & Nakachi, K. (1995) Cross sectional study of effects of drinking green tea on cardiovascular and liver diseases. BMJ 310, 693-696. Ito, Y., Aten, J., Bende, R. J., Oemar, B. S., Rabelink, T. J., Weening, J. J. & Goldschmeding, R. (1998) Expression of connective tissue growth factor in human renal fibrosis. Kidney international 53, 853-861. Jedsadayanmata, A., Chen, C. C., Kireeva, M. L., Lau, L. F. & Lam, S. C. (1999) Activation-dependent adhesion of human platelets to Cyr61 and Fisp12/mouse connective tissue growth factor is mediated through integrin alpha(IIb)beta(3). The Journal of biological chemistry 274, 24321-24327. Jeng, J. H., Lan, W. H., Wang, J. S., Chan, C. P., Ho, Y. S., Lee, P. H., Wang, Y. J., Wang, T. M., Chen, Y. J. & Chang, M. C. (2006) Signaling mechanism of thrombin-induced gingival fibroblast-populated collagen gel contraction. British journal of pharmacology 147, 188-198. Kahn, M. L., Nakanishi-Matsui, M., Shapiro, M. J., Ishihara, H. & Coughlin, S. R. (1999) Protease-activated receptors 1 and 4 mediate activation of human platelets by thrombin. The Journal of clinical investigation 103, 879-887. Kato, T., Okahashi, N., Kawai, S., Inaba, H., Morisaki, I. & Amano, A. (2005) Impaired degradation of matrix collagen in human gingival fibroblasts by the antiepileptic drug phenytoin. J Periodontol 76, 941-950. Kim, J. Y., Park, S. H., Cho, K. S., Kim, H. J., Lee, C. K., Park, K. K., Choi, S. H. & Chung, W. Y. (2008) Mechanism of azithromycin treatment on gingival overgrowth. J Dent Res 87, 1075-1079. Lambert, J. D. & Elias, R. J. (2010) The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501, 65-72. Lasky, J. A., Ortiz, L. A., Tonthat, B., Hoyle, G. W., Corti, M., Athas, G., Lungarella, G., Brody, A. & Friedman, M. (1998) Connective tissue growth factor mRNA expression is upregulated in bleomycin-induced lung fibrosis. The American journal of physiology 275, L365-371. Leask, A. (2010) Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circulation research 106, 1675-1680. Leask, A., Holmes, A., Black, C. M. & Abraham, D. J. (2003) Connective tissue growth factor gene regulation. Requirements for its induction by transforming growth factor-beta 2 in fibroblasts. The Journal of biological chemistry 278, 13008-13015. Leask, A., Sa, S., Holmes, A., Shiwen, X., Black, C. M. & Abraham, D. J. (2001) The control of ccn2 (ctgf) gene expression in normal and scleroderma fibroblasts. Molecular pathology : MP 54, 180-183. Li, G., Xie, Q., Shi, Y., Li, D., Zhang, M., Jiang, S., Zhou, H., Lu, H. & Jin, Y. (2006) Inhibition of connective tissue growth factor by siRNA prevents liver fibrosis in rats. J Gene Med 8, 889-900. Lourbakos, A., Yuan, Y. P., Jenkins, A. L., Travis, J., Andrade-Gordon, P., Santulli, R., Potempa, J. & Pike, R. N. (2001) Activation of protease-activated receptors by gingipains from Porphyromonas gingivalis leads to platelet aggregation: a new trait in microbial pathogenicity. Blood 97, 3790-3797. Macfarlane, S. R., Seatter, M. J., Kanke, T., Hunter, G. D. & Plevin, R. (2001) Proteinase-activated receptors. Pharmacol Rev 53, 245-282. Mallat, A., Gallois, C., Tao, J., Habib, A., Maclouf, J., Mavier, P., Preaux, A. M. & Lotersztajn, S. (1998) Platelet-derived growth factor-BB and thrombin generate positive and negative signals for human hepatic stellate cell proliferation. Role of a prostaglandin/cyclic AMP pathway and cross-talk with endothelin receptors. J Biol Chem 273, 27300-27305. Mandel, S. A., Amit, T., Weinreb, O., Reznichenko, L. & Youdim, M. B. (2008) Simultaneous manipulation of multiple brain targets by green tea catechins: a potential neuroprotective strategy for Alzheimer and Parkinson diseases. CNS Neurosci Ther 14, 352-365. Mariotti, A. (1999) Dental plaque-induced gingival diseases. Ann Periodontol 4, 7-19. Martelli-Junior, H., Cotrim, P., Graner, E., Sauk, J. J. & Coletta, R. D. (2003) Effect of transforming growth factor-beta1, interleukin-6, and interferon-gamma on the expression of type I collagen, heat shock protein 47, matrix metalloproteinase (MMP)-1 and MMP-2 by fibroblasts from normal gingiva and hereditary gingival fibromatosis. Journal of periodontology 74, 296-306. Martelli-Junior, H., Lemos, D. P., Silva, C. O., Graner, E. & Coletta, R. D. (2005) Hereditary gingival fibromatosis: report of a five-generation family using cellular proliferation analysis. Journal of periodontology 76, 2299-2305. Massague, J. & Wotton, D. (2000) Transcriptional control by the TGF-beta/Smad signaling system. The EMBO journal 19, 1745-1754. Mavrogiannis, M., Ellis, J. S., Seymour, R. A. & Thomason, J. M. (2006a) The efficacy of three different surgical techniques in the management of drug-induced gingival overgrowth. J Clin Periodontol 33, 677-682. Mavrogiannis, M., Ellis, J. S., Thomason, J. M. & Seymour, R. A. (2006b) The management of drug-induced gingival overgrowth. J Clin Periodontol 33, 434-439. McLennan, S. V., Wang, X. Y., Moreno, V., Yue, D. K. & Twigg, S. M. (2004) Connective tissue growth factor mediates high glucose effects on matrix degradation through tissue inhibitor of matrix metalloproteinase type 1: implications for diabetic nephropathy. Endocrinology 145, 5646-5655. Meng, M., Li, Y. Q., Yan, M. X., Kou, Y. & Ren, H. B. (2007) Effects of epigallocatechin gallate on diethyldithiocarbamate-induced pancreatic fibrosis in rats. Biol Pharm Bull 30, 1091-1096. Michel, D. & Harmand, M. F. (1990) Fibrin seal in wound healing: effect of thrombin and [Ca2+] on human skin fibroblast growth and collagen production. J Dermatol Sci 1, 325-333. Modeer, T. & Dahllof, G. (1987) Development of phenytoin-induced gingival overgrowth in non-institutionalized epileptic children subjected to different plaque control programs. Acta Odontol Scand 45, 81-85. Montebugnoli, L., Servidio, D. & Bernardi, F. (2000) The role of time in reducing gingival overgrowth in heart-transplanted patients following cyclosporin therapy. J Clin Periodontol 27, 611-614. Nakachi, K., Suemasu, K., Suga, K., Takeo, T., Imai, K. & Higashi, Y. (1998) Influence of drinking green tea on breast cancer malignancy among Japanese patients. Jpn J Cancer Res 89, 254-261. Nystedt, S., Emilsson, K., Wahlestedt, C. & Sundelin, J. (1994) Molecular cloning of a potential proteinase activated receptor. Proceedings of the National Academy of Sciences of the United States of America 91, 9208-9212. O'Neil, T. C. & Figures, K. H. (1982) The effects of chlorhexidine and mechanical methods of plaque control on the recurrence of gingival hyperplasia in young patients taking phenytoin. British dental journal 152, 130-133. Oemar, B. S., Werner, A., Garnier, J. M., Do, D. D., Godoy, N., Nauck, M., Marz, W., Rupp, J., Pech, M. & Luscher, T. F. (1997) Human connective tissue growth factor is expressed in advanced atherosclerotic lesions. Circulation 95, 831-839. Paradis, V., Dargere, D., Vidaud, M., De Gouville, A. C., Huet, S., Martinez, V., Gauthier, J. M., Ba, N., Sobesky, R., Ratziu, V. & Bedossa, P. (1999) Expression of connective tissue growth factor in experimental rat and human liver fibrosis. Hepatology 30, 968-976. Park, K. W. & Jin, B. K. (2008) Thrombin-induced oxidative stress contributes to the death of hippocampal neurons: role of neuronal NADPH oxidase. Journal of neuroscience research 86, 1053-1063. Seymour, R. A., Smith, D. G. & Rogers, S. R. (1987) The comparative effects of azathioprine and cyclosporin on some gingival health parameters of renal transplant patients. A longitudinal study. J Clin Periodontol 14, 610-613. Sheng, R., Gu, Z. L., Xie, M. L., Zhou, W. X. & Guo, C. Y. (2009) EGCG inhibits proliferation of cardiac fibroblasts in rats with cardiac hypertrophy. Planta Med 75, 113-120. Shi-Wen, X., Leask, A. & Abraham, D. (2008) Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev 19, 133-144. Shultz, P. J., Knauss, T. C., Mene, P. & Abboud, H. E. (1989) Mitogenic signals for thrombin in mesangial cells: regulation of phospholipase C and PDGF genes. Am J Physiol 257, F366-374. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J. & Klenk, D. C. (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150, 76-85. Sobral, L. M., Kellermann, M. G., Graner, E., Martelli-Junior, H. & Coletta, R. D. (2010) Cyclosporin A-induced gingival overgrowth is not associated with myofibroblast transdifferentiation. Braz Oral Res 24, 182-188. Sriram, N., Kalayarasan, S. & Sudhandiran, G. (2009) Epigallocatechin-3-gallate exhibits anti-fibrotic effect by attenuating bleomycin-induced glycoconjugates, lysosomal hydrolases and ultrastructural changes in rat model pulmonary fibrosis. Chem Biol Interact 180, 271-280. Strachan, D., Burton, I. & Pearson, G. J. (2003) Is oral azithromycin effective for the treatment of cyclosporine-induced gingival hyperplasia in cardiac transplant recipients? J Clin Pharm Ther 28, 329-338. Surh, Y. J., Kundu, J. K., Na, H. K. & Lee, J. S. (2005) Redox-sensitive transcription factors as prime targets for chemoprevention with anti-inflammatory and antioxidative phytochemicals. J Nutr 135, 2993S-3001S. Thorp, M., DeMattos, A., Bennett, W., Barry, J. & Norman, D. (2000) The effect of conversion from cyclosporine to tacrolimus on gingival hyperplasia, hirsutism and cholesterol. Transplantation 69, 1218-1220. Tipoe, G. L., Leung, T. M., Liong, E. C., Lau, T. Y., Fung, M. L. & Nanji, A. A. (2010) Epigallocatechin-3-gallate (EGCG) reduces liver inflammation, oxidative stress and fibrosis in carbon tetrachloride (CCl4)-induced liver injury in mice. Toxicology 273, 45-52. Tipton, D. A. & Dabbous, M. K. (1998) Autocrine transforming growth factor beta stimulation of extracellular matrix production by fibroblasts from fibrotic human gingiva. Journal of periodontology 69, 609-619. Tokgoz, B., Sari, H. I., Yildiz, O., Aslan, S., Sipahioglu, M., Okten, T., Oymak, O. & Utas, C. (2004) Effects of azithromycin on cyclosporine-induced gingival hyperplasia in renal transplant patients. Transplant Proc 36, 2699-2702. Trackman, P. C. & Kantarci, A. (2004) Connective tissue metabolism and gingival overgrowth. Crit Rev Oral Biol Med 15, 165-175. Trejo, J., Connolly, A. J. & Coughlin, S. R. (1996) The cloned thrombin receptor is necessary and sufficient for activation of mitogen-activated protein kinase and mitogenesis in mouse lung fibroblasts. Loss of responses in fibroblasts from receptor knockout mice. J Biol Chem 271, 21536-21541. Uzel, M. I., Kantarci, A., Hong, H. H., Uygur, C., Sheff, M. C., Firatli, E. & Trackman, P. C. (2001) Connective tissue growth factor in drug-induced gingival overgrowth. J Periodontol 72, 921-931. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M. & Telser, J. (2007) Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology 39, 44-84. Vinson, J. A., Teufel, K. & Wu, N. (2004) Green and black teas inhibit atherosclerosis by lipid, antioxidant, and fibrinolytic mechanisms. J Agric Food Chem 52, 3661-3665. Vu, T. K., Hung, D. T., Wheaton, V. I. & Coughlin, S. R. (1991) Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell 64, 1057-1068. Walker, C. R., Jr., Tomich, C. E. & Hutton, C. E. (1980) Treatment of phenytoin-induced gingival hyperplasia by electrosurgery. Journal of oral surgery 38, 306-311. Yu, C. C., Hsu, M. J., Kuo, M. L., Chen, R. F., Chen, M. C., Bai, K. J., Yu, M. C., Chen, B. C. & Lin, C. H. (2009) Thrombin-induced connective tissue growth factor expression in human lung fibroblasts requires the ASK1/JNK/AP-1 pathway. Journal of immunology 182, 7916-7927. Yumei, F., Zhou, Y., Zheng, S. & Chen, A. (2006) The antifibrogenic effect of (-)-epigallocatechin gallate results from the induction of de novo synthesis of glutathione in passaged rat hepatic stellate cells. Lab Invest 86, 697-709. Zhou, S. Y., Xiao, W., Pan, X. J., Zhu, M. X., Yang, Z. H. & Zheng, C. Y. (2010) Thrombin promotes human lung fibroblasts to proliferate via NADPH oxidase/reactive oxygen species/extracellular regulated kinase signaling pathway. Chinese medical journal 123, 2432-2439. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24964 | - |
| dc.description.abstract | 結締組織生長因子(CTGF)和許多人類器官組織的纖維化病變有很密切的相關性,在人類牙齦過度生長的組織中,也可以看到CTGF的過度表現;研究指出,即使在良好的回診及口腔衛生照顧下,牙齦過度生長之患者在接受牙齦切除術後十八個月的再發率仍高達34%。凝血酶曾被報導能誘導肺部纖維母細胞CTGF的表現,造成肺部的纖維化;過去研究也指出,在牙齦切除術後的早期愈合過程中,大量的血小板與凝血因子,會聚集在傷口處,可能和手術之後牙齦過度生長的快速再發有關。因此我們假設,凝血酶也扮演相同的角色。
本研究發現,凝血酶能以劑量與時間相關性來刺激人類牙齦纖維母細胞CTGF的表現。使用凝血酶受器PAR1之促效劑SFLLRN,和凝血酶有類似的刺激效果;而使用絲胺酸蛋白酶抑制劑PPACK,則可以完全抑制凝血酶誘導的CTGF表現,顯示凝血酶是透過其蛋白酶活性,酶切活化PAR1,來引發後續的訊息傳導。接著使用不同的訊息傳遞路徑抑制劑來前處理牙齦纖維母細胞,西方點墨法的結果顯示:mitogen-activated protein kinase (MAPK)訊息傳導路徑抑制劑中的ASK1抑制劑thioredoxin、JNK抑制劑SP600125 能顯著降低凝血酶誘導的CTGF表現,但使用PI3K抑制劑LY294002、ERK抑制劑PD98059、p38 MAPK抑制劑SB203580則無抑制效果。其次,使用抗氧化劑N-acetyl-L-cysteine (NAC)、Rac-GTPase抑制劑NSC-23766、NADPH oxidase (NOX)抑制劑apocynin和DPI亦能顯著降低凝血酶誘導的CTGF表現,而5-lipoxygenase activating protein (FLAP) 抑制劑MK886則無抑制效果。進一步使用AP-1抑制劑curcumin及茶多酚EGCG,對凝血酶誘導的CTGF表現也能夠得到劑量相關性的抑制效果。 總結之,在人類牙齦纖維母細胞中,凝血酶可能是透過 PAR1/ROS/ASK1/JNK/AP-1此一路徑來誘導CTGF的表現,且NOX可能是此路徑中ROS的來源。我們亦發現,EGCG可以抑制凝血酶誘導的CTGF表現,未來期望可以深入研究EGCG抑制纖維化的機制,提供預防或治療牙齦過度生長及其再發的新策略。 | zh_TW |
| dc.description.abstract | Connective tissue growth factor (CTGF) is associated with the onset and progression of fibrosis in many human tissues and was found to overexpress in the tissue of gingival overgrowth. It has been reported that, in spite of a proper recall program after surgical treatment, the recurrent rate of gingival overgrowth in 18 months was still up to 34%. Thrombin has been implicated in lung fibrosis, with its capacity of inducing CTGF expression in lung fibroblasts. So we postulate that, the recruitment of platelets and normal clotting factors, like thrombin, early in the wound healing process could be responsible for the rapid re-growth of fibrotic gingival tissue.
In this study, we showed that thrombin caused a concentration- and time-dependent increase in CTGF expression in human gingival fibroblasts (GFs). The effect of thrombin could be mimicked with the protease-activated receptor 1 (PAR1) agonist peptide, SFLLRN, and could be completely inhibited by a serine protease inhibitor, PPACK, indicating that thrombin mediated this effect via the proteolytic cleavage and activation of PAR1. We further used several inhibitors of mitogen-activated protein kinase (MAPK) pathway and reactive oxygen species (ROS) pathway, and a popular chemopreventive agent, EGCG, to investigate the key signaling molecules in thrombin-induced CTGF expression in GFs. The results of western blotting revealed that, the inhibitors of MAPK pathway, ASK1 inhibitor (thioredoxin), JNK inhibitor (SP600125), but not PI3K inhibitor (LY294002), ERK inhibitor (PD98059), p38 MAPK inhibitor (SB203580), could significantly reduce the level of thrombin-induced CTGF. In addition, antioxidant N-acetyl-L-cysteine (NAC), Rac-GTPase inhibitor (NSC-23766), NADPH oxidase inhibitors (apocynin and DPI), but not 5-lipoxygenase activating protein (FLAP) inhibitor (MK886), had the inhibitory effects on the thrombin-induced CTGF. Furthermore, AP-1 inhibitor (curcumin) and EGCG could also attenuate the stimulatory effect of thrombin on CTGF expression with a dose-dependent manner. These results suggested that thrombin-induced CTGF expression in GFs could be mediated by PAR1, ROS, ASK1, JNK and AP-1 pathways, and the ROS-generating NADPH oxidase may play a part in the pathways as well. EGCG also displays a chemopreventive potential in treating or preventing the recurrence of gingival overgrowth. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:59:12Z (GMT). No. of bitstreams: 1 ntu-100-P97422001-1.pdf: 2560772 bytes, checksum: 977b07718de5dc33374f09b719beb4a7 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
中文摘要 II Abstract III 目錄 IV 圖目錄 VI 第一章 導論 1 1-1 牙齦過度生長(Gingival overgrowth; GO) 1 1-1-1 藥物誘發之牙齦過度生長 (Drug-induced gingival overgrowth; DIGO) 1 1-1-2 遺傳性牙齦纖維瘤病(Hereditary gingival fibromatosis; HGF) 1 1-2 藥物誘發之牙齦過度生長的可能致病機轉 2 1-2-1 細胞外基質代謝異常 2 1-2-2 細胞激素平衡異常 2 1-3 遺傳性牙齦纖維瘤病的可能致病機轉 3 1-4 牙齦過度生長的治療策略 4 1-4-1 治療藥物誘發之牙齦過度生長 4 1-4-2 治療遺傳性牙齦纖維瘤病 5 1-5 凝血酶(Thrombin) 6 1-5-1 凝血酶的簡介 6 1-5-2 蛋白酶活化受器(Protease-activated receptors; PARs) 6 1-5-3 凝血酶與纖維化 7 1-6 結締組織生長因子(Connective tissue growth factor; CTGF) 8 1-6-1 CTGF的簡介 8 1-6-2 CTGF與纖維化 9 1-7 茶多酚(EGCG) 10 第二章 研究動機 11 第三章 研究材料及方法 12 3-1 細胞培養 12 3-2 藥物處理 12 3-3 西方點墨法 14 3-3-1 蛋白質萃取與定量 14 3-3-2 膠體配製與電泳分析 14 3-3-3 蛋白轉漬 15 3-3-4 免疫呈色 15 3-4 統計分析 16 第四章 結果 17 4-1 凝血酶可以誘導牙齦纖維母細胞CTGF的表現 17 4-2 凝血酶可經由PAR1誘導牙齦纖維母細胞CTGF的表現 17 4-3 ROS抑制劑、JNK抑制劑、ASK-1抑制劑及AP-1抑制劑能抑制凝血酶誘導之牙齦纖維母細胞CTGF的表現 17 4-4 ROS抑制劑NSC-23766、Apocynin、DPI能抑制凝血酶誘導之牙齦纖維母細胞CTGF的表現 18 4-5 EGCG能抑制凝血酶誘導之牙齦纖維母細胞CTGF的表現 18 第五章 討論 20 圖與表 24 參考文獻 35 | |
| dc.language.iso | zh-TW | |
| dc.subject | 茶多酚 | zh_TW |
| dc.subject | 牙齦過度生長 | zh_TW |
| dc.subject | 凝血酶 | zh_TW |
| dc.subject | 結締組織生長因子 | zh_TW |
| dc.subject | gingival overgrowth | en |
| dc.subject | EGCG | en |
| dc.subject | CTGF | en |
| dc.subject | thrombin | en |
| dc.title | 凝血酶誘導人類牙齦纖維母細胞結締組織生長因子表現之研究 | zh_TW |
| dc.title | Molecular Mechanisms for Thrombin-stimulated Connective Tissue Growth Factor Production in Human Gingival Fibroblasts | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張正琪,呂炫? | |
| dc.subject.keyword | 牙齦過度生長,凝血酶,結締組織生長因子,茶多酚, | zh_TW |
| dc.subject.keyword | gingival overgrowth,thrombin,CTGF,EGCG, | en |
| dc.relation.page | 41 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-08-08 | |
| dc.contributor.author-college | 牙醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床牙醫學研究所 | zh_TW |
| 顯示於系所單位: | 臨床牙醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
