Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24921
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝志誠
dc.contributor.authorHsuan Ming Changen
dc.contributor.author張軒銘zh_TW
dc.date.accessioned2021-06-08T05:58:25Z-
dc.date.copyright2007-08-28
dc.date.issued2007
dc.date.submitted2007-08-20
dc.identifier.citation參考文獻
1. 王廣欣、顏姝麗、周重文、梁彬。2005。用於生物柴油的鈣鎂催化劑的製備及活性評價。中國油脂 30(10):66-69。
2. 申延明、吳靜、張惠、劉長厚、張振祥。2005。NiMgAl類水滑石製備條件研究。材料導報 19(9):131-133。
3. 李為民、鄭曉林、徐春明、徐鴿、鄔國英。2005。固體鹼法製備生物柴油及其性能。化工學報 56(4):711-716。
4. 朱華平、吳宗斌、陳元雄、張萍、段世杰、劉曉華、毛宗強。2006。固體超強鹼氧化鈣催化製備生物柴油及其精製工藝。催化學報 27(5):391-396。
5. 姜利寒、顏姝麗、梁彬。2006。非均相固體鹼催化劑用於生物柴油的製備。工業催化 14(5):34-38。
6. 陳和、王金福。2006。棉籽油酯交換製備生物柴油固體鹼催化過程研究。高校化學工程學報 20(4):593-597。
7. 高鵬、顏姝麗、梁彬。2006。氧化鋅催化菜籽油製生物柴油。工業催化 14(11):45-48。
8. 張國強、李集偉、楊來夫、李鋒、方榮謙、郭德波、蔡俊修。2006。陽離子摻雜水滑石的製備及其性質研究。物理化學學報 22(2):146-151。
9. 崔士貞、劉純山。2005。固體鹼催化大豆油酯交換反應的研究。工業催化 13(7):32-35。
10. 曹宏遠、曹維良、張敬暢。2005。固體酸Zr(SO4)2•4H2O催化製備生物柴油。北京化工大學學報 32(6):61-63。
11. 楊廷芝。2005。非均相油脂酯交換法製備生物柴油工藝研究。四川理工學院學報 18(3):32-34。
12. Abigor, R. D. ; Uadia, P. O.; Foglia, T. A.; Haas, M. J. ; Jones, K. C.;Okpefa, E.;Obibuzor J. U.; Bafor, M. E. 2000. Lipase-catalysed production of biodiesel fuel from some Nigerian lauric oils. Biochemical Society Transactions 28(6):979-981.
13. Abreu, F. R.; Lima, D. G.; Hamu, E. H.; Einloft, S.; Rubim, J. C.; Suarez, P. A. Z. 2003. New metal catalysts for soybean oil transesterification . JAOCS, Journal of the American Oil Chemists' Society 80(6):601-604.
14. Abreu, F. R.; Lima, D. G.; Hamu, E. H.; Wolf, C.; Suarez, P. A.Z. 2004. Utilization of metal complexes as catalysts in the transesterification of Brazilian vegetable oils with different alcohols. Journal of Molecular Catalysis A: Chemical 209(1-2): 29-33.
15. Al-Widyan, M. I.; Al-Shyoukh, A. O. 2002. Experimental evaluation of the transesterification of waste palm oil into biodiesel. Bioresource Technology 85: 253–256.
16. Antolin, G.; Tinaut, F.V.; Briceno, Y.; Castano, V.; Perez, C.; Ramirez, A. I. 2002. Optimisation of biodiesel production by sunflower oil transesterification. Bioresource Technology 83:111-114.
17. Auroux, A. ; Gervasini, A. 1990. Microcalorimetric Study of the Acidity and Basicity of Metal Oxide Surfaces. The Journal of Physical Chemistry 94: 6371-6379.
18. Ban, K.; Kaieda, M; Matsumoto, T.; Kondo, A.; Fukuda, H. 2001. Whole cell biocatalyst for biodiesel fuel Production utilizing Rhizopus oryzae cells immobilized within biomass support particles. Biochemical Engineering Journal 8: 39–43.
19. Ban, K.; Hama, S.; Nishizuka, K.; Kaieda, M.; Matsumoto, T.; Kondo, A.; Noda, H.; Fukuda, H. 2002. Repeated use of whole-cell biocatalysts immobilized within biomass support particles for biodiesel fuel production .Journal of Molecular Catalysis - B Enzymatic 17(3-5): 157-165.
20. Basri, M.; Heng, A. C.; Razak, C.N.A.; Yunus, W.M.Z. Wan; Ahmad, M.; Rahman, R.N.A.; Ampon, K.; Salleh, A.B. 1997. Alcoholysis of palm oil mid-fraction by lipase from Rhizopus rhizopodiformis. JAOCS, Journal of the American Oil Chemists' Society 74(2):113-116.
21. Barrett, E. P; Joyner, L. G; Halenda, P. P. 1951. The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms . Journal of the American Chemical Society 73: 373-380.
22. Bayense et al, 1996. Esterification process, European Patent no. US005508457A.
23. Belafi-Bako, K.; Kovacs, F.; Gubicza, L.; Hancsok, J. 2002. Enzymatic biodiesel production from sunflower oil by Candida antarctica lipase in a solvent-free system Biocatalysis and Biotransformation 20(6): 437-439.
24. Bordawekar, S. V.; Doskocil, E. J.; Davis, R. J. 1998. Microcalorimetric Study of CO2 and NH3 Adsorption on Rb- and Sr-Modified Catalyst Supports. Langmuir 14: 1734-1738.
25. Brunauer, S.; Emmett, P. H.; Teller, E. 1938. Adsorption of gas in multimolecular layer. Journal of the American Chemical Society 60: 309-319.
26. Campelo, J. M.; Garcia, A.; Luna, D.; Marinas, J. M.; Romero, A. A. 1995. Characterization of acidity in AlPO4-Al2O3 (5-15 wt% Al2O3) catalysts using pyridine temperature programmed desorption. Thermochimica Acta 265: 103-110.
27. Canakci, M.; Van Gerpan, J. 1999. Biodiesel production via acid catalysis. Transactions of the American Society of Agricultural Engineers 42(5):1203–1210.
28. Canakci, M.; Van Gerpan, J. 2001. Biodiesel production from oils and fats with high free fatty acids. Transactions of the American Society of Agricultural Engineers 44(6):1429–1436.
29. Canakci, M.; Van Gerpan, J. 2003. A pilot plant to produce biodiesel from high free fatty acid feedstocks. Transactions of the American Society of Agricultural Engineers 46(4): 945-954.
30. Cantrell, D. G.; Gillie, L. J.; Lee, A. F.; Wilson, K. 2005. Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Applied Catalysis A: General 287(2): 183-190.
31. Cao, W.L.; H.W. Han, and J.C. Zhang. 2005a. Preparation of biodiesel from soybean oil using supercritical methanol and co-solvent. Fuel 84:347-351.
32. Cetinkaya, M. ; F. Karaosmanoglu. 2004. Optimization of base-catalyzed transesterification reaction of used cooking oil. Energy & Fuels 18:1888-1895.
33. CAI. 2007. Biodiesel in Germany. Washington, D.C.: Clean Air Initiative. Available at: http://www.cleanairnet.org/infopool/1411/propertyvalue-19517.html. Accessed 12 Feb. 2007.
34. Colucci, J. A.; Borrero, E. E.; Alape, F. 2005. Biodiesel from an alkaline transesterification reaction of soybean oil using ultrasonic mixing. JAOCS, Journal of the American Oil Chemists' Society, 82(7): 525-530.
35. De Filippis, P.; Borgianni, C.; Paolucci, M. 2005. Rapeseed oil transesterification catalyzed by sodium phosphates. Energy and Fuels 19(6): 2225-2228.
36. De Oliveira, D.; Di Luccio, M.; Faccio, C.; Dalla Rosa, C.; Bender, J. P.; Lipke, N.; Amroginski, C.; Dariva, C.; De Oliveira, J. V. 2005. Optimization of alkaline transesterification of soybean oil and castor oil for biodiesel production. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology 121-124: 553-560.
37. Deng, L.; Tan, T. W.; Wang, F.; Xu, X. B..2003. Enzymatic production of fatty acid alkyl esters with a lipase preparation from Candida sp. 99-125. European Journal of Lipid Science and Technology 105: 727–734.
38. Deng, L.; Xu, X. B.; Haraldsson, G. G.; Tan, T. W.; Wang, F. 2005. Enzymatic production of alkyl esters through alcoholysis: A critical evaluation of lipases and alcohols. JAOCS, Journal of the American Oil Chemists' Society 82(5): 341-347.
39. Dias, C. R.; Zavoianu, R; Portela, M. F. 2002. Study of the acid-base properties of SiO2-supported NiMoO4 catalyst by temperature-programmed desorption. Effect of the support. Reaction kinetics and catalysis letters 77(2): 317-324.
40. Dorado, M.P.; E. Ballesteros, J.A. de Almeida, C. Schellert, H.P. Lohrlein, and R. Krause. 2002. An alkali-catalyzed transesterification process for high free fatty acid waste oils. Transactions of the Asae 45:525-529.
41. Dorado, M. P.; Ballesteros, E.; Lopez, F. J.; Mittelbach, M. 2004a. Optimization of alkali-catalyzed transesterification of Brassica Carinata oil for biodiesel production. Energy and Fuels 18: 77-83.
42. Dorado, M. P.; Ballesteros, E.; Mittelbach, M.; Lopez, F. J. 2004b. Kinetic Parameters Affecting the Alkali-Catalyzed Transesterification Process of Used Olive Oil. Energy and Fuels 18: 1457-1462.
43. Du, W.; Xu, Y. Y.; Liu, D. H. 2003. Lipase-catalysed transesterification of soya bean oil for biodiesel production during continuous batch operation. Biotechnology and Applied Biochemistry 38(2): 103-106.
44. Du, W.; Xu, Y. Y.; Zeng, J.; Liu, D. H. 2004a. Novozym 435-catalysed transesterification of crude soya bean oils for biodiesel production in a solvent-free medium. Biotechnology and Applied Biochemistry 40(2): 187-190.
45. Du, W.; Xu, Y. Y.; Liu, D. H.; Zeng, J. 2004b. Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. Journal of Molecular Catalysis B: Enzymatic 30(3-4): 125-129.
46. Du, W.; Xu, Y. Y.; Liu, D. H.; Li, Z. B. 2005. Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. Journal of Molecular Catalysis B: Enzymatic 37(1-6): 68-71.
47. Ebiura, T.; Echizen, T.; Ishikawa, A.; Murai, K.; Baba, T. 2005. Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst. Applied Catalysis A: Genera 283(1-2):111-116.
48. Encinar, J.M.; J.F. Gonzalez, E. Sabio, and M.J. Ramiro. 1999. Preparation and properties of biodiesel from Cynara cardunculus L. oil. Industrial & Engineering Chemistry Research 38:2927-2931.
49. Encinar, J.M.; J.F. Gonzalez, J.J. Rodriguez, and A. Tejedor. 2002. Biodiesel fuels from vegetable oils: Transesterification of Cynara cardunculus L. oils with ethanol. Energy & Fuels 16:443-450.
50. Encinar, J. M.; Gonzalez, J. F.; Rodriguez-Reinares, A . 2005. Biodiesel from used frying oil. Variables affecting the yields and characteristics of the biodiesel. Industrial and Engineering Chemistry Research 44(15):5491-5499.
51. European Commission. 2007. New and Renewable Energies. Belgium: European Commission. Available at: http://ec.europa.eu/energy/res/sectors/bioenergy_en.htm. Accessed 12 Feb. 2007.
52. Felizardo, P.; M. Joana Neiva Correia; Idalina Raposo; Joao F. Mendes; Rui Berkemeier; Joao Moura Bordado. 2006. Production of biodiesel from waste frying oils. Waste Management 26(5): 487-494.
53. Fishel, C. T. and Davis, R. J. 1994. Characterization of Mg-Al Mixed Oxides by Temperature-Programmed Reaction of 2-Propanol. Dangmuir 10: 159-165.
54. Freedman, B.; E.H. Pryde, and T.L. Mounts. 1984. Variables Affecting the Yields of Fatty Esters from Transesterified Vegetable-Oils. Journal of the American Oil Chemists Society 61:1638-1643.
55. Freedman, B., R.O. Butterfield, and E.H. Pryde. 1986. Transesterification Kinetics of Soybean Oil. Journal of the American Oil Chemists Society 63:1375-1380.
56. Fung, J.; Wang, I. 1998. Determination of surface acidity and basicity of TiO2-ZrO2 by temperature programmed desorption of ammonia and acetic acid. Applied Catalysis A: General 166: 327-334.
57. Furuta, S.; Matsuhashi, H.; Arata, K. 2004. Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catalysis Communications 5(12): 721-723.
58. Goering, C.E.; A.W. Schwab, M.J. Daugherty, E.H. Pryde, and A.J. Heakin. 1982. Fuel Properties of 11 Vegetable-Oils. Transactions of the Asae 25:1472-&.
59. Goering, C. E.; Fry, B. 1983a. Engine durability screening test of a diesel oil/soyoil/accohol microemulsion fuel. JAOCS, Journal of the American Oil Chemists' Society 61(10): 1627-1632.
60. Goodrum, J. W. 1984. Fuel properties of peanut oil blends. Transactions of the American Society of Agricultural Engineers 27(5):1257-1262.
61. Gregg, S. J.; Sing, K. S. 1982. Adsorption, surface area, and porosity. 2nd ed. New York: Academic Press.
62. Gryglewicz, S. 1999. Rapeseed oil methyl esters preparation using heterogeneous catalysts. Bioresource Technology 70:249-253.
63. Guo, X.; He, H. Y.; Wang, T.; Zhu, S. L. 2003. Preparation of biodiesel using supercritical fluid techniques. Xiandai Huagong/Modern Chemical Industry 23( SUPPL): 15-18.
64. Haas, M. J.; Michalski, P. J.; Runyon, S.; Nunez, A.; Scott, K. M. 2003. Production of FAME from acid oil, a by-product of vegetable oil refining. JAOCS, Journal of the American Oil Chemists' Society 80(1): 97-102.
65. Han, H. W.; Cao, W. L.; Zhang, J. C. 2005. Preparation of biodiesel from soybean oil using supercritical methanol and CO2 as co-solvent. Process Biochemistry 40(9): 3148-3151.
66. He, B. B.; Singh, A.P.; Thompson, J. C. 2005. Experimental optimization of a continuous-flow reactive distillation reactor for biodiesel production. Transactions of the American Society of Agricultural Engineers 48(6): 2237-2243.
67. Hsu, A. F.; Foglia, T. A.; Shen, S. Y. 2000. Immobilization of Pseudomonas cepacia lipase in a phyllosilicate sol-gel matrix: Effectiveness as a biocatalyst. Biotechnology and Applied Biochemistry 31(3): 179-183.
68. Hsu, A. F.; Jones, K.; Marmer, W. N.; Foglia, T. A. 2001. Production of alkyl esters from tallow and grease using lipase immobilized in a phyllosilicate sol-gel. JAOCS, Journal of the American Oil Chemists' Society 78(6): 585-588.
69. Hsu, A. F.; Jones, K.; Foglia, T. A.; Marmer, W. N. 2002. Immobilized lipase-catalysed production of alkyl esters of restaurant grease as biodiesel. Biotechnology and Applied Biochemistry 36(3): 181-186.
70. Iso, M.; Chen, B.; Eguchi, M.; Kudo, T.; Shrestha, S. 2001.Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase.Journal of Molecular Catalysis - B Enzymatic 16(1): 53-58.
71. Jitputti, J.; Kitiyanan, B.; Rangsunvigit, P.; Bunyakiat, K.; Attanatho, L.; Jenvanitpanjakul, P. 2006. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chemical Engineering Journal 116(1): 61-66.
72. Kaieda, M.; Samukawa, T.; Matsumoto, T.; Ban, K.; Kondo, A.; Shimada, Y.; Noda, H.; Nomoto, F.; Ohtsuka, K.; Izumoto, E.; Fukuda, H. 1999. Biodiesel fuel production from plant oil catalyzed by Rhizopus oryzae lipase in a water-containing system without an organic solvent. Journal of Bioscience and Bioengineering 88(6): 627-631.
73. Kaieda. M.; Samukawa, T.; Kondo, A.; Fukuda H. 2001. Effect of Methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. Journal of Bioscience and Bioengineering 91(1): 12-15.
74. Karaosmanoglu, F.; K.B. Cigizoglu, M. Tuter, and S. Ertekin. 1996. Investigation of the refining step of biodiesel production. Energy & Fuels 10:890-895.
75. Karmee, S. K.; Mahesh, P.; Ravi, R.; Chadha, A. 2004. Kinetic study of the base-catalyzed transesterification of monoglycerides from Pongamia oil. JAOCS, Journal of the American Oil Chemists' Society 81(5): 425-430.
76. Karmee, S. K.; Chadha, A. 2005. Preparation of biodiesel from crude oil of Pongamia pinnata. Bioresource Technology 96(13):1425-1429.
77. Kim, H. J.; Kang, B. S.; Kim, M. J.; Park, Y. M.; Kim, D. K.; Lee, J. S.; Lee, K. Y.. 2004. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catalysis Today 93-95: 315-320.
78. Kose, O.; Tuter, M.; Aksoy, H. A. 2002. Immobilized Candida antarctica lipase-catalyzed alcoholysis of cotton seed oil in a solvent-free medium. Bioresource Technology 83(2): 125-129.
79. Kusdiana, D.; Saka, S. 2001a. Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel 80(5): 693-698.
80. Kusdiana, D.; Saka, S. 2001b. Methyl esterification of free fatty acids of rapeseed oil astreated in supercritical methanol. Journal of Chemical Engineering of Japan 34(3): 383-387.
81. Kusdiana D.; S. Saka. 2004. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresource Technology 91: 289-295.
82. Lang, X.; Dalai, A.K.; Bakhshi, N.N.; Reaney, M.J.; Hertz, P.B. 2001. Preparation and characterization of bio-diesels from various bio-oils. Bioresource Technology 80(1):53-62.
83. Leclercq, E.; Finiels, A.; Moreau, C. 2001. Transesterification of rapeseed oil in the presence of basic zeolotes and related solid catalyst. Journal of the American Oil Chemists' Society (JAOCS) 78(11):1161-1165.
84. Lee, K. T.; Foglia, T. A.; Chang, K. S. 2002. Production of alkyl ester as biodiesel from fractionated lard and restaurant grease. JAOCS, Journal of the American Oil Chemists' Society 79(2): 191-195.
85. Li, H. T.; Xie, W. L. 2006. Transesterification of soybean oil to biodiesel with Zn/I2 catalyst. Catalysis Letters 107(1-2): 25-30.
86. Linko, Y. Y.; Lamsa, M.; Huhtala, A.; Rantanen, O. 1995. Lipase biocatalysis in the production of esters. JAOCS, Journal of the American Oil Chemists' Society 72(11): 1293-1299.
87. Lopez, D. E.; Goodwin Jr., James, G.; Bruce, D. A.; Lotero, E. 2005. Transesterification of triacetin with methanol on solid acid and base catalysts. Applied Catalysis A: General 295(2): 97-105.
88. Lotero, E.; Liu, Y.; Lopez, D. E.; Suwannakarn, K.; Bruce, D. A.; Goodwin, Jr. J. G. 2005. Synthesis of Biodiesel via Acid Catalysis. Industrial and Engineering Chemistry Research 44: 5353-5363.
89. Ma, F.; Clements, L. D.; Hanna, M. A. 1998a. The effects of catalyst, free fatty acids and water on transesterification of beef tallow. Transactions of the American Society of Agricultural Engineers 41(5): 1261-1264.
90. Ma, F.; Clements, L. D.; Hanna, M. A. 1998b. Biodiesel fuel from animal fat. Ancillary studies on transesterification of beef tallow. Industrial and Engineering Chemistry Research 37: 3768-3771.
91. Madras, G.; Kolluru, C.; Kumar, R. 2004. Synthesis of biodiesel in supercritical fluids. Fuel 83(4): 2029-2033.
92. Mao, V.; Konar, S. K.; Boocock, D. G. B. 2004. The pseudo-single-phase, base-catalyzed transmethylation of soybean oil. JAOCS, Journal of the American Oil Chemists' Society 81(8): 803-808.
93. Miao, X. L.; Wu, Q. Y. 2006. Biodiesel production from heterotrophic microalgal oil.Bioresource Technology 97(6): 841-846.
94. Mittelbach, M. 1990. Lipase catalyzed alcoholysis of sunflower oil. JAOCS, Journal of the American Oil Chemists' Society 67(3): 168-170.
95. Naegeli, D. W.; Moses, C. A. 1983. Fuel microemulsios for jet engine smoke reduction. Journal of Engineering for Power, Transactions ASME 105(1): 18-23.
96. Nelson, L. A.; Foglia, T. A.; Marmer, W. N. 1996. Lipase-catalyzed production of biodiesel. JAOCS, Journal of the American Oil Chemists' Society 73(9): 1191-1195.
97. Niehaus, R. A.; Goering, C. E.; Savage, L. D. Jr.; Sorenson, S. C. 1986. Cracked sybean oil as a fuel for a diesel engine. Transactions of the American Society of Agricultural Engineers 29(3): 683-689.
98. Noureddini, H.; Gao, X.; Philkana, R. S. 2005. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology 96(7): 769-777.
99. Nye, M. J.; Williamson, T. W.; Deshpande, S.; Schrader, J. H.; Snively, W. H.; Yurkewich, T. P.; French, C. L. 1983. Conversion of used frying oils to diesel fuel by transesterification: preliminary tests. JAOCS, Journal of the American Oil Chemists' Society 60(8): 1598-1601.
100. Oda, M.; Kaieda, M.; Hama, S.; Yamaji, H.; Kondo, A.; Izumoto, E.; Fukuda, H. 2005. Facilitatory effect of immobilized lipase-producing Rhizopus oryzae cells on acyl migration in biodiesel-fuel production. Biochemical Engineering Journal 23(1): 45-51.
101. Parrillo, D. J.; Gorte, R. J. 1992. Characterization of stoichiometric adsorption complexes in H-ZSM-5 using microcalorimetry. Catalysis Letters 16(1-2): 17-25.
102. Pestes, M. N.; Stanislao, J. 1984. Piston ring deposits when using vegetable oils as a fuel. Journal of Testing & Evaluation 12(2): 61-68.
103. Pryde, E. H. 1983. Vegetable oils as fuel alternatives – symposium overview. JAOCS, Journal of the American Oil Chemists' Society 61(10): 1609-1610.
104. Ramadhas, A. S.; Jayaraj, S.; Muraleedharan, C . 2005. Biodiesel production from high FFA rubber seed oil. Fuel 84(4): 335-340.
105. Raty, J.; Pakkanen, T. A. 2001. Temperature-programmed desorption study of Re/γ-Al2O3 catalyst prepared from Re2(CO)10 precursor. Applied Catalysis A:General 208:169-175.
106. Saka, S.; Kusdiana, D. 2001. Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80(2): 225-231.
107. Salis, A.; Pinna, M.; Monduzzi, M.; Solinas, V. 2005. Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology 119(3): 291-299.
108. Samukawa, T.; Kaieda, M.; Matsumoto, T.; Ban, K.; Kondo, A.; Shimada, Y.; Noda, H.; Fukuda, H. 2000. Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. Journal of Bioscience and Bioengineering 90(2):180-183.
109. Schwab, A.W. ; M.O. Bagby, and B. Freedman. 1987. Preparation and Properties of Diesel Fuels from Vegetable-Oils. Fuel 66:1372-1378.
110. Selmi, B.; Thomas, D. 1998. Immobilized lipase-catalyzed Ethanolysis of sunflower oil in a solvent-free medium. JAOCS, Journal of the American Oil Chemists' Society 75(6): 691-695.
111. Shen, J.; Kobe, J. M.; Chen, Yi; Dumesic, J. A. 1994. Synthesis and Surface Acid/Base Properties of Magnesium-Aluminum Mixed Oxides Obtained from Hydrotalcites. Dangmuir 10: 3902-3908.
112. Shen, J.; Tu, M.; Hu, C. 1998. Structural and Surface Acid/Base Properties of Hydrotalcite-Derived MgAlO Oxides Calcined at Varying Temperatures. Journal of Solid State Chemistry 137: 295-301.
113. Shimada, Y.; Watanabe, Y.; Samukawa, T.; Sugihara, A.; Noda, H.; Fukuda, H.; Tominaga, Y. 1999. Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. JAOCS, Journal of the American Oil Chemists' Society 76(7): 789-793.
114. Shull, C. G. 1948. The determination of pore size distribution from gas adsorption data. Journal of the American Chemical Society 70: 1405-1410.
115. Soumanou, M. M.; Bornscheuer, U. T. 2003a. Lipase-catalyzed alcoholysis of vegetable oils. European Journal of Lipid Science and Technology 105:656–660.
116. Soumanou, M. M.; Bornscheuer, U. T. 2003b. Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme and Microbial Technology 33(1): 97-103.
117. Stavarache, C.; Vinatoru, M.; Nishimura, R.; Maeda, Y. 2005. Fatty acids methyl esters from vegetable oil by means of ultrasonic energy. Ultrasonics Sonochemistry 12(5): 367-372.
118. Steinke, G.; Kirchhoff, R.; Mukherjee, K. D. 2000. Lipase-catalyzed alcoholysis of crambe oil and camelina oil for the preparation of long-chain esters. JAOCS, Journal of the American Oil Chemists' Society 77(4): 361-366.
119. Srivastava, A.; Prasad, R. 2000. Triglycerides-based diesel fuels. Renewable and Sustainable Energy Reviews 4(2): 111-133.
120. Supranto. 2005. The biodiesel production process from vegetable oil. Developments in Chemical Engineering and Mineral Processing 13(5-6): 687-692.
121. Tashtoush, G.M. ; M.I. Al-Widyan, and M.M. Al-Jarrah. 2004. Experimental study on evaluation and optimization of conversion of waste animal fat into biodiesel. Energy Conversion and Management 45:2697-2711.
122. Tomasevic, A. V.; Siler-Marinkovic, S. S. 2003. Methanolysis of used frying oil. Fuel Processing Technology 81(1): 1-6.
123. Tu, M.; Shen, J.; Chen, Y. 1997. Microcalorimetric Studies of Surface Acid/Base Properties of Magnesium–Iron Catalysts Prepared from Hydrotalcite-Type Precursors. Journal of Solid State Chemistry 128: 73-79.
124. Usta, N. 2005. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass and Bioenergy 28: 77–86.
125. Van Gerpen, J.; Shanks, B.; Pruszko, R.; Clements, D.; Knothe, G. 2004. Biodiesel Production
Technology. Colorado: National Renewable Energy Laboratory . NREL/SR-510-36244
126. Varde, K. S. 1984. Bulk modulus of vegetable oil-diesel fuel blends. Fuel 63(5): 713-715.
127. Vicente, G. ; M. Martinez, and J. Aracil. 2004. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresource Technology 92:297-305.
128. Warabi, Y.; Kusdiana, D.; Saka, S. 2004a. Reactivity of triglycerides and fatty acids of rapeseed oil in supercritical alcohols. Bioresource Technology 91(3): 283-287.
129. Warabi, Y.; Kusdiana, D.; Saka, S. 2004b. Biodiesel fuel from vegetable oil by various supercritical alcohols. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology 113-116: 793-801.
130. Watanabe, Y.; Shimada, Y.; Sugihara, A.; Noda, H.; Fukuda, H.; Tominaga, Y. 2000. Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica lipase. JAOCS, Journal of the American Oil Chemists' Society 77(4): 355-360.
131. Watanabe, Y.; Shimada, Y.; Sugihara, A.; Tominaga, Y. 2001. Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. JAOCS, Journal of the American Oil Chemists' Society 78(7): 703-707.
132. Watanabe, Y.; Shimada, Y.; Sugihara, A.; Tominaga, Y. 2002. Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. Journal of Molecular Catalysis - B Enzymatic 17(3-5): 151-155.
133. Wu, W. H.; Foglia, T. A.; Marmer, W. N.; Phillips, J. G. 1999. Optimizing production of ethyl esters of grease using 95% Ethanol by response surface methodology. JAOCS, Journal of the American Oil Chemists' Society 76(4): 517-521.
134. Xie, W. L.; Huang, X. M. 2006. Synthesis of biodiesel from soybean oil using heterogeneous KF/ZnO. Catalysis Letters 107(1-2): 53-59.
135. Xie, W. L.; Li, H. T. 2006. Alumina-supported potassium iodide as a heterogeneous catalyst for biodiesel production from soybean oil. Journal of Molecular Catalysis A: Chemical 255: 1-9.
136. Xie, W. L.; Peng, H.; Chen, L. 2006a. Calcined Mg-Al hydrotalcites as solid base catalysts for methanolysis of soybean oil. Journal of Molecular Catalysis A: Chemical 246(1-2): 24-32.
137. Xie, W. L.; Peng, H.; Chen, L. 2006b. Transesterification of soybean oil catalyzed by potassium loaded on alumina as a solid-base catalyst. Applied Catalysis A: General 300(1): 67-74.
138. Xie, W. L.; Huang, X. M.; Li, H. T. 2007. Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresource Technology 98: 936-939.
139. Xu, Y. Y.; Du, W.; Liu, D. H.; Zeng, J. 2003. A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium. Biotechnology Letters 25: 1239–1241.
140. Xu, Y. Y.; Du, W.; Zeng, J.; Liu, D. H. 2004. Conversion of soybean oil to biodiesel fuel using lipozyme TL IM in a solvent-free medium. Biocatalysis and Biotransformation 22(1): 45-48.
141. Zavoianu, R; Dias, C. R.; Portela, M. F. 2001. Study of the acid-base properties of SiO2-supported NiMoO4 catalyst by temperature-programmed desorption. Effect of the active phase content. Reaction kinetics and catalysis letters 72(2): 201-208.
142. Zheng, S.; Kates, M.; Dube, M.A.; McLean, D. D. 2006. Acid-catalyzed production of biodiesel from waste frying oil. Biomass and Bioenergy 30(3):267-272.
143. Ziejewski, M.; Kaufmann, K. R.; Schwab, A. W.; Pryde, E. H. 1983. Diesel engine evaluation of a nonionic sunflower oil-queous ethanol microemulsion. JAOCS, Journal of the American Oil Chemists' Society 61(10): 1620-1626
144. Zubik, J.; Sorenson, S. C.; Goering, C. E. 1984. Diesel engine combustion of sunflower oil fuels. Transactions of the American Society of Agricultural Engineers 27(5): 1252-1256.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24921-
dc.description.abstract生質柴油又稱生物柴油,是以未加工過或者使用過之植物油或動物脂肪作為原料,採用混合稀釋、微細乳化、熱解或轉酯化反應等方法所產製之生質燃料,具生物可分解性、無毒、燃燒後污染性低等優點,不僅可以單獨使用,也可與石化柴油混合使用,是一項具有潛力之潔淨替代燃料。
轉酯化反應是指以適當比例混合之油脂與醇類,在加入與反應物同相之酸性催化劑、鹼性催化劑、脂解
zh_TW
dc.description.abstractBiodiesel is a kind of clean and renewable energy which can be used directly or mixed with fossil diesel as fuel on vehicles. It can be extracted from recycled vegetable oil or animal fat by using blending, diluting, microemulsion, pyrolysis, or transesterification method.
Transesterification means that appropriate amount of alcohols and fat are mixed in supercritical condition with various kind of catalyst to produce esters. It is a common process in producing biodiesel. By using all kinds of catalyst, heterogeneous catalyst is relatively environment-friendly and makes a simple process.
In this study, soy bean oil is mixed with methanol under 60℃ with sodium hydroxide as catalyst to investigate the effect of molar ratio between oil and methanol and catalyst amount. Hydrotalcite, one kind of homogeneous catalyst, is then produced at different temperature by 3:1 Al/Mg molar ratio after the best ratio between oil and methanol is determined. Sodium hydroxide is then replaced by hydrotalcite to examine the performance of hydrotalcite as catalyst.
As result, the best ratio between oil and methanol is 6:1 with Sodium hydroxide as catalyst. Conversion ratio and reaction rate are both improved with increasing catalyst amount. In preparation of hydrotalcite, crystallization dimension is reduced at higher calcination temperature which makes a larger accessible area. The content of Alumium oxide is decreasing with increasing magnesium oxude. Alumium oxide is all replaced by MgAl2O4 when calcination temperature is rised to 650℃. Hydrotalcite made at 550℃ has the best result in conversion ratio and conversion ratio does not rise significantly with increasing catalyst amount in long term reaction time. However, the initial reaction rate is clearly related to the catalyst amount.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:58:25Z (GMT). No. of bitstreams: 1
ntu-96-R94631019-1.pdf: 1685040 bytes, checksum: 9ea62b75bb4b0ff4d214936efa5035f4 (MD5)
Previous issue date: 2007
en
dc.description.tableofcontents目錄
誌謝 I
摘要 II
Abstract III
圖目錄 VII
表目錄 XII
第一章 前言 1
第二章 研究目的 4
第三章 文獻探討 5
3.1 生質柴油之料源與製備 7
3.2 生質柴油之轉酯化反應 12
3.3 非勻相催化劑之製備與特徵 17
3.4 生質柴油之之品質與檢驗 20
3.4.1 總脂肪酸甲酯與次麻油酸甲酯含量測定法 20
3.4.2 游離甘油與總甘油含量之測定 20
3.4.3 酸價之測定 21
3.4.4 碘價之測定 21
3.4.5 鈉、鉀含量之測定-原子吸收光譜法 21
3.4.6 鈣與鎂含量之測定-感應耦合電漿原子發射光譜法 21
3.4.7 磷含量之測定-感應耦合電漿原子發射光譜法 22
3.5 文獻回顧 24
第四章 實驗材料與研究方法 33
4.1 實驗材料與設備 33
4.2 實驗內容與方法 35
4.2.1 鹼性催化轉酯製程 35
4.2.2 非勻相催化劑之製備 35
4.2.3 非勻相催化轉酯製程 36
4.2.4 非勻相催化劑之特徵分析 37
4.2.4.1 表面積測定 37
4.2.4.2 X-射線繞射分析 39
4.2.4.3 掃描式電子顯微分析 39
4.2.5 轉酯反應成分分析與轉酯率之計算 40
第五章 結果與討論 43
5.1 非勻相催化劑之特徵分析 43
5.1.1掃描式電子顯微分析 43
5.1.2 X-射線繞射分析 45
5.1.3 表面積測定 46
5.2 標準溶液之層析 48
5.3 鹼性催化轉酯 50
5.3.1 醇油莫耳比之影響 50
5.3.2 催化劑劑量之影響 50
5.4 非均相催化轉酯 52
5
dc.language.isozh-TW
dc.subject轉酯zh_TW
dc.subject生質柴油zh_TW
dc.subject非勻相催化劑zh_TW
dc.subjectHeterogeneous catalysten
dc.subjectTransesterificationen
dc.subjectBiodieselen
dc.title生質柴油之非勻相催化劑zh_TW
dc.titleHeterogeneous Catalyst for Biodieselen
dc.typeThesis
dc.date.schoolyear95-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李允中,陳世銘,周楚洋
dc.subject.keyword生質柴油,非勻相催化劑,轉酯,zh_TW
dc.subject.keywordBiodiesel,Heterogeneous catalyst,Transesterification,en
dc.relation.page72
dc.rights.note未授權
dc.date.accepted2007-08-21
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-96-1.pdf
  未授權公開取用
1.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved