請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24895完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳達仁 | |
| dc.contributor.author | Yu-Ching Yeh | en |
| dc.contributor.author | 葉又菁 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:57:59Z | - |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-08-29 | |
| dc.identifier.citation | [1] Freudenstein, F., 1971, “An Application of Boolean Algebra to the Motion of Epicyclic Drives,” ASME Journal of Engineering for Industry, 93, pp. 176-182.
[2] Freudenstein, F. and Yang, A. T., 1972, “Kinematics and Statics of a Coupled Epicyclic Spur-Gear Train,” Mechanism and Machine Theory, 7, pp. 263-275. [3] Tsai, L. W., 1988, “The Kinematics of Spatial Robotic Bevel-Gear Trains,” IEEE Journal of Robotics and Automation, 4, pp. 150-155. [4] Chatterjee, G. and Tsai, L. W., 1996, “Computer-Aided Sketching of Epicyclic-Type Automatic Transmission of Gear Trains,” ASME Journal of Mechanical Design, 118, pp. 405-411. [5] Chen, D. Z. and Shiue, S. C., 1998, “Topological Synthesis of Geared Robotic Mechanism,” ASME Journal of Mechanical Design, 120, pp. 230-239. [6] Chen, D. Z., 1998, “Kinematic Analysis of Geared Robot Manipulators by the Concept of Structural Decomposition,” Mechanism and Machine Theory, 33, pp. 975-986. [7] Olson, D. G., Erdman, A. G. and Riley, D. R., 1991, “Topological Analysis of Single-Degree-of-Freedom Planetary Gear Trains,” ASME Journal of Mechanical Design, Vol. 113, pp. 10- 16. [8] Liu, C. P. and Chen, D. Z., 2001, “On the Application of Kinematic Units to the Topological Analysis of Geared Mechanism,” ASME Journal of Mechanical Design, 123, pp. 240-246. [9] Liu, C. P., Chen, D. Z. and Chang, Y. T., 2004, “Kinematic Analysis of Geared Mechanisms Using the Concept of Kinematic Units,” Mechanism and Machine Theory, 39, pp. 1207-1221. [10] Rao, A. C., 2003, “A Genetic Algorithm for Epicyclic Gear Trains,” Mechanism and Machine Theory, 38, pp. 135-147. [11] Kahraman, A., Ligata, H., Kienzle, K. and Zini, D. M., 2004, “A Kinematics and Power Flow Analysis Methodology for Automatic Transmission Planetary Gear Trains,” ASME Journal of Mechanical Design, 126, pp. 1071-1081 [12] Salgado, David R. and Del Castillo, J. M., 2005, “Selection and Design of Planetary Gear Trains Based on Power Flow Maps,” ASME Journal of Mechanical Design, 127, pp. 120-134. [13] Talpasanu, I., Yih, T. C. and Simionescu, P. A., 2006, “Application of Matroid Method in Kinematic Analysis of Parallel Axes Epicyclic Gear Trains,” ASME Journal of Mechanical Design, 128, pp. 1307-1314. [14] Liu, C. P. and Chen, D. Z., 2000, “On the Embedded Kinematic Fractionation of Epicyclic Gear Trains,” ASME Journal of Mechanical Design, 122, pp. 479-483. [15] Tsai, L. W., 1987, “An Application of the Linkage Characteristic Polynomial to the Topological Synthesis of Epicyclic Gear Trains,’’ ASME Journal of Mechanisms, Transmissions, and Automation in Design, 109, pp. 329–336. [16] Tsai, L. W. and Lin, C. C., 1989, “The Creation of Non-fractionated Two-Degree-of-Freedom Epicyclic Gear Trains,” ASME Journal of Mechanisms, Transmissions, and Automation in Design, 111, pp. 524-529. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24895 | - |
| dc.description.abstract | 本論文主要利用運動分解的概念進行齒輪機構運動的特徵分析與合成,以及經由運動特徵進行齒輪機構的分類。齒輪機構可被分解為數個單自由度的運動單元,每個運動單元則被視為齒輪機構內的運動傳輸模組。運動單元間的拓樸構造連接可分為雙鏈結型與同軸三角型,內文將分析內含四個運動單元,單自由度至六桿,以及兩個自由度至七桿的齒輪機構,並且說明及表列其對應的拓樸構造;藉由選擇輸入與輸出端的位置,可得到齒輪機構內所有可能的運動傳輸路徑並將路徑以控制區塊圖表示。利用控制區塊的增益計算公式,將輸入端與輸出端的運動關係公式化為增益矩陣。
接著進一步討論運動單元內部條件對整體運動增益的影響;運動單元內輸出入桿件的不同及運動單元間的共同連接部分的接頭條件會共同影響整體增益的表現形式,利用增益表現形式的差異可將內含四個運動單元,單自由度至六桿,以及兩個自由度至七桿的齒輪機構做完整分類,根據增益型式分類及運動特徵可得到功能導向之齒輪設計方法。 | zh_TW |
| dc.description.abstract | A methodology based on the concept of kinematic fractionation for the revelation of kinematic characteristics and classification of geared mechanisms is presented. It is shown that structurally non-fractionated geared mechanisms can be considered as the combination of kinematic units (KUs). Each KU is considered as the basic motion transmission module inside a geared mechanism. Admissible connections of KUs are identified according to the structural characteristics of one- and two-DOF geared mechanisms of up to four KUs. Such configurations are then used to construct possible propagation paths of motion via the assignments of input and output links. Since the propagation paths can be modeled by the control block diagram problems, the kinematic relations between input and output links are formulated to gain matrices. According to the types of entities in a gain matrix, various kinematic behaviors are disclosed. The complete kinematic behavior of single KU is revealed and three gain forms of KU is basic of global gain since the geared mechanism is combination of KUs. The global gain of the mechanism is determined by three factors: the configuration decides the transmission flow at KU level, the common linkage between KUs of the mechanism limit the thin edge type of local input and output in the connection of KUs, the assignment of input, ground and output decides the thin edge type of global input and output. From the factor of global gain, there are three gain type are identified and characteristics of geared mechanism are more clear. It is believed that such kinematic characteristics can be readily transformed into the functional requirements and synthesis of geared mechanisms of up to four KUs can be accomplished much easier. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:57:59Z (GMT). No. of bitstreams: 1 ntu-96-R94522632-1.pdf: 694183 bytes, checksum: beeb57303ded98e5a46f377c9879c8b2 (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Chapter 1 Introduction p.1
Chapter 2 Concept of Kinematic Fractionation p.5 Chapter 3 Topological Characteristics of Kinematic Unit p.7 3.1 Common linkage of KUs p.7 3.2 Rule of Connection of KUs p.9 3.3 Configuration of KUs p.11 Chapter 4 Kinematic Propagation Paths p.18 Chapter 5 Gain of Kinematic Paths p.22 Chapter 6 Kinematic classification at KU level p.26 Chapter 7 Effect of KU p.28 7.1 Kinematic behavior of single KU p.30 7.2 Common linkage p.34 7.3 Assignment of input, ground and output p.35 Chapter 8 Characteristics of global gain type p.38 Chapter 9 Synthesis of geared mechanism p.48 5.1 Synthesis of 1-DOF 5-link geared mechanism p.48 5.2 Synthesis of 2-DOF 7-link geared mechanism p.50 Chapter 10 Conclusion p.52 References p.54 | |
| dc.language.iso | zh-TW | |
| dc.subject | 運動特徵 | zh_TW |
| dc.subject | 齒輪機構 | zh_TW |
| dc.subject | 運動單元 | zh_TW |
| dc.subject | kinematic characteristics | en |
| dc.subject | geared mechanims | en |
| dc.subject | kinematic unit | en |
| dc.title | 齒輪機構之運動特徵分析與合成 | zh_TW |
| dc.title | Kinematic Characteristics and Synthesis of Geared Mechanisms Using the Concept of Kinematic Fractionation | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李志中,謝文賓 | |
| dc.subject.keyword | 齒輪機構,運動單元,運動特徵, | zh_TW |
| dc.subject.keyword | geared mechanims,kinematic unit,kinematic characteristics, | en |
| dc.relation.page | 55 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-08-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 677.91 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
