請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24958
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 馮哲川 | |
dc.contributor.author | Siou-Cheng Lien | en |
dc.contributor.author | 練修成 | zh_TW |
dc.date.accessioned | 2021-06-08T05:59:05Z | - |
dc.date.copyright | 2007-08-28 | |
dc.date.issued | 2007 | |
dc.date.submitted | 2007-08-01 | |
dc.identifier.citation | 1. S. Strike and H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992).
2. H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov and M. Burns, J. Appl. Phys. 76, 1363 (1994). 3. S. N. Mohammad, Arnel A. Salvador and H. Morkoc, Proc. IEEE 83, 1306 (1995). 4. J.I. Pankove, M. Leksono, S.S. Chang, C. Walker, B. Van Zeghbroeck, MRS Internet Journal of Nitride Semiconducting Research 1, 39 (1996). 5. S.T. Sheppard, K. Doverspike, W.L. Pribble, S.T. Allen, J.W. Palmour, L.T. Kehias, T.J. Jenkins, IEEE Electronic Device Letters 20, 161 (1999). 6. M. S. Shur, Solid-State Electron. 42, 2131 (1998). 7. Isamu Akasaki and Hiroshi Amano, Jpn. J. Appl. Phys. 36, 5393 (1997). 8. B. Sanyal, O. Bengone, and S. Mirbt, Phys. Rev. B 68, 205210 (2003). 9. S. Nakamura, S. Pearton and G. Fasol, “The Blue Laser Diode – the complete story”, Springer, Berlin (2000). 10. H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Appl. Phys. Lett. 48, 353 (1986). 11. S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukail, Jpn. J. Appl. Phys., Part 2 34, L1332 (1995). 12. P. A. Crowell, D. K. Yong, S. Keller, E. L. Hu, and D. D. Awschalom, Appl. Phys. Lett. 72, 927 (1998). 13. P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl. Phys. Lett. 71, 569 (1997). 14. M. S. Minsky, S. B. Fleischer, A. C. Abare, J. E. Bowers, E. L. Hu, S. Keller, and S. P. Denbaars, Appl. Phys. Lett. 72, 1066 (1998). 15. K. L. Teo, J. S. Colton, P. Y. Yu, E. R. Weber, M. F. Li, W. Liu, K. Uchida, H. Tokunaga, N. Akutsu, and K. Matsumoto, Appl. Phys. Lett. 73, 1697 (1998). 16. P. Perlin, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. A. Shapiro, J. Kruger, E. R. Weber, and J. Yang, Appl. Phys. Lett. 73, 2778 (1998). 17. T. Wang, D. Nakagawa, M. Lachab, T. Sugahara, and S. Sakai, Appl. Phys. Lett. 74, 3128 (1999). 18. T. Wang, H. Saeki, J. Bai, M. Lachab, T. Shirahama, and S. Sakai, Appl. Phys. Lett. 76, 1737 (2000). 19. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, and I. Akasaki, Appl. Phys. Lett. 73, 1691 (1998). 20. J. Bai, T. Wang, and S. Sakai, J. Appl. Phys. 88, 4729 (2000). 21. D. Behr, J. Wagner, A. Ramakrishnan, H. Obloh, and K.-H. Bachem, Appl. Phys. Lett. 73, 241 (1998). 22. N. Wieser, O. Ambacher, H.-P. Felsl, L. Gorgens, and M. Stutzmann, Appl. Phys. Lett. 74, 3981 (1999). 23. S. Pereira, M. R. Correira, E. Pereira, K. P. O’Donnell, C. Trager-Cowan, F. Sweeney, and E. Alves, Phys. Rev. B 64, 205311 (2001). 24. M. R. Correia, S. Pereira, E. Pereira, J. Frandon, and E. Alves, Appl. Phys. Lett. 83, 4761 (2003). 25. S. J. Pearton, D. P. Norton, K. Ip, and Y. W. Heo T. Steiner, J. Vac. Sci. Technol. B 22.3., (2004). 26. M. Wraback, H. Shen, S. Liang, C. R. Gorla, and Y. Lu, Appl. Phys. Lett. 74, 507 (1999). 27. J.-M. Lee, K.-K. Kim, S.-J. Park, and W.-K. Choi, Appl. Phys. Lett. 78, 2842 (2001). 28. S. O. Kucheyev, J. E. Bradley, J. S. Williams, C. Jagadish, and M. V. Swain, Appl. Phys. Lett. 80, 956 (2002). 29. D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999). 30. G. Braunstein, A. Muraviev, H. Saxena, N. Dhere, V. Richter and R. Kalish, Phys. Lett. 87, 192103 (2005). 31. S. Nakashima and H. Harima, phys. stat. sol. (a) 162, 39 (1997). 32. Goldberg Yu., Levinshtein M.E. and Rumyantsev S.L., “in Properties of Advanced SemiconductorMaterials GaN, AlN, SiC, BN, SiC, SiGe”, Wiley, New York, (2001). 33. A. R. Verma and P. Krishna, “Polymorphism and Polytypism in Crystals”, Wiley, New York (1966). 34. L. Rayleigh, G. G. Stokes, Proc. Royal Soc. London 75, 199 (1905). 35. A. Smekal, Naturwiss. 11, 873 (1923). 36. G. Herzberg, “Infrared and Raman spectra of Polyatomic Molecules”, Van Nostrand, New York (1945). 37. Sir C. V. Raman, K. S. Krishnan, Ind. J. Phys. 2, 387 (1928). 38. Sir C. V. Raman, K. S. Krishnan, Nature 121, 501 (1928). 39. G. S. Landsberg, L. I. Mandelstam, Naturwiss. 16, 557 (1928). 40. G. Placzek, in Handbuck der Radiologie, ed. E. Marx, Vol. 6, part2, p. 209, Akademische Verlagsgesellschaft, Leipzig (1934). 41. Michael J. Pelletier, Ed., “Analytical Applications of Raman Spectroscopy”, Blackwell Science: Cambridge, MA, (1999). 42. Philip Kim, Teri W. Odom, Jin-Lin Huang, and Charles M. Lieber, Physical Review Letter , 82, 6, 1225-1228 (1999). 43. Bockrath M, Cobden DH, McEuen PL, et al. Science.275, 1922(1997). 44. Derek A. Long, “The Raman Effect: A Unified Treatment of the Theory of Raman Scattering by Molecules”, Wiley, England (2002). 45. R. Saito, G. Dresselhaus, and MS Dresselhaus., Physical Review B, 61, 2981(2000). 46. A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S. Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg, M. A. Pimenta, J. H. Hafner, C. M. Lieber, and R. Saito , Physical Review B , 65, 155412(2002). 47. R. Saito, A. Jorio, J. H. Hafner, C. M. Lieber, M. Hunter, T. McClure, G.Dresselhaus, and M. S. Dresselhaus, Physical Review B , 64, 085312(2001). 48. G. Bauer and W. Richter, “Optical characterization of Epitaxial Semiconductor Layers”, Springer (1996). 49. D. Nishikida, E. Nishio and R. W.Hannah, “Selected Application of Modern FT-IR Techniques”, Kodansha Ltd (1995). 50. Dieter K.Schroder, , “Semiconductor Material and Device Characterization”, John Wiley & Sons (1990). 51. Brian C. Smith, “Fundamentals of Fourier Transform Infrared Spectroscopy”, CRC Press, Inc. (1996). 52. C. J. Sun, J. W. Yang, Q. Chen, B. W. Lim, M. Zubair Anwar, M. Asif Khan, H. Temkin, D. Weismann and I. Brenner, Appl. Phys. Lett., vol 69, 668 (1996). 53. D. W. Berrman, Phys. Rev. vol. 130, 2193 (1963) 54. G. Yu, H. Ishikawa, M. Umeno, T. Egawa, J. Watanabe, T. Soga and T. Jimbo, Appl. Phys. Lett vol. 73, 1472 (1998). 55. Joseph H. Simmons and Kelly S. Potter, “Optical Materials”, San Diego, Academic Press, (2000). 56. A. H. Kitai, “Solid State Luminescence”, New York, Chapman & Hall, (1993). 57. Klaus D. Mielenz, “Optical Radiation Measurements”, New York, Academic Press, (1982). 58. Goldberg, “Luminescence of Inorganic Solids”, New York, Academic Press, (1966). 59. Bastard, Gerald, “Wave Mechanics applied to Semiconductor Heterostructures”, New York, Halsted Press, (1988). 60. J. Wagner, Phys. Rev. B4, 2002(1984). 61. Herman, Bimberg and Christen, J. Appl. Phys. 70 (1991): R1. 62. H. C. Yang, P. F. Kuo, T. Y. Lin, Y. F. Chen, K. H. Chen, L. C. Chen, and Jen-Inn Chyi, Appl. Phys. Lett. 76, 3712(2000). 63. T. Akasaka, S. Ando, T. Nishida, H. Saito, and N. Kobayashi, Appl. Phys. Lett. 79, 1414 (2001). 64. B. Monemar, Phys. Rev. B 8, 1051 (1973). 65. S. Nakamura, S. Pearton and G. Fasol, “The Blue Laser Diode – the complete story”, Springer, Berlin (2000). 66. B. Gil, Ed., “Group III Nitride Semiconductor Compounds”, Clarendon, Oxford (1998). 67. J. I. Pankove and T.D. Moustakas, Eds., “Gallium Nitride (GaN0 I, Semiconductors and Semimetals, Vol. 50, Academic, San Diego (1998). 68. H. Morkoc, Nitride Semiconductors and Devices, Springer, Berlin (1999). 69. S. C. Jain, M. Willander, J. Narayan, R. V. Overstraeten, “III-Nitrides: growth, characterization, and properties”, J. Appl. Phys. 87, 965 (2000). 70. Nakamura S, Senoh M, Iwana N, Nagahama S, Jpn J Appl. Phys. 34, 797 (1995). 71. Nakamura S, Senoh M, Nagahama S, Iwana N, Yamada T, Matsushita T, Kiyoku H, and Sugimoto Y, Appl. Phys. Lett. 68, 2105 (1996). 72. Y. Okada and Y. Tokumaru, J. Appl. Phys. 56, 314 (1984). 73. Properties of crystalline silicon, edited by R. Hull, EMIS datareview series No. 20 (1999). 74. M.S. Shur, and M.A. Khan, Mater. Res. Bull. 22, 44 (1997). 75. G.A. Slack, R.A. Tanzilli, R.O. Pohl, and J.W. Vandersande, J. Phys. Chem. Solids 48, 641 (1987). 76. E.K. Sichel and J.I. Pankove, J. Phys. Chem. Solids 38, 330 (1977). 77. Madelung, Semiconductors Group IV and III–V compounds (Springer, Berlin, 1991). 78. A. Dadgar et al., phys. stat. sol. (c) 0, No. 6 (2003). 79. P. Y. Yu and M. Cardona. “Fundamentals of Semiconductors”, Springer-Verlag (1996). 80. T. Kozawa, T. Kachi, H. Kano, Y. Taga, M. Hashimoto, N. Koide, and K. Manabe, J. Appl. Phys. 75, 1098 (1994). 81. T. Azuhata, T. Sota, K. Suzuki, and S. Nakamura, J. Phys.: Condens. Matter 7, L129 (1995). 82. V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, A. P. Mirgorodsky and R. A. Evaretov., Physical Review B 58(19), 12899 (1998). 83. G. Abstreiter, M. Cardona, and A. Pinczuk, Light Scattering in Solids IV, Topics in Applied Physics Vol. 54 , Springer, Berlin, (1984). 84. L. Artus, R. Cusco, J. Ibanez, N. Blanco, and G. Gonzalez-Diaz, Phys. Rev. B 60, 5456 (1999). 85. N H Zhang, X L Wang, Y P Zeng, H L Xiao, J X Wang, H X Liu and J M Li, J. Phys. D: Appl. Phys. 38, 1888 (2005). 86. Benyoucef M, Kuball M, Beaumont B and Gibart P 2002 Appl. Phys. Lett. 80 2275 87. Kisielowski C et al 1996 Phys. Rev. B 54 17745 88. Bairamov B H, Gぴurdal O, Botchkarev A, Morkoc H, Irmer G and Monecke J 1999 Phys. Rev. B 60 16741 89. Zhao D G, Xu S J, Xie M H and Tong S Y 2003 Appl. Phys. Lett. 83 677 90. Prokofyeva T, Seon M, Vanbuskirk J, Holtz M, Nikishin S A, Faleev N N, Temkin H and Zollner S 2001 Phys. Rev. B 63 125313 91. Gleize J, Renucci M A, Frandon J, Bellet-Amalric E and Baudin B 2003 J. Appl. Phys. 93 2065 92. Z. C. Feng, M. Pelczynski, C. Beckham, P. Cooke, I. Ferguson and R. A. Stall, Mat. Res. Soc. Symp. Proc. vol. 484 (1998). 93. Xiong Zhang, Yong-Tian Hou, Zhe-Chuan Feng and Jin-Li Chen, J. Appl. Phys. 89, 6165 (2001). 94. A. Dadgar, A. Strittmatter, J. Blasing, M. Poschenrieder, O. Contreras, P. Veit, T. Riemann, F. Bertram, A. Reiher, A. Krtschil, A. Diez, T. Hempel, T. Finger, A. Kasic, M. Schubert, D. Bimberg, F. A. Ponce, J. Christen, and A. Krost,phys. stat. sol. (c) 0, 1583(2003) 95. M. Wraback, H. Shen, S. Liang, C. R. Gorla, and Y. Lu, Appl. Phys. Lett. 74, 507 (1999). 96. J.-M. Lee, K.-K. Kim, S.-J. Park, and W.-K. Choi, Appl. Phys. Lett. 78, 2842 (2001). 97. S. O. Kucheyev, J. E. Bradley, J. S. Williams, C. Jagadish, and M. V. Swain, Appl. Phys. Lett. 80, 956 (2002). 98. D. C. Look, J. W. Hemsky, and J. R. Sizelove, Phys. Rev. Lett. 82, 2552 (1999). 99. S. K. Hong, H. J. Ko, Y. Chen, T. Hanada and T. Yao, J. Crystal Growth, 81, 214, (2000). 100. F. Hamdani, M. Yeadon, D. Smith, H. Tang, W. Kim, A. Salvador, A.E. Botchkarev, J.M. Gibson, A.Y. Polyakov, M. Skowronski, and H. Morkoc, J. Appl. Phys., 83, 2, (1998). 101. E.M. Wong, P.C. Searson, Appl. Phys. Lett. 74 (1999) 2939. 102. X.L. Guo, J.H. Choi, H. Tabata, T. Kawai, Jpn. J. Appl. Phys. Part 2 40 (2001) L177. 103. X. Gu, M. A. Reshchikov, A. Teke, D. Johnstone, H. Morkoc, B. Nemeth, and J. Nause, Appl. Phys. Lett. 84, 2268 (2004). 104. G. Namkoong, S. Burnham, K. Lee, E. Trybus, W. A. Doolittle, M. Losurdo, P. Capezzuto, G. Bruno, B. Nemeth, and J. Nause, Appl. Phys. Lett. 87, 184104-1 (2005). 105. A. Kobayashi, J. Ohta, and H. Fujioka, Appl. Phys. Lett. 99, 123513 (2004). 106. Nola Li, Eun-Hyun Park, Yong Huang, Shenjie Wang, Adriana Valencia, Bill Nemeth, Jeff Nause, and Ian Ferguson, Proc. of SPIE Vol. 6337, 63370Z (2006). 107. R. Paszkiewicz, B. Paszkiewicz, R. Korbutowicz, J. Kozlowski, M. Tlaczala, L. Bryja, R. Kudrawiec, and J. Misiewicz, Cryst. Res. Technol., 36, 971, (2001). 108. E. S. Hellman, D. N. E. Buchanan, D. Wiesmann, and I. Brener, MRS Internet J. Nitride Semicond. Res. 1, 16 , (1996). 109. I. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996). 110. D. Doppalapudi, S. N. Basu, K. F. Ludwig Jr., and T. D. Moustakas, J. Appl. Phys. 84, 1389 (1998). 111. N. A. EI-Masry, E. L. Piner, S. X. Liu, and S. M. Bedair, Appl. Phys. Lett. 72, 40 (1998). 112. Z. C. Feng, T. R. Yang, R. Liu, and T. S. A. Wee, Mater. Sci. in Semi. Proce. 5, 39 (2002). 113. A. Tabata, L. K. Teles, L. M. R. Scolfaro, J. R. Leite, A. Kharchenko, T. Frey, D. J. As, D. Schikora, K.Lischka, J. Furthmuller, and F. Bechstedt, Appl. Phys. Lett. 80, 769 (2002). 114. S. Y. Karpov, MRS Internet J. Nitride Semicond. Res. 3, 16 (1998). 115. M. Liu, A. H. Kitai, and P. Mascher, J. Lumin. 54, 35 (1992). 116. C.A. Arguello, D.L. Rousseau, and S.P.S. Porto, Phys. Rev. B 181 (1969) 1351 116. C.A. Arguello, D.L. Rousseau, and S.P.S. Porto, Phys. Rev. B 181 (1969) 1351 117. S. Hernandez, R. Cusco, D. Pastor, L. Artus, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi and E. Calleja, J. Appl. Phys. 98, 013511 (2005) 118. S. Nakamura, S. Pearton and G. Fasol, “The Blue Laser Diode – the complete story”, Springer, Berlin (2000). 119. Zhou Xin, Gu Shulin, Zhu Shunming, Ye Jiandong, Liu Wei Liu Songmin, Hu Liqun, Zheng Youdou, Zhang Rong and Shi Yi, Chinese Journal of Semiconductors 27, 249 (2006) 120. A. R. Verma and P. Krishna, Polymorphism and Polytypism in Crystals, Wiley, New York (1966). 121. W. J. Choyke and G. Pensl, Mater. Res. Bull. 22, 25 (1997). 122. Hiroshi Harima, shin-ichi Nakashima, and Tomoki Uemura, J. Appt. Phys. 78 (3), 1996 (1995) 123. D. W. Feldman, J. H. Parker, Jr., W. J. Choyke, and L. Patrick, Phys. Rev. 170, 698 (1968). 124. D. W. Feldman, J. H. Parker, Jr., W. J. Choyke, and L. Patrick, Phys. Rev. 173, 787 (1968). 125. I. S. Gorban and V. I. Lugovoi, Soviet Phys. - Solid State 17, 1385 (1975). 126. G. B. Dubrovskii and A. A. Lepneva, Soviet Phys. - Solid State 25, 1330 (1983). 127. S. Nakashima, H. Katahama, Y. Nakakura, and A. Mitsuishi, Phys. Rev. B 33, 5721 (1986). 128. S. Nakashima, Y. Nakakura, and Z. Inoue, J. Phys. Soc. Japan 56, 359 (1987). 129. S. Nakashima, A. Wada, and Z. Inoue, J. Phys. Soc. Japan 56, 3375 (1987). 130. S. Nakashima and K. Tahara, Phys. Rev. B 40, 6339 (1989). 131. S. Nakashima and K. Tahara, Phys. Rev. B 40, 6345 (1989). 132. S. Nakashima, Y. Nakakura, A. Wada, and K. Kunc, J. Phys. Soc. Japan 57, 3228 (1988). 133. S. Nakashima and M. Hangyo, Solid State Commun. 80, 21 (1991). 134. S. Nakashima, K. Kisoda, and J.-P. Gauthier, J. Appl. Phys. 75, 5354 (1994). 135. M. Cardona (Ed.), Light Scattering in Solids I, Springer-Verlag, Berlin/Heidelberg/New York 1983. 136. M. V. Klein, Light Scattering in Solids, edited by M. Cardona (Springer, Berlin, 1975), p. 147. 137. J. C. Burton, L. Sun, M. Pophristic, S. J. Lukacs, and F. H. Long, J. Appl. Phys. 84, 6268 (1998). 138. E. Martin, J. Jime´nez, and M. Chafai, Solid-State Electron. 42, 2309 (1998). 139. Z. C. Feng, A. J. Mascarenhas, W. J. Choyke, and J. A. Powell, J. Appl. Phys. 64, 3176 (1988). 140. D.W. Feldman, J. H. Parker,W. J. Choyke, and L. Patrick, Phys. Rev. 170, 698 (1968). 141. D.W. Feldman, J. H. Parker,W. J. Choyke, and L. Patrick, Phys. Rev. 173, 787 (1968). 142. P. J. Colwell and M. V. Klein, Phys. Rev. B 6, 2380 (1972). 143. G. Irmer, V. V. Toporov, B. H. Bairamov, and J. Monecke, Phys. Status Solidi B 119, 595 (1983). 144. H. Yugami, S. Nakashima, and A. Mitsuishi, J. Appl. Phys. 61, 354 (1987). 145. M. Chafai ,A. Jaouhari, A. Torres, R. Anto´ n, E. Martı´n, and J. Jime´nez and W. C. Mitchel, J. Appl. Phys., Vol. 90, No. 10, 15 November (2001). 146. G. Jrmer, V. V. Toporov, B. H. Bairamov, and J. Monecke, Phys. Status Solidi B 119, 595 (1983). 147. 13G Inner, W. Siegel, G. Kiihnel, J. Monecke, F. M. M. Yasuoka, B. H. Bairamov, and V. V. Toporov, Semicond. Sot. Technol. 6, 1072 (1991). 148. G. Irmer, M. Wenzel, and J. Monecke, Phys. Rev. B 56, 9524 (1997). 149. W. S. Li, Z. X. Shena, Z. C. Feng and S. J. Chua, J. Appl. Phys., Vol. 87, No. 7, 1 April (2000). 150. H. Tang and I. P. Herman, Phys. Rev. B 43, 2299 (1991). 151. M. Balkanski, R. F. Wallis, and E. Haro, Phys. Rev. B 28, 1928 (1983). 152. J. Menendez and M. Cardona, Phys. Rev. B 29, 2051 (1984). 153. K-H. Hellwege ed. ,“Numerical Data and Functional Relationships in Science and Technology”, New Series, (Springer, Berlin, 1982), Vol. 17, p. 491. 154. H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P. Litvinchuk, A. Hoffmann, and C. Thomsen, Phys. Rev. B 55, 7000 (1997). 155. Yang Zhang, Bixia Lin, Xiankai Sun, and Zhuxi Fu, Appl. Phys. Lett. 86 (2005), 131910 156. J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, Q. Chen, H. Q. Yu, and Y. D. Ye, Appl. Phys. Lett. 88 (2006), 101905 157. Sang-Moo Park, Tomoaki Ikegami, and Kenji Ebihara, ThinSolidFilms 513 (2006), 90 158. Huichao Zhu, Guotong Du, Xiangping Li, Yuantao Zhang, Yongguo Cui, Keke Huang, Xiaochuan Xia, Tianpeng Yang, Baolin Zhang, and Yuchun Chang, Semicond. Sci. Technol. 21 (2006), 1090 159. V. Bhosle, A. Tiwari, and J. Narayan, Appl. Phys. Lett. 88 (2006), 032106 160. G. W. Cong, H. Y. Wei, P. F. Zhang, W. Q. Peng, J. J. Wu, X. L. Liu, C. M. Jiao, W. G. Hu, Q. S. Zhu, and Z. G. Wang, Appl. Phys. Lett. 87 (2005), 231903 161. Masahiro Kunisu, Fumiyasu Oba, Hidekazu Ikeno, and Isao Tanaka, and Tomoyuki Yamamoto, Appl. Phys. Lett. 86 (2005), 121902 162. Tae-Bong Hur, Yoon-Hwae Hwang, and Hyung-Kook Kim, J. Appl. Phys. 96 (2004), 1507 163. Y. Ma, G. T. Du, S. R. Yang, Z. T. Li, B. J. Zhao, X. T. Yang, T. P. Yang, Y. T. Zhang, and D. L. Liu, J. Appl. Phys. 95 (2004), S55-S61. 164. H.-K. Kim, S.-H. Han, T.-Y. Seong, and W.-K. Choi, Appl. Phys. Lett. 77, 1647 (2000). 165. X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, and H. Ma, Thin Solid Films 483, 296 (2005). 166. B. Kumar, H. Gong, and R. Akkipeddi, J. Appl. Phys. 97, 063706 (2005). 167. K. Ip, Y. W. Heo, K. H. Baik, D. P. Norton, S. J. Pearton, and F. Ren, Appl. Phys. Lett. 84, 544 (2004). 168. G. X. Hu, B. Kumar, H. Gong, E. F. Chor, and P. Wu, Appl. Phys. Lett. 88, 101901 (2006). 169. K. Minegishi, Y. Koiwai, and K. Kikuchi, Jpn. J. Appl. Phys., Part 2 36, L1453 (1997). 170. T. Aoki, Y. Shimizu, A. Miyake, A. Nakamura, Y. Nakanishi, and Y. Hatanaka, Phys. Status Solidi B 229, 911 (2002). 171. K.-K. Hwang, H.-S. Kim, J.-H. Lim, J.-Y. Oh, J.-H. Yang, S.-J. Park, K.-K. Kim, D. C. Look, and Y. S. Park, Appl. Phys. Lett. 86, 151917 (2005). 172. K.-K. Kim, H.-S. Kim, D.-K. Hwang, J.-H. Lim, and S.-J. Park, Appl. Phys. Lett. 83, 63 (2003). 173. S. Jang, J.-J. Chen, B. S. Kang, F. Ren, D. P. Norton, S. J. Pearton, J. Lopata, and W. S. Hobson, Appl. Phys. Lett. 87, 222113 (2005). 174. G. X. Hu, H. Gong, E. F. Chor, and P. Wu, Appl. Phys. Lett. 89, 021112 (2006). 175. Z. G. Yu, H. Gong, and P. Wu, Appl. Phys. Lett. 88, 132114 (2006). 176. Z. G. Yu, H. Gong, and P. Wu, Chem. Mater. 17, 852 (2005). 177. F. X. Xiu, Z. Yang, L. J. Mandalapu, and J. L. Liu, Appl. Phys. Lett. 88, 152116 (2006). 178. Y. R. Ryu, T. S. Lee, and H. W. White, Appl. Phys. Lett. 83, 87 (2003). 179. F. X. Xiu, Z. Yang, L. J. Mandalapu, D. T. Zhao, J. L. Liu, and W. P. Beyermann, Appl. Phys. Lett. 87, 152101 (2005). 180. S. Sun, G.S. Tompa, C. Rice, P. Masaun, J.B. Wang, Z.S. Lee, T.W. Kuo and Z.C. Feng, Proceedings of Chinese Society of Materials Science (CSMS) 2005 Annual Meeting, 4-pages, CD 4-1-I002. 181. N.H. Nickel, K. Fleischer, Phys. Rev. Lett. 90 (2003) 197402. 182. G.-C. Yi, B.W. Wessels, Appl. Phys. Letts. 70 (1997) 357. 183. Xiaonan Li, Sally E. Asher, Sukit Limpijumnong, Brian M. Keyes, Craig L. Perkins, Teresa M. Barnes, Helio R. Moutinho, Joseph M. Luther, S.B. Zhang, Su-Huai Wei, Timothy J. Coutts, Journal of Crystal Growth 287 (2006) 94–100 184. M. Izaki, S. Watase, and H. Takahashi, Appl. Phys. Lett. 83, 4930 (2003) 185. Guangxia Hu ,Hao Gong, E. F. Chor and Ping Wu, Appl. Phys. Lett. 89, 251102 (2006) 186. M. S. Miao, Sukit Limpijumnong, and Walter R. L. Lambrecht, Appl. Phys. Lett. 79, 4360 (2001) 187. J. Q. Liu, M. Skowronski, C. Hallin, R. Soderholm, and H. Lendenmann, Appl. Phys. Lett. 80, 749 (2002) 188. J. Q. Liu, H. J. Chung, T. Kuhr, Q. Li, and M. Skowronski, Appl. Phys. Lett. 80, 2111 (2002) 189. J. A. Powell, D. J. Larkin, and A. J. Trunek, Mater. Sci. Forum 264, 421, (1998) 190. L. J. Brillson, S. Tumakha, G. H. Jessen, R. S. Okojie, M. Zhang, and P. Pirouz, Appl. Phys. Lett. 81, 2785 (2002) 191. Yu. A. Vodakov, A.D. Roenkov, M.G. RAMM, E.N. MOKHOV, and Yu. N. MaKAROV, Phys. Stat. Sol. (b), 202, P177 (1997) 192. Robert S. Okojie, Ming Xhang, Pirouz Pirouz, Sergey Tumakha, Gregg Jessen, and Leonard J. Brillson, Appl. Phys. Lett. 79, 3056 (2001) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24958 | - |
dc.description.abstract | 光學量測對於分析半導體材料具有很重要的地位,尤其是對於材料的結構、特性,甚至是物理機制。而近幾年的寬能隙半導體材料,由於它的材料特性非常適合應用在現今生活的電器設備用品上,譬如:發光二極體、積體電路原件…等,所以被廣泛而且深入的研究,縱使已經有不少上市產品應用寬能隙半導體為材料,但是仍然有許多的問題與困難需要被解答被突破,因此,我們將針對目前的許多挑戰做出研究。
拉曼散射是在研究半導體材料的晶格震動,我們可以藉由晶格的震動來判斷研究的材料或樣品的品質和成分,由於拉曼散射實驗是非破壞性的光學量測技術,非常的方便且不需繁雜的事前準備或樣品處理,所以我們著重於拉曼研究的應用,將所研究的樣品都經由拉曼散射實驗做初步的瞭解與分析,可以幫助我們在樣品的結構、成長或各種變因上做調變,有效而且快速的提供正確且有用的資訊。 除了拉曼散射實驗,我們還會使用各種不同的光學量測系統得到更多的材料特性,進而得出相互驗證的結果,例如使用光激發螢光量測系統可以快速又可靠的得到材料中能階結構與載子躍遷行為,也是一個有力又無破壞性的技術,而搭配上螢光激發光譜將可得到更完善的能隙或雜質能階譜線。傅氏轉換紅外線光譜儀則可以判斷長晶薄膜的厚度,樣品中是否含有雜質,並將其配合拉曼實驗可以得到完整的晶格震動譜線; X光繞射儀就是利用X光進入晶體時,會被原子散射,當存在某種相位關係(相位差)兩個或兩個以上散射波相互疊加後,就會產生繞射現象。偵測器收集到繞射訊號強度,得到待測樣品的繞射圖譜,此繞射圖譜一般來說是以繞射強度對繞射角作圖,將此繞射圖譜經過結晶面標定過程後,便可得到樣品的結晶結構。 在這篇論文中,我們將藉由上述各項技術,對於將氮化鎵長在矽基板上的研究做結構上的分析。我們準備了三種不同結構的樣品,做了各種不同的實驗之後得到證實多層模結構(GaN/AlGaN/HT-GaN/LT-GaN)以及緩衝層(HT-GaN)對於將氮化鎵成長在矽基板上有很大的幫助,多層模結構可以有效的減少成長氮化鎵薄膜時所產生的應力,而緩衝層可以幫助氮化鋁鎵的成長,使得多層模結構可以有效的成長並發揮作用。 接著會研究嘗試將氮化銦鎵與氮化鎵長在氧化鋅基板上的樣品,因為氮化鎵與氧化鋅的晶格常數相近,所以期望可以長出高品質的薄膜。但是又因為我們選擇使用目前普遍廣泛應用的長晶方式:有機金屬化學氣相沈積磊晶技術,使得氮化鎵與氧化鋅在成長的條件上有了衝突,實驗結果清楚顯示出這個問題。在氮化鎵長在氧化鋅基板上的樣品,我們無法得到氮化鎵的發光,原因在於長晶溫度使得氧與鋅擴散進入氮化鎵發光層,造成過多雜質能階,形成非輻射躍遷;而在氮化銦鎵的樣品上,藉由氮化鎵的緩衝層,成功的將氮化銦鎵成長在氧化鋅基板上,並且可以得到氮化銦鎵的發光,不過由於相同的擴散原因,使得氮化銦鎵的發光頻率有明顯的紅移現象。 最後是研究可能成為新興電子材料的碳化矽以及其晶格震動與自由載子和溫度變化之間對材料特性所造成的影響。已經有許多的研究報告顯示,我們可以藉由拉曼散射中,縱向光學聲子與等離子體激元的耦合模來判斷估計出高濃度摻雜的碳化矽材料的摻雜濃度,而拉曼散射模態對於溫度的變化也有不少研究發表,但是我們發現縱向光學聲子與等離子體激元的耦合模對於溫度的變化與其他拉曼模態有不同的行為模式,而且其行為模式與摻雜的濃度也有關係,我們認為此現象應該是等離子體在升溫時能量變大所致。 | zh_TW |
dc.description.abstract | A series of optical characterization techniques, including Raman scattering, Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL), photoluminescence excitation (PLE) and X-ray diffraction (XRD), were employed to assess wide band gap semiconductors which are semiconductor materials with electronic band gaps larger than an electronvolt (eV) or two. They have been expected to be applied to various optoelectronic devices such as light emitting diodes (LED), lasers, and electron-beam sources. In this thesis, we study the optical properties, especially on Raman scattering, of gallium nitride (GaN), indium gallium nitride (InGaN) and silicon carbide (SiC).
We use different structures of samples to do experiments and can summarize that GaN/AlGaN/HT-GaN/LT-GaN multilayer and HT-GaN layers affect the performances of GaN films grown on Si substrate very much from chapter 3. The GaN/AlGaN/HT-GaN/LT-GaN multilayer can decrease the strain of GaN films and increase their qualities. The HT-GaN layer can help the growth of AlGaN layer and let the multilayer perform well. At chapter 4, we have experimental data to confirm the successful growth of the InGaN on ZnO with a GaN buffer layer and poor performance of GaN film grown on ZnO substrate because of the diffusion of Zn and O into the GaN layer. Because ZnO is a wurtzite semiconductor with a small c-plane lattice mismatch of 1.8% from wurtzite GaN, we expect a good quality of GaN films grown on ZnO substrate. And InGaN, a GaN-based alloy with a composition of 18% In, also possesses a perfect lattice-match with ZnO in the a-axis direction. Due to that MOCVD is the dominant growth technology for GaN-based materials and devices, there is a need to more fully explore this technique for ZnO substrates. However, there is a problem for MOCVD growth of GaN and InGaN on ZnO substrates in different requested growth temperature. We can’t get the PL spectrum of GaN film grown on ZnO substrate and there is a red shift of the PL spectrum coming from InGaN film. The reason is the diffusion of Zn and O. Finally, we study Raman scattering on 4H-SiC with two varied factors: temperature and free carrier concentration. There are many journals and reports of LOPC modes on high doping samples. And there are also many discussions about temperature-dependent Raman scattering. But we find out an unusual dependence of the LOPC mode shift with temperature in chapter 5. We suppose that it results from excited plasma by increasing temperature. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:59:05Z (GMT). No. of bitstreams: 1 ntu-96-R94941036-1.pdf: 2833131 bytes, checksum: 7ee77fc6c3ed353b2ff8f6e304971adb (MD5) Previous issue date: 2007 | en |
dc.description.tableofcontents | 口試委員會審定書..........................................i
致謝.....................................................ii 摘要....................................................iii Abstract..................................................v Content.................................................vii Lists of Figures.........................................ix Lists of Tables........................................xiii Chapter 1 Introduction....................................1 Reference.................................................6 Chapter 2 Experimental theory and setup...................9 2.1. Raman scattering.................................9 2.2. Fourier transform infrared spectroscopy (FTIR)..15 2.3. Photoluminescence (PL)..........................19 2.4. Photoluminescence excitation (PLE)..............25 2.5. X-ray diffraction (XRD).........................27 2.6. Varied temperature system.......................30 Reference................................................32 Chapter 3 The efficacy of multilayer for GaN grown on Si substrate................................................35 3.1. Sample structure and information................35 3.2. Experimental results of samples.................38 3.3. Conclusions.....................................48 Reference................................................49 Chapter 4 Successful growth of InGaN and GaN on ZnO substrate................................................52 4.1. Growth processing and sample information........52 4.2. Analyses of lattice vibration and electron transition...............................................56 4.3. Conclusions.....................................67 Reference................................................68 Chapter 5 Bulk 4H-SiC dependent with free carrier concentration............................................71 5.1. polytype and LOPC mode of SiC...................71 5.2. Raman modes varied with temperature and free carrier concentration....................................73 5.3. Conclusions.....................................84 Reference................................................85 Appendix I Performance of p-ZnO grown on sapphire substrate................................................88 I.1. The challenge of p-ZnO growth...................88 I.2. Optical properties of p-ZnO.....................90 I.3. Conclusions.....................................95 Reference................................................96 Appendix II More results of InGaN and GaN grown on ZnO substrate................................................99 II.1. Samples information.............................99 II.2. Experimental data review.......................100 II.3. Conclusions....................................103 Appendix III Polytype Transformation of SiC bulk wafer..104 III.1. Motivation.....................................104 III.2. Results of polytype structure..................105 III.3. Conclusions....................................109 Reference...............................................110 | |
dc.language.iso | en | |
dc.title | 寬能隙半導體:氮化鎵、氮化銦鎵和碳化矽之拉曼研究 | zh_TW |
dc.title | Raman Studies of Wide Band Gap Semiconductors:
GaN, InGaN and SiC | en |
dc.type | Thesis | |
dc.date.schoolyear | 95-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 管傑雄,黃建璋 | |
dc.subject.keyword | 拉曼散射,氮化鎵,氮化銦鎵,碳化矽, | zh_TW |
dc.subject.keyword | Raman scattering,GaN,InGaN,SiC, | en |
dc.relation.page | 110 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2007-08-01 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
顯示於系所單位: | 光電工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-96-1.pdf 目前未授權公開取用 | 2.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。