Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24954
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor孫岩章
dc.contributor.authorYu-Ting Yangen
dc.contributor.author楊玉婷zh_TW
dc.date.accessioned2021-06-08T05:59:00Z-
dc.date.copyright2007-08-03
dc.date.issued2007
dc.date.submitted2007-08-01
dc.identifier.citation1. 呂宜玲 1997 植物對過氧硝酸乙烯酯的吸收及其反應。國立台灣大學植物病蟲害研究所論文。
2. 行政院環保署 1994 室內空氣品質建議值。行政院環保署。
3. 孫岩章 1993 綠色植物淨化空氣的機能。科學農業41(7, 8): 163-176。
4. 孫岩章 1999 利用空氣清淨生態系統裝置改善室內空氣品質的一種設計。中華民國環境保護學會會誌 22:131-141。
5. 孫岩章 2001 環境污染與公害鑑定。第二版,科技圖書。台北。
6. 孫岩章 2006 空氣品質淨化區主要六種樹種全年淨化空氣汙染物總量評估計畫期中報告。行政院環保署科技計畫。
7. 孫岩章、曹慧嫺 2006 室內無塵無菌綠化環保生態箱之建構。室內空氣品質管理研討會,中華民國環境保護學會與行政院環境保護署。
8. 陳彥宇 2006 常見室內植物對甲醛及二氧化碳之吸收及反應。國立台灣大學植物病理與微生物學研究所論文。
9. 曹慧嫻 2001 常見室內植物對甲醛之吸收及其反應。國立台灣大學植物病理學研究所論文。
10. 蘇惠貞 2006 室內空氣品質的健康影響、防制與管理。室內空氣品質管理研討會。中華民國環境保護學會與行政院環境保護署。
11. 蘇國澤 2006 室內空氣汙染之監測。室內空氣品質管理研討會。中華民國環境保護學會與行政院環境保護署。
12.日本厚生省2000揮性有機化合物(Total Volatile Organic Compounds: TVOC)ソ空質指針策定ソ考り方ズコゆサЁЧヱгヨЗ(室空染)問題ズエペ討中間報告書-第4回及ヂ第5回ソネシバ厚生省
13. Agrawal, M., and Deepak, S. S. 2003. Physiological and biochemical responses
of two cultivars of wheat to elevated levels of CO2 and SO2, singly and in
combination. Environmental Pollution 121 (2):189-197.
14. Andersson, K., Bakke, J. V., Bjorseth, O., Bornehag, C. G., Clausen, G., Hongslo,
J. K., Kjellman, M., Kjaergaard, S., Levy, F., Molhave, L., Skerfving, S., and
Sundell, J. 1997. TVOC and health in non-industrial indoor environments -
Report from a Nordic scientific consensus meeting at Langholmen in Stockholm,
1996. Indoor Air-International Journal of Indoor Air Quality and Climate 7
(2):78-91.
15. Apte, M. G., Fisk, W. J., and Daisey, J. M. 2000. Associations between indoor
CO2 concentrations and sick building syndrome symptoms in US office
buildings: An analysis of the 1994-1996 BASE study data. Indoor
Air-International Journal of Indoor Air Quality and Climate 10 (4):246-257.
16. Ballesta, P. P., Field, R. A., Connolly, R., Cao, N., Caracena, A. B., and Saeger, E.
D. 2006. Population exposure to benzene: One day cross-sections in six
European cities. Atmospheric Environment 40:3355-3366.
17. Brown, S. K., Sim, M. R., Abramson, M. J., and Gray, C. N. 1994.
Concentrations of volatile organic-compounds in indoor air - A review. Indoor
Air-International Journal of Indoor Air Quality and Climate 4 (2):123-134.
18. Collins, C. D., Bell, J. N. B., and Crews, C. 2000. Benzene accumulation in
horticultural crops. Chemosphere 40 (1):109-114.
19. Collins, C., Fryer, M., and Grosso, A. 2006. Plant uptake of non-ionic organic
chemicals. Environmental Science & Technology 40 (1):45-52.
20. Cornejo, J. J., Munoz, F. G., Ma, C. Y., and Stewart, A. J. 1999. Studies on the
decontamination of air by plants. Ecotoxicology 8 (4):311-320.
21. Culotta, L., Gianguzza, A., and Orecchio, S. 2005. Leaves of Nerium oleander L.
57
as bioaccumulators of polycyclic aromatic hydrocarbons (PAH) in the air of
Palermo (Italy): Extraction and GC-MS analysis, distribution and sources.
Polycyclic Aromatic Compounds 25 (4):327-344.
22. Da Silva, J. A. T., Giang, D. D. T., and Tanaka, N. 2006. Photoautotrophic
micropropagation of Spathiphyllum. Photosynthetica 44 (1):53-61.
23. De Kempeneer, L., Sercu, B., Vanbrabant, W., Van Langenhove, H., and
Verstraete, W. 2004. Bioaugmentation of the phyllosphere for the removal of
toluene from indoor air. Applied Microbiology and Biotechnology 64
(2):284-288.
24. Ellacott, M. V., and Reed, S. 1999. Development of robust indoor air quality
models for the estimation of volatile organic compound concentrations in
buildings. Indoor and Built Environment 8 (6):345-360.
25. Environment Australia. 2001. Air toxics and indoor air quality in Australia.
www.environment.gov.au/atmosphere/airquality/indoorair/
26. EPA. 2007. An Introduction to Indoor Air Quality. www.epa.gov/iaq/voc.html
27. Franco, J. A., Martinez-Sanchez, J. J., Fernandez, J. A., and Banon, S. 2006.
Selection and nursery production of ornamental plants for landscaping and
xerogardening in semi-arid environments. Journal of Horticultural Science &
Biotechnology 81 (1):3-17.
28. Ghannoum, O., Caemmerer, S. V., Ziska, L. H., and Conroy, J. P. 2000. The
growth response of C4 plants to rising atmospheric CO2 partial pressure: a
reassessment. Plant, Cell and Environment 23:931-942.
29. Godish, T., and Guindon, C. 1989. An assessment of botanical air purification as
a formaldehyde mitigation measure under dynamic laboratory chamber
conditions. Environmental Pollution 62 (1):13-20.
30. Hill, A. C. 1971. Vegetation: A sink for atmospheric pollutants. Journal of the Air
58
Pollution Control Association 21:341-346.
31. Hodgson, A. T. 1995. A review and a limited comparison of methods for
measuring total volatile organic compounds in indoor air. Indoor
Air-International Journal of Indoor Air Quality and Climate 5 (4):247-257.
32. Infante, P. F., Rinsky. R. A., Wagoner, J. K., and Young, R. J. 1977. Leukaemia in
benzene workers. The Lancet 2:76–78.
33. Jen, M. S., Hoylman, A. M., Edwards, N. T., and Walton, B. T. 1995.
Experimental method to measure gaseous uptake of C-14-toluene by foliage.
Environmental and Experimental Botany 35 (3):389-398.
34. Johnson, E. S., Langard, S., and Lin, Y. S. 2007. A critique of benzene exposure
in the general population. Science of the Total Environment 374 (2-3):183-198.
35. Jokl, M. V. 2000. Evaluation of indoor air quality using the decibel concept
based on carbon dioxide and TVOC. Building and Environment 35 (8):677-697.
36. Jones, A. P. 1999. Indoor air quality and health. Atmospheric Environment 33
(28):4535-4564.
37. Keymeulen, R., Schamp, N., and Vanlangenhove, H. 1993. Factors affecting
airborne monocyclic aromatic hydrocarbon uptake by plants. Atmospheric
Environment Part a, 27 (2):175-180.
38. Keymeulen, R., Schamp, N., and Vanlangenhove, H. 1995. Uptake of gaseous
toluene in plant-leaves - a 2 compartment model. Chemosphere 31
(8):3961-3975.
39. Kimball, B. A., Zhu, J., Cheng, L., Kobayashi, K., and Bindi, M. 2002.
Responses of agricultural crops to free-air CO2 enrichment. Yingyong Shengtai
Xuebao 13 (10):1323-1338.
40. Korner, C. 2006. Plant CO2 responses: an issue of definition, time and resource
supply. New Phytologist 172 (3):393-411.
59
41. Korte, F., Kvesitadze, G., Ugrekhelidze, D., Gordeziani, M., Khatisashvili, G.,
Buadze, O., Zaalishvili, G., and Coulston, F. 2000. Organic toxicants and plants.
Ecotoxicology and Environmental Safety 47 (1):1-26.
42. Lawlor, D. W. 1995. Photosynthesis, productivity and environment. Journal of
Experimental Botany 46:1449-1461.
43. Lawlor, D. W., and Mitchell, R. A. C. 1991. The effects of increasing co2 on crop
photosynthesis and productivity - A review of field studies. Plant Cell and
Environment 14 (8):807-818.
44. Leuning, R., Neumann, H. H., and Thurtell, G. W. 1979. Ozone uptake by corn
(zea-mays-l) - general-approach. Agricultural Meteorology 20 (2):115-135.
45. Liao, S. S. T., Baconshone, J., and Kim, Y. S. 1991. Factors influencing indoor
air-quality in Hong-Kong - measurements in offices and shops. Environmental
Technology 12 (9):737-745.
46. Liu, Y. J., Mu, Y. J., Zhu, Y. G., Ding, H., and Arens, N. C. 2007. Which
ornamental plant species effectively remove benzene from indoor air?
Atmospheric Environment 41 (3):650-654.
47. Orwell, R. L., Wood, R. A., Burchett, M. D., Tarran, J., and Torpy, F. 2006. The
potted-plant microcosm substantially reduces indoor air VOC pollution: II.
Laboratory study. Water Air and Soil Pollution 177 (1-4):59-80.
48. Orwell, R. L., Wood, R. L., Tarran, J., Torpy, F., and Burchett, M. D. 2004.
Removal of benzene by the indoor plant/substrate microcosm and implications
for air quality. Water Air and Soil Pollution 157 (1-4):193-207.
49. Park, J. S., and Ikeda, K. 2006. Variations of formaldehyde and VOC levels
during 3 years in new and older homes. Indoor Air 16 (2):129-135.
50. Posniak, M., Makhniashvili, I., and Koziel, E. 2005. Volatile organic compounds
in the indoor air of Warsaw office buildings. Indoor and Built Environment 14
60
(3-4):269-275.
51. Rehwagen, M., Schlink, U., and Herbarth, O. 2003. Seasonal cycle of VOCs in
apartments. Indoor Air 13 (3):283-291.
52. Rennix, C. P., Quinn, M. M., Amoroso, P. J., Eisen, E. A., and Wegman, D. H.
2005. Risk of breast cancer among enlisted army women occupationally exposed
to volatile organic compounds. American Journal of Industrial Medicine 48
(3):157-167.
53. Righi, E., Aggazzotti, G., Fantuzzi, G., Ciccarese, V., and Predieri, G. 2002. Air
quality and well-being perception in subjects attending university libraries in
Modena (Italy). Science of the Total Environment 286 (1-3):41-50.
54. Rogers, H. H., and Dahlman, R. C. 1993. Crop responses to CO2 enrichment.
Vegetatio 104:117-131.
55. Salt, D. E., Blaylock, M., Kumar, N., Dushenkov, V., Ensley, B. D., Chet, I., and
Raskin, I. 1995. Phytoremediation - a novel strategy for the removal of toxic
metals from the environment using plants. Bio-Technology 13 (5):468-474.
56. Salt, D. E., Smith, R. D., and Raskin, I. 1998. Phytoremediation. Annual Review
of Plant Physiology and Plant Molecular Biology 49:643-668.
57. Schmitz, H., Hilgers, U., and Weidner, M. 2000. Assimilation and metabolism of
formaldehyde by leaves appear unlikely to be of value for indoor air purification.
New Phytol. 147:307-315.
58. Simonich, S. L., and Hites, R. A. 1995. Organic pollutant accumulation in
vegetation. Environmental Science & Technology 29 (12):2905-2914.
59. Suh, H. H., Bahadori, T., Vallarino, J., and Spengler, J. D. 2000. Criteria air
pollutants and toxic air pollutants. Environmental Health Perspectives
108:625-633.
60. Tani, A., Kato, S., Kajii, Y., Wilkinson, M., Owen, S., and Hewitt, N. 2007. A
61
proton transfer reaction mass spectrometry based system for determining plant
uptake of volatile organic compounds. Atmospheric Environment 41
(8):1736-1746.
61. Thomas, M. D., and Hill, G. R. 1935. Absorption of sulphur dioxide by alfalfa
and its relation to leaf injury. Plant Physiology 10 (2):291-307.
62. Wang, Q. B., and Chen, J. J. 2003. Variation in photosynthetic characteristics and
leaf area contributes to Spathiphyllum cultivar differences in biomass production.
Photosynthetica 41 (3):443-447.
63. Wesely, M. L., and Hicks, B. B. 1977. Some factors that affect deposition rates of
sulfur-dioxide and similar gases on vegetation. Journal of the Air Pollution
Control Association 27 (11):1110-1116.
64. Wolkoff, P., Clausen, P. A., Jensen, B., Nielsen, G. D., and Wilkins, C. K. 1997.
Are we measuring the relevant indoor pollutants? Indoor Air 7 (2):92-106.
65. Wolverton, B. C. 1988. Foliage plants for improving indoor air quality. in:
National Foliage Foundation Interiorscape Seminar, Hollywood, F. L.
66. Wolverton Environmental Services. 2007. Indoor Air Pollution. Wolverton
Environmental Services, Inc.
67. Wolverton, B. C., Douglas, W. L., and Bounds, K. 1989. A study of interior
landscape plants for indoor air pollution abatement, An interim report. Pages 14.
National aeronautics and space administration; Stennis space center; Sverdrup
technology, Inc.
68. Wolverton, B. C., Johnson, A., and Bounds, K. 1989. Interior Landscape Plants
for Indoor Air Pollution Abatement, Final Report, September. Pages 30. N. A. S.
A.
69. Wolverton, B. C., McDonald, R. C., and Watkins, E. A. 1984. Foliage plants for
removing indoor air-pollutants from energy-efficient homes. Economic Botany
62
38 (2):224-228.
70. Wolverton, B. C., and Wolverton, J. D. 1993. Plants and soil microorganisms:
removal of formaldehyde, xylene, and ammonia from the indoor environment.
Journal of the Mississippi Academy of Sciences 38 (2):11-15.
71. Wong, O. 1999. A critique of the exposure assessment in the epidemiologic study
of benzene-exposed workers in China conducted by the Chinese Academy of
Preventive Medicine and the US National Cancer Institute. Regulatory
Toxicology and Pharmacology 30 (3):259-267.
72. Wood, R. A., Burchett, M. D., Alquezar, R., Orwell, R. L., Tarran, J., and Torpy,
F. 2006. The potted-plant microcosm substantially reduces indoor air VOC
pollution: I. Office field-study. Water Air and Soil Pollution 175 (1-4):163-180.
73. Wood, R. A., Orwell, R. L., Tarran, J., Torpy, F., and Burchett, M. 2002.
Potted-plant/growth media interactions and capacities for removal of volatiles
from indoor air. Journal of Horticultural Science & Biotechnology 77
(1):120-129.
74. Wood, R., Orwell, R., Tarran, J., and Burchett, M. 2001. Pot-plants really do
clean indoor air. The Nursery Papers, Sydney. p.1-4.
75. Wu, D. X., Wang, G. X., Bai, Y. F., and Liao, J. X. 2004. Effects of elevated CO2
concentration on growth, water use, yield and grain quality of wheat under two
soil water levels. Agriculture Ecosystems & Environment 104 (3):493-507.
76. Yoo, M. H., Kwon, Y. J., Son, K. C., and Kays, S. J. 2006. Efficacy of indoor
plants for the removal of single and mixed volatile organic pollutants and
physiological effects of the volatiles on the plants. Journal of the American
Society for Horticultural Science 131 (4):452-458.
77. Zhao, D., Reddy, K. R., Kakani, V. G., Read, J. J., and Sullivan, J. H. 2003.
Growth and physiological responses of cotton (Gossypium hirsutum L.) to
63
elevated carbon dioxide and ultraviolet-B radiation under controlled
environmental conditions. Plant Cell and Environment 26 (5):771-782.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24954-
dc.description.abstract揮發性有機物質為室內重要的空氣汙染物,而苯是為致癌物,也是最常見的揮發性有機物質之一。本研究欲以苯為對象,篩選出對苯吸收能力較佳的室內植物,並了解不同環境因素,如光照及二氧化碳濃度等對苯吸收速率之影響。
本研究取十七種常見室內植物,在小型熏氣箱中以25ppm 之苯進行熏氣,測量各種植物在500 Lux 弱光下之沈降速率。結果顯示,綠帝王蔓綠絨與綠精靈合果芋之吸收效率最高,沈降速率分別為0.14mm/sec 與0.16mm/sec。若以科別為分類,則以天南星科、鐵角蕨科等科對苯有較高的吸收速率。
比較十七種植物在5000 Lux 強光下與500 Lux 弱光下之沈降速率差異,結果顯示強光可使十七種植物的氣孔導度增高,且在十七種中有十種植物在強光下的沈降速率比弱光下高,表示多數植物在強光下吸收污染較多。而其中以黃金心葉蔓綠絨、紅邊椒草及綠帝王蔓綠絨之吸收速率為最高,沈降速率分別為0.14mm/sec、0.14mm/sec 與0.12mm/sec。若以科別為分類,則在強光下以胡椒科、天南星科等科對苯有較高的吸收速率。
另在500 Lux 與5000 Lux 兩種光照強度下,分別測試300∼400ppm、600∼700ppm 兩種二氧化碳濃度下八種植物吸收苯之沈降速率,結果顯示,在低濃度的二氧化碳環境下,強光可使部分植物對苯的沈降速率提升,但在高濃度的二氧化碳下,強光會使大部分植物對苯的沈降速率顯著提升。而不論在強光或弱光下,高濃度的二氧化碳皆會降低植物對苯之沈降速率。
zh_TW
dc.description.abstractVolatile organic compounds(VOC) are major indoor air pollutants, especially in urban areas. Benzene is one of the VOCs that can be found everywhere, and is a carcinogen. The purpose of this research, therefore, is to screen the plants with higher absorption rate of benzene. The effects of light intensities and carbon dioxide concentrations on the benzene uptake by indoor plants are also studied.
Seventeen common indoor plants were exposed to 25 ppm of benzene 500 Lux light intensity in a 52-L fumigation chamber. Results show that Philodendron cv. Wend-imbe and Syngonium podophyllum cv. Pixie have the highest uptake rate of benzene, with deposition velocities as 0.14mm/sec and 0.16mm/sec, respectively. In terms of plant classification the Araceae family and Aspleniaceae family show the higher uptake to benzene.
When these 17 plants were exposed to 25 ppm of benzene under strong light of 5000 Lux and weak light of 500 Lux, deposition velocities of 10 plants among them were raised due to higher light intensity. Results also show stomatal conductance of these 17 plants were increased by higher light intensity. Under high light, Philodendron cv. Golden pride, Peperomia clusiifolia, and Philodendron cv. Wend-imbe have the highest deposition velocity, as 0.14mm/sec, 0.14mm/sec, and 0.12mm/sec, respectively. In terms of plant classification, the Piperaceae family and the Araceae family show the higher uptake of benzene.
Two levels of carbon dioxide as 300~400ppm and 600~700ppm, were applied to 8 plants during exposure to benzene under strong or weak light intensity. Results show that at level of 300~400ppm, deposition velocities of benzene by some plants were increased by higher light intensity, while at high CO2 level of 600~700ppm, deposition velocities of benzene by most plants were significantly increased by strong light. Under weak or strong light, however, the doubling of CO2 significantly decrease the deposition
velocity of benzene by all 8 plants.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:59:00Z (GMT). No. of bitstreams: 1
ntu-96-R92633005-1.pdf: 3076788 bytes, checksum: aac886c666beb55ebaad4b625859d188 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents口試委員會審定書…………………………………….…………………...i
謝辭…………………………………………………….………………......ii
中文摘要……………………………………………….……………….....iii
英文摘要………………………………………………………………......iv
第一章 前言…………………………………………………………….1
第二章 前人研究…………………………………………………….…3
一、 揮發性有機物質之來源與危害……………………………..3
二、 苯之特性及來源………………………………………...…...4
三、 苯對人體之影響…………………………………...………...4
四、 二氧化碳對植物之影響………………………………...…...5
五、 利用植物淨化室內空氣污染…………………………...…...6
六、 植物吸收揮發性有機物質之機制…………………...……...8
第三章 材料與方法………………………….………………………..10
一、 供試植物之介紹………………………………...………….10
(一) 供試植物的種類………………………………………..10
(二) 供試植物的栽培管理…………………………………..15
(三) 供試植物的馴化………………………………………..15
vii
二、 室內外揮發性有機物質與苯之含量………………...…….16
(一) 監測設備………………………………………………..16
(二) 監測方法………………………………………………..16
三、 十七種室內植物對苯之吸收………………...…………….16
(一) 熏氣系統之設計………………………………………..16
(二) 量測方法與測試理論…………………………………..18
四、 十七種室內植物在不同光強度下對苯之吸收…...……….19
(一) 熏氣系統之設計………………………………………..19
(二) 量測方法與測試理論…………………………………..19
五、 八種室內植物在不同二氧化碳濃度下對苯之吸收…...….20
(一) 熏氣系統之設計………………………………………..20
(二) 量測方法與流程………………………………………..21
第四章 結果…………………………….………………………..........26
一、 室內外揮發性有機物質與苯之含量…………..…………..27
二、 十七種室內植物對苯之吸收……………..………………..28
三、 十七種室內植物在不同光強度下對苯之吸收……..……..35
四、 八種室內植物在不同二氧化碳濃度下對苯之吸收…..…..40
第五章 討論………………….…………………………………….….50
一、 室內外揮發性有機物質與苯之含量………………………50
viii
二、 十七種室內植物對苯之吸收…………………..………..…51
三、 十七種室內植物在不同光強度下對苯之吸收………..…..52
四、 八種室內植物在不同二氧化碳濃度下對苯之吸收……... 54
參考文獻……………………………...……………………………….….55
附錄……………………………………………………………………….64
dc.language.isozh-TW
dc.subject植物淨汙zh_TW
dc.subject苯zh_TW
dc.subject二氧化碳zh_TW
dc.subject沈降速率zh_TW
dc.subject室內空氣污染zh_TW
dc.subjectPhytoremediationen
dc.subjectBenzeneen
dc.subjectCarbon dioxideen
dc.subjectDeposition velocityen
dc.subjectIndoor air pollutanten
dc.title常見室內植物對苯之吸收及反應zh_TW
dc.titleUptake of Benzene by Indoor Plants and Their Responses to This Pollutanten
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉德銘,林正忠,王亞男
dc.subject.keyword苯,二氧化碳,沈降速率,室內空氣污染,植物淨汙,zh_TW
dc.subject.keywordBenzene,Carbon dioxide,Deposition velocity,Indoor air pollutant,Phytoremediation,en
dc.relation.page63
dc.rights.note未授權
dc.date.accepted2007-08-02
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved