Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24808
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李芳仁
dc.contributor.authorMeng-Ru Lien
dc.contributor.author李孟儒zh_TW
dc.date.accessioned2021-06-08T05:56:42Z-
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-08-08
dc.identifier.citationAkao Y, Marukawa O, Morikawa H, Nakao K, Kamei M, Hachiya T, Tsujimoto Y (1995) The rck/p54 candidate proto-oncogene product is a 54-kilodalton D-E-A-D box protein differentially expressed in human and mouse tissues. Cancer Res 55: 3444-3449
Bardwell L, Cook JG, Zhu-Shimoni JX, Voora D, Thorner J (1998) Differential regulation of transcription: repression by unactivated mitogen-activated protein kinase Kss1 requires the Dig1 and Dig2 proteins. Proc Natl Acad Sci U S A 95: 15400-15405
Borneman AR, Leigh-Bell JA, Yu H, Bertone P, Gerstein M, Snyder M (2006) Target hub proteins serve as master regulators of development in yeast. Genes Dev 20: 435-448
Buu LM, Jang LT, Lee FJ (2004) The yeast RNA-binding protein Rbp1p modifies the stability of mitochondrial porin mRNA. J Biol Chem 279: 453-462
Chandarlapaty S, Errede B (1998) Ash1, a daughter cell-specific protein, is required for pseudohyphal growth of Saccharomyces cerevisiae. Mol Cell Biol 18: 2884-2891
Colombo S, Ma P, Cauwenberg L, Winderickx J, Crauwels M, Teunissen A, Nauwelaers D, de Winde JH, Gorwa MF, Colavizza D, Thevelein JM (1998) Involvement of distinct G-proteins, Gpa2 and Ras, in glucose- and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. Embo J 17: 3326-3341
Conlan RS, Tzamarias D (2001) Sfl1 functions via the co-repressor Ssn6-Tup1 and the cAMP-dependent protein kinase Tpk2. J Mol Biol 309: 1007-1015
Cook JG, Bardwell L, Thorner J (1997) Inhibitory and activating functions for MAPK Kss1 in the S. cerevisiae filamentous-growth signalling pathway. Nature 390: 85-88
Cullen PJ, Sabbagh W, Jr., Graham E, Irick MM, van Olden EK, Neal C, Delrow J, Bardwell L, Sprague GF, Jr. (2004) A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Genes Dev 18: 1695-1708
Cullen PJ, Sprague GF, Jr. (2000) Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A 97: 13619-13624
De Las Penas A, Pan SJ, Castano I, Alder J, Cregg R, Cormack BP (2003) Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev 17: 2245-2258
de Valoir T, Tucker MA, Belikoff EJ, Camp LA, Bolduc C, Beckingham K (1991) A second maternally expressed Drosophila gene encodes a putative RNA helicase of the 'DEAD box' family. Proc Natl Acad Sci U S A 88: 2113-2117
Douglas LJ (2003) Candida biofilms and their role in infection. Trends Microbiol 11: 30-36
Dranginis AM, Rauceo JM, Coronado JE, Lipke PN (2007) A biochemical guide to yeast adhesins: glycoproteins for social and antisocial occasions. Microbiol Mol Biol Rev 71: 282-294
Fichtner L, Schulze F, Braus GH (2007) Differential Flo8p-dependent regulation of FLO1 and FLO11 for cell-cell and cell-substrate adherence of S. cerevisiae S288c. Mol Microbiol 66: 1276-1289
Gagiano M, van Dyk D, Bauer FF, Lambrechts MG, Pretorius IS (1999) Msn1p/Mss10p, Mss11p and Muc1p/Flo11p are part of a signal transduction pathway downstream of Mep2p regulating invasive growth and pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Microbiol 31: 103-116
Gardner JM, McBryde C, Vystavelova A, De Barros Lopes M, Jiranek V (2005) Identification of genes affecting glucose catabolism in nitrogen-limited fermentation. FEMS Yeast Res 5: 791-800
Garrett S, Broach J (1989) Loss of Ras activity in Saccharomyces cerevisiae is suppressed by disruptions of a new kinase gene, YAKI, whose product may act downstream of the cAMP-dependent protein kinase. Genes Dev 3: 1336-1348
Gavrias V, Andrianopoulos A, Gimeno CJ, Timberlake WE (1996) Saccharomyces cerevisiae TEC1 is required for pseudohyphal growth. Mol Microbiol 19: 1255-1263
Gimeno CJ, Fink GR (1994) Induction of pseudohyphal growth by overexpression of PHD1, a Saccharomyces cerevisiae gene related to transcriptional regulators of fungal development. Mol Cell Biol 14: 2100-2112
Govender P, Domingo JL, Bester MC, Pretorius IS, Bauer FF (2008) Controlled expression of the dominant flocculation genes FLO1, FLO5, and FLO11 in Saccharomyces cerevisiae. Appl Environ Microbiol 74: 6041-6052
Grigull J, Mnaimneh S, Pootoolal J, Robinson MD, Hughes TR (2004) Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Mol Cell Biol 24: 5534-5547
Guldal CG, Broach J (2006) Assay for adhesion and agar invasion in S. cerevisiae. J Vis Exp: 64
Guo B, Styles CA, Feng Q, Fink GR (2000) A Saccharomyces gene family involved in invasive growth, cell-cell adhesion, and mating. Proc Natl Acad Sci U S A 97: 12158-12163
Heise B, van der Felden J, Kern S, Malcher M, Bruckner S, Mosch HU (2010) The TEA transcription factor Tec1 confers promoter-specific gene regulation by Ste12-dependent and -independent mechanisms. Eukaryot Cell 9: 514-531
Hoyer LL (2001) The ALS gene family of Candida albicans. Trends Microbiol 9: 176-180
Jang LT, Buu LM, Lee FJ (2006) Determinants of Rbp1p localization in specific cytoplasmic mRNA-processing foci, P-bodies. J Biol Chem 281: 29379-29390
Kohler T, Wesche S, Taheri N, Braus GH, Mosch HU (2002) Dual role of the Saccharomyces cerevisiae TEA/ATTS family transcription factor Tec1p in regulation of gene expression and cellular development. Eukaryot Cell 1: 673-686
Kraakman L, Lemaire K, Ma P, Teunissen AW, Donaton MC, Van Dijck P, Winderickx J, de Winde JH, Thevelein JM (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32: 1002-1012
Kuchin S, Vyas VK, Carlson M (2002) Snf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22: 3994-4000
Lee FJ, Moss J (1993) An RNA-binding protein gene (RBP1) of Saccharomyces cerevisiae encodes a putative glucose-repressible protein containing two RNA recognition motifs. J Biol Chem 268: 15080-15087
Lemaire K, Van de Velde S, Van Dijck P, Thevelein JM (2004) Glucose and sucrose act as agonist and mannose as antagonist ligands of the G protein-coupled receptor Gpr1 in the yeast Saccharomyces cerevisiae. Mol Cell 16: 293-299
Liu H, Styles CA, Fink GR (1993) Elements of the yeast pheromone response pathway required for filamentous growth of diploids. Science 262: 1741-1744
Liu H, Styles CA, Fink GR (1996) Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144: 967-978
Lo WS, Dranginis AM (1998) The cell surface flocculin Flo11 is required for pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9: 161-171
Madhani HD, Styles CA, Fink GR (1997) MAP kinases with distinct inhibitory functions impart signaling specificity during yeast differentiation. Cell 91: 673-684
Maekawa H, Nakagawa T, Uno Y, Kitamura K, Shimoda C (1994) The ste13+ gene encoding a putative RNA helicase is essential for nitrogen starvation-induced G1 arrest and initiation of sexual development in the fission yeast Schizosaccharomyces pombe. Mol Gen Genet 244: 456-464
Malcher M, Schladebeck S, Mosch HU (2011) The Yak1 protein kinase lies at the center of a regulatory cascade affecting adhesive growth and stress resistance in Saccharomyces cerevisiae. Genetics 187: 717-730
Mosch HU, Fink GR (1997) Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145: 671-684
Mosch HU, Kubler E, Krappmann S, Fink GR, Braus GH (1999) Crosstalk between the Ras2p-controlled mitogen-activated protein kinase and cAMP pathways during invasive growth of Saccharomyces cerevisiae. Mol Biol Cell 10: 1325-1335
Mosch HU, Roberts RL, Fink GR (1996) Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 93: 5352-5356
Nonet M, Scafe C, Sexton J, Young R (1987) Eucaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis. Mol Cell Biol 7: 1602-1611
Pan X, Heitman J (1999) Cyclic AMP-dependent protein kinase regulates pseudohyphal differentiation in Saccharomyces cerevisiae. Mol Cell Biol 19: 4874-4887
Pan X, Heitman J (2000) Sok2 regulates yeast pseudohyphal differentiation via a transcription factor cascade that regulates cell-cell adhesion. Mol Cell Biol 20: 8364-8372
Pan X, Heitman J (2002) Protein kinase A operates a molecular switch that governs yeast pseudohyphal differentiation. Mol Cell Biol 22: 3981-3993
Park YU, Hur H, Ka M, Kim J (2006) Identification of translational regulation target genes during filamentous growth in Saccharomyces cerevisiae: regulatory role of Caf20 and Dhh1. Eukaryot Cell 5: 2120-2127
Pitoniak A, Birkaya B, Dionne HM, Vadaie N, Cullen PJ (2009) The signaling mucins Msb2 and Hkr1 differentially regulate the filamentation mitogen-activated protein kinase pathway and contribute to a multimodal response. Mol Biol Cell 20: 3101-3114
Qiu ZR, Schwer B, Shuman S (2011) Determinants of Nam8-dependent splicing of meiotic pre-mRNAs. Nucleic Acids Res 39: 3427-3445
Reynolds TB, Fink GR (2001) Bakers' yeast, a model for fungal biofilm formation. Science 291: 878-881
Roberts RL, Fink GR (1994) Elements of a single MAP kinase cascade in Saccharomyces cerevisiae mediate two developmental programs in the same cell type: mating and invasive growth. Genes Dev 8: 2974-2985
Robertson LS, Causton HC, Young RA, Fink GR (2000) The yeast A kinases differentially regulate iron uptake and respiratory function. Proc Natl Acad Sci U S A 97: 5984-5988
Robertson LS, Fink GR (1998) The three yeast A kinases have specific signaling functions in pseudohyphal growth. Proc Natl Acad Sci U S A 95: 13783-13787
Rolland F, De Winde JH, Lemaire K, Boles E, Thevelein JM, Winderickx J (2000) Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 38: 348-358
Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. Embo J 18: 1257-1269
Sherman F, Fink GR, Hicks JB. (1986). Methods in Yeast Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
Sheth U, Parker R (2003) Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300: 805-808
Smukalla S, Caldara M, Pochet N, Beauvais A, Guadagnini S, Yan C, Vinces MD, Jansen A, Prevost MC, Latge JP, Fink GR, Foster KR, Verstrepen KJ (2008) FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast. Cell 135: 726-737
Stringer JR, Keely SP (2001) Genetics of surface antigen expression in Pneumocystis carinii. Infect Immun 69: 627-639
Thevelein JM, de Winde JH (1999) Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 33: 904-918
Vasudevan S, Peltz SW (2001) Regulated ARE-mediated mRNA decay in Saccharomyces cerevisiae. Mol Cell 7: 1191-1200
Verstrepen KJ, Fink GR (2009) Genetic and epigenetic mechanisms underlying cell-surface variability in protozoa and fungi. Annu Rev Genet 43: 1-24
Vitali J, Ding J, Jiang J, Zhang Y, Krainer AR, Xu RM (2002) Correlated alternative side chain conformations in the RNA-recognition motif of heterogeneous nuclear ribonucleoprotein A1. Nucleic Acids Res 30: 1531-1538
Ward MP, Gimeno CJ, Fink GR, Garrett S (1995) SOK2 may regulate cyclic AMP-dependent protein kinase-stimulated growth and pseudohyphal development by repressing transcription. Mol Cell Biol 15: 6854-6863
Wolf JJ, Dowell RD, Mahony S, Rabani M, Gifford DK, Fink GR (2010) Feed-forward regulation of a cell fate determinant by an RNA-binding protein generates asymmetry in yeast. Genetics 185: 513-522
Zeitlinger J, Simon I, Harbison CT, Hannett NM, Volkert TL, Fink GR, Young RA (2003) Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113: 395-404
Zhang Z, Smith MM, Mymryk JS (2001) Interaction of the E1A oncoprotein with Yak1p, a novel regulator of yeast pseudohyphal differentiation, and related mammalian kinases. Mol Biol Cell 12: 699-710
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24808-
dc.description.abstractThe RNA binding protein, Rbp1p, was first identified as a negative regulator in Saccharomyces cerevisiae. RBP1 encodes a 672-amino acid, ~80-kD protein, which contains three RNA recognition motifs (RRM), two glutamine-rich stretches, and one asparagine-methionine-proline-rich (NMP-rich) region. Our lab previously has showed that overexpression Rbp1p RRM mutants in BY4741 induced agar-adhesion, a typical phenotype of yeast filamentous growth. In this study, we asked whether endogenous Rbp1p plays a role in filamentous growth of Σ1278b strain. Here we showed that deletion of RBP1 enhances agar adhesion, invasion and cell elongation. These phenotypes induced by rbp1 mutation depend on FLO11, which encodes a cell-wall glycoprotein regulating filamentous growth. The flo11 rbp1 double mutant fails to adhere to agar. Deletion of RBP1 significantly activates the FLO11 mRNA level, suggesting that Rbp1p negatively regulates filamentous growth through inhibition of FLO11 mRNA expression. The RRM2 motif and NMP-rich region are important for its adhesive phenotypes. Both transcription factors in MAPK pathway, Ste12p and cAMP-PKA pathway, Flo8p are required for rbp1-induced hyper-agar adhesion and FLO11 activation. Sfl1p, another transcription factor in cAMP-PKA pathway, which represses FLO11 transcripts. The FLO11 mRNA level in rbp1 sfl1 double mutant was increased much more than sfl1 mutant, implying that Rbp1p may regulate FLO11 expression in parallel with Sfl1p. Dhh1p, one of Rbp1p interacting proteins, might participate in Rbp1p-mediated adhesive growth. However, the exact mechanism for Rbp1p to regulate FLO11 expression still remains to be investigated.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:56:42Z (GMT). No. of bitstreams: 1
ntu-100-R98448010-1.pdf: 13251951 bytes, checksum: 2284a9b378f6e82489e7c37658db81c3 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsTable of Contents I
中文摘要 III
Abstract IV
Introduction 1
Materials and Methods 8
Results 14
Discussion 21
Figures 26
Figure 1. Deletion of RBP1 enhance agar adhesion and cell elongation
in Σ1278b 26
Figure 2. rbp1 mutant strain invades agar more efficiently upon glucose
starvation. 27
Figure 3. The hyper-agar adhesive growth caused by the rbp1 mutant was
depend on FLO11 28
Figure 4. Deletion of RBP1 activates FLO11 expression during glucose 29
Figure 5. Construct of integrated Rbp1p, Rbp1p-rrm2, and Rbp1p-ΔNMP 30
Figure 6. Expression of wild-type Rbp1p, but not rrm2 or ΔNMP restores
rbp1-induced hyper-adhesive growth 31
Figure 7. MAPK and PKA pathways are both required for rbp1-induced
hyper-adhesion and FLO11 activation 32
Figure 8. Hyper-adhesion and FLO11 activation of rbp1 mutant are partially
suppressed by deletion of DHH1 33
Figure 9. Construct of integrated Dhh1p, Dhh1p-ΔC81 and Dhh1p-ΔC106 34
Figure 10. Dhh1p-ΔC81 partially restores agar adhesion of the dhh1 mutant 35
Figure 11. Dhh1p-ΔC81 complements the temperature sensitive growth of
the dhh1 mutant strain at 37℃ 36
Figure 12. Adhesion induced by overexpression of Rbp1-rrm2 in BY4741 is
interaction-independent with Dhh1p 37
Figure 13. Sequence alignment of Rbp1p and its homolog in Candida albicans 38
Table 1. Candidate genes regulated by Rbp1p in Σ1278b 39
Table 2. Yeast strains used in this study 43
Table 2. Primers used in this study 44
Table 3. A brief summary of plasmids used in this study 46
Table 4. Antibodies used in this study 47
References 48
dc.language.isoen
dc.subject絲狀生長zh_TW
dc.subject核醣核酸蛋白zh_TW
dc.subjectfilamentous growthen
dc.subjectRNA-binding proteinen
dc.subjectRbp1pen
dc.title探討酵母菌核醣核酸蛋白Rbp1p對絲狀生長之調控zh_TW
dc.titleCharacterization of Rbp1p-mediated filamentous growthen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄧述諄,林敬哲,羅?升
dc.subject.keyword核醣核酸蛋白,絲狀生長,zh_TW
dc.subject.keywordRNA-binding protein,Rbp1p,filamentous growth,en
dc.relation.page54
dc.rights.note未授權
dc.date.accepted2011-08-08
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
12.94 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved