請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24882完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李君男(Chun-Nan Lee) | |
| dc.contributor.author | Sarnai.Naran | en |
| dc.contributor.author | 莎日娜 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:57:46Z | - |
| dc.date.copyright | 2007-09-13 | |
| dc.date.issued | 2007 | |
| dc.date.submitted | 2007-08-31 | |
| dc.identifier.citation | 1. Zahorsky J. Hyperemesis hiemis or the winter vomiting disease. Arch Pediatr. 1929;46:391–395.
2. Adler J. L, Zickl R. Winter vomiting disease. J Infect Dis. 1969; 119:668–673. [PubMed] 3. Berke T, Matson D.O. Reclassification of the Caliciviridae into distinct genera and exclusion of hepatitis E virus from the family on the basis of comparative phylogenetic analysis. Arch Virol. 2000;145(7):1421-36. 4. Green K.Y., Ando T., Balayan M.S., Berke T., Clarke I.N., Estes M.K., Matson D.O., Nakata S., Neill J.D., Studdert M.J., Thiel H.J. Taxonomy of the caliciviruses. J Infect Dis. 2000 May;181 Suppl 2:S322-30. 5. Albert Z. K., Richard G. W., Raphael D., Thomas S. T., Anthony R. K., and Robert M. C. Visualization by Immune Electron Microscopy of a 27-nm Particle Associated with Acute Infectious Nonbacterial Gastroenteritis J Virol. 1972 November; 10(5): 1075–1081 6. Venkataram Prasad B.V., Hardy M.E., Estes M.K. Structural studies of recombinant Norwalk capsids. J Infect Dis. 2000 May;181 Suppl 2:S317-2110 7. Xi J.N., Graham D.Y., Wang K.N., Estes M.K. Norwalk virus genome cloning and characterization. Science. 1990 Dec 14;250(4987):1580-3. 8. Hardy M.E., Crone T.J., Brower J.E. and Ettayebi K. Substrate specificity of the Norwalk virus 3C-like proteinase, Virus Res. 89 (2002) (1), pp. 29–39. 9. Belliot G., Sosnovtsev S. V., Mitra T., Hammer C., Garfield M., and Green K. Y. In vitro proteolytic processing of the MD145 norovirus ORF1 nonstructural polyprotein yields stable precursors and products similar to those detected in calicivirus-infected cells. J. Virol. 77:10957-10974. 10. Seah, E. L., Marshall J. A., and Wright P. J. Open reading frame 1 of the Norwalk-like virus Camberwell: completion of sequence and expression in mammalian cells. J. Virol. 73:10531-10535. 11. Blakeney S.J., Cahill A. and Reilly P.A., Processing of Norwalk virus nonstructural proteins by a 3C-like cysteine proteinase, Virology 308 (2003) (2), pp. 216–224. 12. Fernandez-Vega V., Sosnovtsev S.V., Belliot G., King A.D., Mitra T., Gorbalenya A., Green K.Y. Norwalk virus N-terminal nonstructural protein is associated with disassembly of the Golgi complex in transfected cells. J Virol. 2004 May;78(9):4827-37 13. Pfister, T., and E. Wimmer. Polypeptide p41 of a Norwalk-like virus is a nucleic acid-independent nucleoside triphosphatase. J. Virol. 75:1611-1619 14. Daughenbaugh, K. F., Fraser C. S., Hershey J. W., and Hardy M. E. The genome-linked protein VPg of the Norwalk virus binds eIF3, suggesting its role in translation initiation complex recruitment. EMBO J. 22:2852-2859; 15. Ng, K. K., Pendas-Franco N., Rojo J., Boga J. A., Machin A., Alonso J. M., and Parra F. Crystal structure of Norwalk virus polymerase reveals the carboxyl terminus in the active site cleft. J. Biol. Chem. 279:16638-16645. 16. Jacques R., Ivonne R., Katrin J., Ulrike S., and Wolfram R. Protein-Primed and De Novo Initiation of RNA Synthesis by Norovirus 3Dpol J Virol. 2006 July; 80(14): 7060–7069. 17. Fukushi, S., Kojima S., Takai R., Hoshino F. B., Oka T., Takeda N., Katayama K., and Kageyama T. 2004. Poly(A)- and primer-independent RNA polymerase of Norovirus. J. Virol. 78:3889-3896. 18. Harrison, S. C. Principles of virus structure, p. 53-85. In D. M. Knipe and P. M. Howley (ed.), Fields virology, vol. 1:. Lippincott Williams & Wilkins, Philadelphia, Pa. 19. Greenberg H.B., Valdesuso J.R., Kalica A.R., Wyatt R.G., McAuliffe V.J., Kapikian A.Z., Chanock R.M. Proteins of Norwalk virus. J Virol. 1981 Mar;37(3):994-9. 20. Green, K. Y., Lew J. F., Jiang X., Kapikian A. Z., and Estes M. K. Comparison of the reactivities of baculovirus-expressed recombinant Norwalk virus capsid antigen with those of the native Norwalk virus antigen in serologic assays and some epidemiologic observations. J. Clin. Microbiol. 1993. 31:2185-2191. 21 Lochridge V.P., Hardy M.E. Snow Mountain virus genome sequence and virus-like particle assembly. Virus Genes. 2003 Jan;26(1):71-82 22. Bertolotti-Ciarlet A., Crawford S.E., Hutson A.M., Estes M.K. The 3' end of Norwalk virus mRNA contains determinants that regulate the expression and stability of the viral capsid protein VP1: a novel function for the VP2 protein. J Virol. 2003 Nov;77(21):11603-15 23. Marshall J.A., Dimitriadis A., Wright P.J. Molecular and epidemiological features of norovirus-associated gastroenteritis outbreaks in Victoria, Australia in 2001. J Med Virol. 2005 Feb;75(2):321-31. 24. Karen K., John M., John G., Carlow Virus, a 2002 GII.4 variant Norovirus strain from Ireland Virology Journal 2007, 4:61 25. Uchino K., Miyoshi T., Matsuo M., Ikeda Y., Yoshida Y., Teranaka Y., Sugimoto M., Sasaki Y., Shibata H., Fujii F., Tanaka T. Combined genogroup I and II norovirus infection at a nursery. Jpn J Infect Dis. 2006 Aug;59(4):270-2. 26. Kim S.H., Cheon D.S., Kim J.H., Lee D.H., Jheong W.H., Heo Y.J., Chung H.M., Jee Y., Lee J.S. Outbreaks of gastroenteritis that occurred during school excursions in Korea were associated with several waterborne strains of norovirus. J Clin Microbiol. 2005 Sep;43(9):4836-9. 27. Marks P.J., Vipond I.B., Regan F.M., Wedgwood K., Fey R.E., Caul E.O. A school outbreak of Norwalk-like virus: evidence for airborne transmission. Epidemiol Infect. 2003 Aug;131(1):727-36. 28. Jeffrey W. C., John E. L., Deepak B. Microbial foodborne disease. Chapter 15. p: 469-494. 29. Maunula L., Miettinen I.T., Bonsdorff C.H. Norovirus outbreaks from drinking water. Emerg Infect Dis. 2005 Nov;11(11):1716-21. 30. Kukkula M., Maunula L., Silvennoinen E., Bonsdorff C.H. Outbreak of viral gastroenteritis due to drinking water contaminated by Norwalk-like viruses. J Infect Dis. 1999 Dec;180(6):1771-6. 31. Chen S.M., Ni Y.H., Chen H.L., Chang M.H. Microbial Etiology of Acute Gastroenteritis in Hospitalized Children in Taiwan. Journal of the Formosan Medical Association Volume 105 • Number 12 • December 2006 32. Chen S.Y., Chang Y.C., Lee Y.S., Chao H.C., Tsao K.C., Lin T.Y., Ko T.Y., Tsai C.N., Chiu C.H. Molecular Epidemiology and Clinical Manifestations of Viral Gastroenteritis in Hospitalized Pediatric Patients in Northern TaiwanJournal of Clinical Microbiology, June 2007, p. 2054-2057, Vol. 45, No. 6 33. Wu F.T., Oka T., Katayama K., H.-S. Wu H.S., Donald Jiang D.S., Miyamura T., Takeda N., Hansman G. S. Genetic diversity of noroviruses in Taiwan between November 2004 and March 2005. Arch Virol. 2006 Jul;151(7):1319-27. 34. Katayama K., Shirato-Horikoshi H., Kojima S., Kageyama T., Oka T., Hoshino F.B., Phylogenetic analysis of the complete genome of 18 Norwalk-like viruses. Virology. 2002;299:225–39. 35. Hasman G.S., Doan L.T.P., Kguyem T.A., Okitsu S., Katayama K., Ogawa S., Natori K., Takeda N., Kato Y., Nishiro O., Noda M., Ushijima H. Detection of norovirus and sapovirus infection among children with gastroenteritis in Ho Chi Minh City, Vietnam. Arch Virol. 2004;149:1673–88. 36. Hansman G.S., Katayama K., Maneekarn N., Peerakome S., Khamrin P., Tonusin S., Okitsu S., Nishio O., Takeda N., Ushijima H. Genetic diversity of norovirus and sapovirus in hospitalized infants with sporadic cases of acute gastroenteritis in Chiang Mai, Thailand. J Clin Microbiol. 2004 Mar;42(3):1305-7. 37. Reuter G., Vennema H., Koopmans M., Szücs G.. Epidemic spread of recombinant noroviruses with four capsid types in Hungary. J Clin Virol. 2006 Jan;35(1):84-8. 38. Phan T.G., Yagyu F., Kozlov V., Kozlov A., Okitsu S., Müller W.E., Ushijima H. Viral gastroenteritis and genetic characterization of recombinant norovirus circulating in Eastern Russia. Clin Lab. 2006;52(5-6):247-53. 39. Bull R.A., Hansman G.S., Clancy L.E., Tanaka M.M., Rawlinson W.D., Peter A. White Norovirus Recombination in ORF1/ORF2 Overlap Emerging Infec Des Vol. 11, No. 7 July 2005 40. Waters A., Coughlan S., Hall W.W. Characterisation of a novel recombination event in the norovirus polymerase gene. Virology. 2007 Jun 20;363(1):11-4. 41. Kojima S., Kageyama T., Fukushi S., Hoshino F.B., Shinohara M., Uchida K., Natori K., Takeda N., Katayama K.Genogroup-specific PCR primers for detection of Norwalk-like viruses. J Virol Methods. 2002 Feb;100(1-2):107-14 42. Michael W., Holmes E.C. Evolutionary aspects of recombination in RNA viruses Journal of General Virology (1999), 80, 2535-2543. 43. Awadalla P. 2003. The evolutionary genomics of pathogen recombination. Nat Rev Genet 4:50–60. 44. Lai M.M. RNA recombination in animal and plant viruses. Microbiol Rev. 1992;56:61–79. 45. Kate E. Norovirus Infection Control in Oxfordshire Communities Hospitals Mutation in a Lordsdale Norovirus Epidemic Strain as a Potential Indicator of Transmission Routes Journal of clinical microbiology Sept. 2004, p. 3950–3957 46. Bull R.A., Hansman G.S., Clancy L.E., Tanaka M.M., Rawlinson W.D., White P.A. Norovirus Recombination in ORF1/ORF2 Overlap. Emerg. Infectious Diseases.Vol. 11, No. 7, July 2005 47. Bertolloti-Ciarlet A., White L. J., Chen R., Prased B.V., Estes M.K. Structural requirements for the assembly of Norwalk virus-like particles. J. Virol. 76: 4044-4055. 48. Ming T., Xi J. The P domain of Norovirus capsid protein forms a subviral particle that binds to histo-blood group antigen receptors. Journal of Virology, Nov.2002. 14017-14030. 49. Phan T.G., Kaneshi K., Ueda Y., Nakaya S., Nishimura S., Yamamoto A., Sugita K., Takanashi S., Okitsu S., Ushijima H. Genetic heterogeneity, evolution, and recombination in noroviruses. J Med Virol. 2007 Sep;79(9):1388-400 50. Smith D.B., Inglis S.C. The mutation rate and variability of eukaryotic viruses: an analytical review. J Gen Virol. 1987 Nov;68 ( Pt 11):2729-40 51. Zhang J., Temin H.M. (1993) Rate and mechanism of nonhomologous recombination during a single cycle of retroviral replication. Science 259, 234–238. 52. Iglesias-Sanchez M.J., Lopez-Galindez C. Each genomic RNA in HIV-1 heterozygous virus generate new virions. Virology. 2005 Mar 15;333(2):316-23. 53. Khatchikian D., Orlich M., Rott R. (1989) Increased viral pathogenicity after in sertion of a 28S ribosomal RNA sequence into the hemagglutinin gene of an influenza virus. Nature 340, 156–157. 54. Ambert-Balay K., Bon F., Guyader F.Le., Pothier P., Kohli E. Characterization of New Recombinant. Noroviruses J. Clin. Microbiol., October 1, 2005; 43(10): 5179 - 5186. 55. Vidal R., Roessler P., Solari V., Vollaire J., Jiang X., Matson D.O., Mamani N., Prado V., O'Ryan M.L. Novel recombinant norovirus causing outbreaks of gastroenteritis in Santiago, Chile. J Clin Microbiol. 2006 Jun;44(6):2271-5 56. Jacques R., Julia M., Axel R. Evidence of Recombination in the Norovirus Capsid Gene. Journal of Virology, Apr. 2005, p. 4977–4990 57. Okada M., Tanaka T., Oseto M., Takeda N., and Shinozaki K. Genetic analysis of noroviruses associated with fatalities in healthcare facilities. Arch. Virol. 151 (8). 58. Phan T.G., Kuroiwa T., Kaneshi K., Ueda Y., Nakaya S., Nishimura S., Yamamoto A., Sugita K., Nishimura T., Yagyu F., Okitsu S., Müller W.E., Maneekarn N., Ushijima H. Changing distribution of norovirus genotypes and genetic analysis of recombinant GIIb among infants and children with diarrhea in Japan. J Med Virol. 2006 Jul;78(7):971-8. 59. Lopman B., Vennema H., Kohli E., Pothier P., Sanchez A., Negredo A., Buesa J., Schreier E., Reacher M., Brown D., Gray J., Iturriza M., Gallimore C., Bottiger B., Hedlund K.O., Torvén M., von Bonsdorff C.H., Maunula L., Poljsak-Prijatelj M., Zimsek J., Reuter G., Szücs G., Melegh B., Svennson L., van Duijnhoven Y., Koopmans M. Increase in viral gastroenteritis outbreaks in Europe and epidemic spread of new norovirus variant. Lancet. 2004 Feb 28;363(9410):682-8. 60. Okame M., Akihara S., Hansman G., Hainian Y., Tran H.T., Phan T.G., Yagyu F., Okitsu S., Ushijima H. Existence of multiple genotypes associated with acute gastroenteritis during 6-year survey of norovirus infection in Japan. J Med Virol. 2006 Oct;78(10):1318-24. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24882 | - |
| dc.description.abstract | 人類諾若病毒(Norovirus)於人類各年齡層均會引起腸胃炎,主要經由受糞便汙染之水及食物所傳染,其次為人與人之間的傳染。每年各地的大流行會造成嚴重的發病率及死亡率,此種情形在開發中國家特別顯著。近年來,於世界各地已有一些研究指出諾若病毒會發生自然的基因重組現象。由於諾若病毒發生基因重組比想像中頻繁,因此更進一步瞭解諾若病毒之基因多重組及多樣性對於醫療保健上有很大的幫助。
本論文研究分析台灣2002、2003及2006年之糞便檢體中所分離之九株重組病毒株之全長基因。結果有八個病毒株分別可得到包含病毒全長基因之三段PCR片段;核酸序列分析後經由種系分析可知在各不同基因不同諾若病毒之間的關係。由SimPlot軟體分析可得知諾若病毒重組發生之位點。針對聚合酶基因進行種系分析,結果發現Taipei/0212/2003/TW、Taipei/2339/2002/TW、Taipei/0089/2003/TW、Taipei/0510/2002/TW、Taipei/1969/2002/TW屬GIIb基因型。此外針對外殼蛋白質基因進行種系分析,得知此五種分屬兩種不同基因型--Taipei/0089/2003/TW、Taipei/0510/2002/TW、Taipei/1969/2002/TW及Taipei/0212/2003/TW屬GII/3基因型;Taipei/2339/2002/TW屬GII/2基因型。另三個病毒株--Taipei/0760/2002/TW、Taipei/1047/2006/TW及Taipei/0898/2006/TW之聚合酶基因之種系分析屬GII/12及GII/10基因型,基因相似度達98%;外殼蛋白質基因之種系分析則發現Taipei/0760/2002/TW、Taipei/1047/2006/TW及Taipei/0898/2006/TW分屬GII/10、GII/12、GII/4三種基因型。 綜合以上結果顯示,台灣確實存在諾若病毒之基因重組病毒株,此為第一次證明自然產生之重組諾若病毒確實曾在台灣造成感染。 | zh_TW |
| dc.description.abstract | Human norovirus (NoV) causes gastroenteritis in humans in all age groups. NoV is transmitted through fecal contamination of food and water, and secondary person-to-person spread is common. Annual epidemics cause severe morbidity and even mortality, especially in developing countries. In recent years several naturally occurring recombinant NoVs have been reported around the world. Considering the fact that recombination occur much more often than it was thought to be, further study of the diversity and ongoing recombination of NoV may bring tremendous assistance for epidemiological studies and more importantly bring medical and healthcare attention for diminishing worldwide epidemics.
In this study the full-length genome of nine norovirus recombinants, isolated from stool specimens from 2002, 2003, and 2006 in Taiwan. Three PCR fragments covering the full-length genome were obtained for eight of the isolates. After the nucleotide sequences were determined, the relationships among different noroviruses (NoVs) in different genes were studied by phylogenetic analysis. The recombination break points were revealed by SimPlot analysis. According to the polymerase gene-based phylogenetic analysis, five isolates Taipei/0212/2003/TW, Taipei/2339/2002/TW, Taipei/0089/2003/TW, Taipei/0510/2002/TW, and Taipei/1969/2002/TW belonged to the recombinants with the GIIb polymerase gene. By capsid gene-based phylogenetic analysis, the above described GIIb polymerase recombinants clustered onto two distinct genotypes, Taipei/0089/2003/TW Taipei/0510/2002/TW, Taipei/1969/2002/TW, and Taipei/0212/2003/TW clustered with GII/3 strains, Taipei/2339/2002/TW clustered with GII/2 strains. Three isolates Taipei/0760/2002/TW, Taipei/1047/2006/TW, and Taipei/0898/2006/TW, clustered with GII/12 and GII/10 strains and shared 98% identity in polymerase gene. According to the capsid gene-based analysis, Taipei/0760/2002/TW, Taipei/1047/2006/TW, and Taipei/0898/2006/TW clustered with GII/10, GII/12, and GII/4 strains, respectively. Taken together, these results confirmed the existence of naturally occurring recombinant NoVs in Taiwan and this is the first evidence of naturally occurring recombinant NoV infection in Taiwan. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:57:46Z (GMT). No. of bitstreams: 1 ntu-96-R93424021-1.pdf: 627369 bytes, checksum: c0fd922d3fc44800a085ddb92ebab4fe (MD5) Previous issue date: 2007 | en |
| dc.description.tableofcontents | Abstract
Chinese………………….………………………….……………………………1 English………………………………..…………………………………...……..2 Introduction 1. General introduction of norovirus………………………………….……….4 2. Epidemiology…………………..………………………………………….….6 3. Norovirus recombination…………………………………………………….7 4. The aim of the study………………………………………………………...10 Materials and methods 1. Purification of viral RNA…………………………………………………11 2. cDNA synthesis, RT-PCR………………………………………………...11 3. PCR (Polymerase Chain Reaction)………………………………………12 4. Gel purification …………………………………………………….……..13 5. Cloning…………………………………………………….……………….13 5.1. A-Tailing …………………………………………………………………..14 5.2. Ligation reaction using pCR2-TOPO vector…………………………….14 5.3. Transformation using pCR2-TOPO vector……………………………. 15 5.4. Colony PCR: ………………………………………………………………15 5.5. Preparation of plasmid……………………………………………………15 6. Sequencing 6.1. Cycle sequencing…………………………………..………………………16 6.2. DNA precipitation by ethanol………………………….…………………17 7. Sequence analysis and alignment …………..…..……………..………18 Results…………………………………………………………………..19 Discussion...…………………………..….………………………….….24 References…………………………………….…………………..…….26 Figures and tables………………………………………………...…....34 Appendice……………………………………………………………....59 | |
| dc.language.iso | en | |
| dc.subject | 諾若病毒 | zh_TW |
| dc.subject | 台灣 | zh_TW |
| dc.subject | 李君男 | zh_TW |
| dc.subject | 重組株之 | zh_TW |
| dc.subject | 莎日娜 | zh_TW |
| dc.subject | 序列分析 | zh_TW |
| dc.subject | Sarnai.Naran | en |
| dc.subject | sequence analysis | en |
| dc.subject | recombinant | en |
| dc.subject | Chun-Nan Lee | en |
| dc.subject | Norovirus | en |
| dc.subject | taiwan | en |
| dc.title | 台灣諾若病毒重組株之全長基因體序列分析 | zh_TW |
| dc.title | Sequence analysis of full-length genome of norovirus recombinants in Taiwan | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 95-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 高全良(Kao),張淑媛(Zhang) | |
| dc.subject.keyword | 台灣,諾若病毒,李君男,重組株之,莎日娜,序列分析, | zh_TW |
| dc.subject.keyword | taiwan,Norovirus,Chun-Nan Lee,recombinant,Sarnai.Naran,sequence analysis, | en |
| dc.relation.page | 60 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2007-08-31 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-96-1.pdf 未授權公開取用 | 612.67 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
