Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24807
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor賴喜美(Hsi-Mei Lai)
dc.contributor.authorShing-Yun Changen
dc.contributor.author張馨云zh_TW
dc.date.accessioned2021-06-08T05:56:41Z-
dc.date.copyright2008-02-01
dc.date.issued2008
dc.date.submitted2008-01-27
dc.identifier.citation陳忠輝、張嘉容。2006。噴墨印刷用紙適性與現況之探討。印刷科技22,p.1-14。
Andreola, F., Castellini, E., Manfredini, T., Romagnoli, M. 2004. The role of sodium hexametaphosphate in the dissolution process of kaolinite and kaolin. J. Eur. Ceram. Soc. 24: 2113-2124.
Angellier, H., Boisseau, S. M., Belgacem, M. N., Dufresne, A. 2005a. Surface chemical modification of waxy maize starch nanocrystals. Langmuir 21: 2425-2433.
Angellier, H., Boisseau, S. M., Dole, P., Dufresne, A. 2006a. Thermoplastic starch-waxy maize starch nanocrystals nanocomposites. Biomacromolecules 7: 531-539.
Angellier, H., Boisseau, S. M., Dufresne, A. 2005b. Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules 38: 9161-9170.
Angellier, H., Boisseau, S. M., Dufresne, A. 2006b. Waxy maize starch nanocrystals as filler in natural rubber. Macromol. symp. 233: 132-136.
Angellier, H., Boisseau, S. M., Lebrun, L., Dufresne, A. 2005c. Processing and structural properties of waxy maize starch nanocrystals reinforced natural rubber. Macromolecules 38: 3783-3792.
Angellier, H., Choisnard, L., Boisseau, S. M., Ozil, P., Dufresne, A. 2004. Optimization of the preparation of aqueous suspensions of waxy maize starch nanocrystals using a response surface methodology. Biomacromolecules 5: 1545-1551.
Angellier, H., Putaux, J. L., Boisseau, S. M., Dupeyre, D., Dufresne, A. 2005d. Starch nanocrystal fillers in an acrylic polymer matrix. Macromol. Symp. 221: 95-104.
Anglès, M. N., Dufresne, A. 2001. Plasticized starch/tunicin whiskers nanocomposites materials. 2. mechanical behavior. Macromolecules 34: 2921-2931.
Araki, J., Wada, M., Kuga, S., Okano, T. 1998. Flow properties of microcrytalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf., A 142: 75-82.
Araki, J., Wada, M., Kuga, S., Okano, T. 2000. Birefringent glassy phase of a cellulose microcrystal suspension. Langmuir 16: 2413-2415.
Atalla, R. H., Van der Hart, D. L. 1984. Native cellulose—a composite of two distinct crystalline forms. Science 223: 283-285.
Atkins, E. D. T. 1985. Conformations in polysaccharides and complex carbohydrates. Proc. Int. Symp. Biomol. Struct. Interact. Suppl. J. Biosci. 8: 375-387.
Averous, L. 2004. Biodegradable multiphase systems based on plasticized starch: a review. J. Macromol. Sci., Part C-Polym. Rev. 44: 231-274.
Bagkar, N., Ganguly, R., Choudhury, S., Hassan, P. A., Sawant, S., Yakhmi, J. V. 2004. Synthesis of surfactant encapsulated nickel hexacynaoferrate nanoparticles and deposition of their Langmuir-Blodgett film. J. Mater. Chem. 14: 1430-1436.
Belamie, E., Davidson, P., Giraud-Guille, M. M. 2004. Structure and chirality of the nematic phase in α-chitin suspensions. J. Phys. Chem. B 108: 14991-15000.
Belamie, E., Mosser, G., Gobeaux, F., Giraud-Guille, M. M. 2006. Possible transient liquid crystal phase during the laying out of connective tissues:α-chitin and collagen as models. J. Phys.: Condens. Matter 18: S115-S129.
Bernhardt, C. 1988. Preparation of suspensions for particle size analysis, methodical recommendations, liquids and dispersing agents. Adv. Colloid Interface Sci. 29: 79-139.
Bertoft, E. 2004. Lintnerization of two amylose-free starches of A- and B-crystalline type, respectively. Starch/Stärke 56: 167-180.
Candanedo, S. B., Roman, M., Gray, D. G. 2005. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6: 1048-1054.
Castellini, E., Lusvardi, G., Malavasi, G., Menabue, L. 2005. Thermodynamic aspects of the adsorption of hexametaphosphate on kaolinite. J. Colloid Interface Sci. 292: 322-329.
Cranston, E. D., Gray, D. G. 2006. Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystallitne cellulose. Biomacromolecules 7: 2522-2530.
Decher, G., Schlenoff, J. B. 2002. Multilayer Thin Films. Wiley-VCH, New York, USA.
Dong, X. M., Kimura, T., Revol, J. F., Gray, D. G. 1996. Effect of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites. Langmuir 12: 2076-2082.
Dufresne, A., Cavaille, J. Y., Helbert, W. 1996. New nanocomposite materials: microcrystalline starch reinforced thermoplastic. Macromolecules 29: 7624-7626
Dujardin, E., Blaseby, M., Mann, S. 2003. Synthesis of mesoporous silica by sol-gel mineralization of cellulose nanorod nematic suspension. J. Mater. Chem. 13: 696-699.
Dur, J. C., Elsass, F., Chaplain, V., Tessier, D. 2004. The relationship between particle-size distribution by laser granulometry and image analysis by transmission electron microscopy in a soil clay fraction. Eur. J. Soil Sci. 55: 265-270.
Ellis, R. P., Cochrane, M. P., Dale, M. F. B., Duffus, C. M., Lynn, A., Morrison, I. M., Prentice, R. D. M., Swanston, J. S., Tiller, S. A. 1998. Starch production and industrial use. J. Sci. Food Agric. 77: 289-311.
Eshel, G., Levy, G. J., Mingelgrin, U., Singer, M. J. 2004. Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci. Soc. Am. J. 68: 736-743.
Finkenstadt, V. L. 2005. Natural polysaccharides as electroactive polymers. Appl. Microbiol. Biotechnol. 67: 735-745.
Gallant, D. J., Bouchet, B., Baldwin, P. M. 1997. Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 32: 177-191.
Gallant, D. J., Bouchet, B., Buléon, A., Pérez, S. 1992. Physical characteristics of starch granules and susceptibility to enzymatic degradation. Eur. J. Clin. Nutr. 46: S3-S16
Giraud-Guille, M. -M. 1984. Fine structure of the chitin-protein system in the crab cuticle. Tissue & Cell 16: 75-92.
Hanley, S. J., Giasson, J., Revol, J. F., Gray, D. G. 1992. Atomic force microscopy of cellulose microfibrils-comparison with transmission electron-microscopy. Polymer 33: 4639-4642.
Heux, L., Chauve, G., Bononi, C. 2000. Nonflocculating and chiral-nematic self-ordering of cellulose microcrystls suspensions in nonpolar solvents. Langmuir 16: 8210-8212.
Hge, T. T., Hori, N., Takemura, A., Ono, H., Kimura, T. 2003. Synthesis and orientation study of a magnetically aligned liquid-crystalline chitin/poly(acrylic acid) composite. J. Polym. Sci., Part B: Polym. Phys. 41: 711-714.
Hiemenz, P. C., Rajagopalan, R. 1997. Principles of Colloid and Surface Chemistry, 3rd ed. Marcel Dekker Inc., New York, USA.
Hizukuri, S. 1986. Polymodal distribution of the chain lengths of amylopectins, and its significance, Carbohydr. Res. 147: 342–347.
Hizukuri, S., Takeda, Y., Yasuda, M., Suzuki, A. 1981. Multibranched nature of amylose and the action of debranching enzymes. Carbohydr. Res. 94: 205-213.
Hoover, R. 2000. Acid-treated starches. Food Rev. Int. 16: 369-392.
Imberty, A., Chanzy, H., Pérez, S., Buléon, A., Tran, V. 1987. New three-dimensional structure for A-type starch. Macromolecules 20: 2634-2636.
Imberty, A., Pérez, S. 1988. A revisit to the three-dimensional structure of β-amylose. Biopolymers 27: 1205-1221.
Jane, J. -L., Wong, K-S., McPherson, A. E. 1997. Branched-structure difference in starches of A- and B-type X-ray patterns revealed by their Naegeli dextrins. Carbohydr. Res. 300: 219-227.
Kainuma, K., Kobayashi, S., Haraada, T. 1978. Action of Pseudomonas isoamylase on various branched oligo- and poly-saccharides. Carbohydr. Res. 61: 345-357.
Karvinen, P., Oksman, A., Silvennoinen, R., Mikkonene, H. 2007. Complex refractive index of starch acetate used as a biodegradable pigment and filler of paper. Opt. Mater. 29: 1171-1176.
Kurisaki, H., Nishikawa, M. 1991. Powdery cosmetic containing cellulose powder impregnated with. U.S. Patent 5024831. http://www.patentstorm.us/patents/5024831.html
Li, J., Revol, J. F., Naranjo, E., Marchessault, R. H. 1996. Effect of electrostatic interaction on phase separation behaviour of chitin crystallite suspensions. Int. J. Biol. Macromol. 18: 177-187.
Lima, M. M. S., Borsali, R. 2004. Rodlike cellulose microcrystals: structure, properties, and applications. Macromol. Rapid Commun. 25: 771-787.
Lindeboom, N., Chang, P. R., Tyler, R. T. 2004. Analytical, biochemical and physicochemical aspects of starch granule size, with emphasis on small granule starches: a review. Starch/Stärke 56: 89-99.
Lintner, C. L. 1886. Studien über Diastase. Journal f. prakt. Chemie 34: 378-394.
Liungberg, N., Bonini, C., Bortolussi, F., Boisson, C., Heux, L., Cavaille, J. Y. 2005. New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics. Biomacromolecules 6: 2732-2739.
Liungberg, N., Cavaille, J. Y., Heux, L. 2006. Nanocomposites of isotactic poly- propylene reinforced with rod-like cellulose whiskers. Polymer 47: 6285-6292.
Ma, Y., Cai, C., Wang, J., Sun, D-W. 2006. Enzymatic hydrolysis of corn starch for producing fat mimetics. J. Food Eng. 73: 297-303.
Manners, D. J. 1989. Recent developments in our understanding of amylopectin structure, Carbohydr. Polym. 11: 87–112.
Marchessault, R. H., Morehead, F. F., Walter, N. M. 1959. Liquid crystal systems from fibrillar polysaccharides. Nature 184: 632-633.
McClement, D. J., Demetriades, K. 1998. An integrated approach to the development of reduced-fat food emulsions. Crit. Rev. Food Sci. 38: 511-536.
Mitrevej, A., Sinchaipanid, N., Faroongsarng, D. 1996. Spray-dried rice starch: comparative evaluation of direct compression fillers. Drug Dev. Ind. Pharm. 22: 587-594.
Miyazaki, S., Ishii, K., Nadai, T. 1981. The use of chitin and chitosan as drug carriers, Chem. Pharm. Bull. 29: 3067-3069.
Morin, A.; Dufresne, A. 2002. Nanocomposites of chitin whiskers from Riftia tubes and poly(caprolactone). Macromolecules 35: 2190-2199.
Möschwitzer, J., Müller, R. H. 2006. New method for the effective production of ultrafine drug nanocrystals. Journal of Nanoscience and Nanotechnology 6: 3145-3153.
Nägeli, W. 1874. Beiträge zur näheren Kenntnis der Stärkegruppe. Liebigs Ann. Chem. 173: 218-227.
Nair, K. G., Dufresne, A. 2003a. Crab shell chitin whisker reinforced natural rubber nanocomposites. 1. Processing and swelling behavior. Biomacromolecules 4: 657-665.
Nair, K. G., Dufresne, A. 2003b. Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers. Biomacromolecules 4: 1835-1842.
Napper D. H. 1983. Polymeric Stabilization of Colloidal Dispersions. Academic Press, London, UK.
Nikuni, Z. 1969. Proposed model of a starch granule or a starch molecule. Chori Kagaku (Japan)7: 2-6.
Orts, W. J., Godbout, L., Marchessault, R. H., Revol, J. –F. 1998. Enhanced ordering of liquid crystalline suspensions of cellulose microfibrils: a small angle neutron scattering study. Macromolecules 31: 5717-5725.
Paillet, M., Dufresne, A. 2001. Chitin whisker reinforced thermoplastic nanocomposites. Macromolecules 34: 6527-6530.
Papo, A., Piani, L., Ricceri, R. 2002. Sodium tripolyphosphate and polyphosphate as dispersing agents for kaolin suspensions: rheological characterization. Colloids Surf., A 201: 219-230.
Peat, S., Whelan, W. J., Thomas, G. J. 1952. Evidence of multiple branching in waxy maize starch. J. Chem. Soc., Chem. Commun. 4546–4548.
Podsiadlo, P., Choi, S. -Y., Shim, B., Lee, J., Cuddihy, M., Kotov, N. A. 2005. Molecularly engineered nanocomposites: layer-by-layer assembly of cellulose nanocrystals. Biomacromolecules 6: 2914-2918.
Putaux, J. L., Boisseau, S. M., Momaur, T., Dufresne, A. 2003. Platet nanocrystals resulting from the disruption of waxy maize starch granules by acid hydrolysis. Biomacromolecules 4: 1198-1202.
Raabe, D., Al-Sawalmih, A., Fabritius, H. 2007. Preferred crystallographic texture of chitin as a microscopic and macroscopic design principle of the exoskeleton of the lobster Homarus americanus. Acta Biomaterialia 3: 882-895.
Rabea, E. I., Badawy, M. E. –T., Stevens, C. V., Smagghe, G., Steurbaut, W. 2003. Chitosan as anitimicrobial agent: applications and mode of action. Biomacromolecules 4: 1457-1465.
Rathke, T. D., Hodson, S. M. 1994. Review of chitin and chitosan as fibre and film formers, J.M.S.-Rev. Macromol. Chem. C34: 375.
Revol, J. F., Bradford, H., Giasson, J., Marchessault, R. H., Gray, D. G. 1992. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int. J. Biol. Macromol. 14: 170-172.
Revol, J. F., Godbout, L., Gray, D. G. 1998. Solid self-assembled films of cellulose with chiral nematic order and optically variable properties. J. Pulp Pap. Sci. 24: 146-149.
Revol, J. F., Marchessault, R. H. 1993. In-vitro chiral nematic ordering of chitin crystallites. Int. J. Biol. Macromol. 15: 329-335.
Rober, W. 2003. Rediscovering polarized light microscopy. American Laboratory 55-61.
Robin, J.P., Mercier, C., Charbonnire, R., Guilbot, A. 1974. Lintnerized starches gel-filtration and enzymatic studies of insoluble residues from prolonged acid treatment of potato starch. Cereal Chem. 51: 389-406.
Rudall, K. M. 1963. The chitin/protein complexes of insect cuticles. Advan. Insect Physiol. 1: 257-313.
Sakurada, T., Nukushina, Y. 1962. Experimental determination of the elastic modulus of crystalline regions in oriented polymers. J. Polym. Sci. 57: 651-660.
Samir, M. A. S. A., Alloin, F., Dufresne, A. 2005. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6: 612-626.
Samir, M. A. S. A., Alloin, F., Sanchez, J-Y., Dufresne, A. 2004. Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45: 4149-4157
Sanguanpong, V., Chotineeranat, S., Piyachomkwan, K., Oates, C. G., Chinachoti, P., Sriroth, K. 2003. Preparation and structural properties of small-particle cassava starch. J. Sci. Food Agric. 83: 760-768.
Shin, Y., Exarhos, G. J. 2007. Template synthesis of porous titania using cellulose nanocrystals. Mater. Lett. 61: 2594-2597.
Slabaugh, M. R., James, H. 1983. Liquid crystals-the chameleon chemicals. J. Chem. Educ. 60: 900-905.
Spivakov, B. Y., Maryutina, T. A., Muntau, H. 1999. Phosphorus speciation in water and sediments. International Union of Pure and Applied Chemistry 71: 2161-2176.
Srichuwong, S., Isono, N., Mishima, T., Hisamatsu, M. 2005. Structure of lintnerized starch is related to X-ray diffraction pattern and susceptibility to acid and enzyme hydrolysis of starch granules. Int. J. Biol. Macromol. 37: 115-121.
Sugiyama, J., Chanzy, H., Maret, G. 1992. Orientation of cellulose microcrystals by strong magnetic fields. Macromolecules 25: 4232-4234.
Synowiecki, J. 1986. Use of krill chitin as an enzyme support. In: Chitin in Nature and Technology. Muzzarelli, R. A. A., Jeuniaux, C., Gooday, G. p 417–420. Plenum Press, New York, USA.
Synowiecki, J., Al-Khateeb, N. A. 2003. Production, properties, and some new applications of chitin and its derivatives. Crit. Rev. Food Sci. 43: 145-171
Taiz, L., Zeiger, E. 2002. Plant physiology, 3rd ed., ch 15, p 319. Sinauer Associates, Inc. Sunderland, MA, U.S.A.
Tang, H., Mitsunaga, T., Kawamura, Y. 2006. Molecular arrangement in blocklets and starch granule architecture. Carbohydr. Polym. 63: 555-560.
Tari, T. A., Annapure, U. S., Singhal, R. S., Kulkarni, P. R. 2003. Starch-base spherical aggregates: screening of small granule starches for entrapment of a model flavouring compound, vanillin. Carbohydr. Polym. 53: 45-51.
Terech, P., Chazeau, L., Cavaille, J. Y. 1999. A small-angle scattering study of cellulose whiskers in aqueous suspensions. Macromolecules 32: 1872-1875.
Tian, Y., Frendler, J. H. 1996. Langmuir-Blodgett film formation from fluorescence -activated, surfactant-capped, size-selected CdS nanoparticles spread on water surface. Chem. Mater. 8: 969-974.
Tokiwa, F., Imamura, T. 1968. Electrophoretic mobility studied of colloidal particles in aqueous solutions of various phosphates. J. Am. Oil Chem. Soc. 46: 280-284.
Tokiwa, F., Imamura, T. 1969. Suspension stability of solid particles in presence of various types of electrolytes. J. Am. Oil Chem. Soc. 46: 571-574.
Tokoh, C., Takabe, K., Fujita, M., Saiki, H. 1998. Cellulose synthesized by Acetobacter xylinum in the presence of acetyl glucomannan. Cellulose 5: 249-261.
Vermeylen, R., Goderis, B., Reynaers, H., Delcour, J. A. 2004. Amylopectin molecular structure reflected in macromolecular organization of granular starch. Biomacromolecules 5: 1775-1786.
Westermarck, S., Juppo, A. M., Kervinen, L., Yliruusi, J. 1999. Microcrystalline cellulose and its microstructure in pharmaceutical processing. Eur. J. Pharm. Biopharm. 48: 199-206.
Whistler, R. L. 1995. Compositions utilizing small granule starch. U.S. Patent 5453281. http://www.patentstorm.us/patents/5453281.html
Winkle, D. H. V., Chatterjee, A., Link, R., Rill, R. L. 1997. Magnetic-field alignment of cholesteric liquid-crystalline DNA. Phys. Rev. E 55: 4354-4359.
Xu, X. H., Han, B., Fu, Y. S. 2003. Preparation of chitosan/glucose oxidase nanolayered films for electrode modification by the technique of layer-by-layer self-assembly. J. Mater. Sci. Lett. 22: 695-697.
Yamaguchi, M., Kainuma, K., French, D. J. 1979. Electron microscopic observations of waxy maize starch. J. Ultra. Mol. Struct. R. 69: 249-261.
Yamamoto, H., Horii, F. 1993. CPMAS carbon-13 NMR analysis of the crystal transformation induced for Valonia cellulose by annealing at high temperatures. Macromolecules 26: 1313-1317.
Zhao, J., Whistler, R. L. 1994. Spherical aggregates of starch granules as flavor carriers. Food Technology 48: 104-105.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24807-
dc.description.abstract本試驗中使用纖維素、幾丁質與澱粉為多醣原料,經酸水解法去除內部的非結晶區後得到奈米尺度的結晶區域,即為多醣奈米結晶粒子。纖維素的酸水解條件是以65 wt%硫酸於70℃下水解10分鐘。幾丁質奈米結晶粒子的製備則是利用3 N鹽酸於沸騰下,水解幾丁質粉末90分鐘;兩者水解後表面皆產生酸根,可在pH>1的水溶液下解離帶電,形成穩定的奈米結晶粒子懸浮液。纖維素與幾丁質奈米結晶粒子在穿透式電子顯微鏡下皆呈桿狀外觀,直徑皆為20 nm左右,而纖維素奈米結晶粒子長度分布約200-400 nm,幾丁質則為200-500 nm。此外,當纖維素與幾丁質奈米結晶粒子懸浮液之濃度高於臨界濃度時,皆能排列出膽固醇型液晶相,可在偏光顯微鏡下觀察到其指紋狀紋理。本試驗中並以帶正電的幾丁聚醣和帶負電的纖維素奈米結晶粒子以旋轉塗佈法製備出以矽晶圓為基質的多層膜,而此多層膜在2-5雙層時會產生顏色變化,依序為藍色、黃色、及紫色。
由酸水解物產率曲線、澱粉粒外觀變化、X-ray圖譜之結晶度變化得知,以3.16 M硫酸在40℃下水解糯性玉米澱粉三天後,澱粉粒中的軟殼層已經不存在。而由不同酸水解天數澱粉之支鏈澱粉鏈長分布變化得知,澱粉經酸水解五天後,blocklets內部位於支鏈澱粉分支點部分的非結晶區已幾乎去除。因此,酸水解五天的澱粉水解物再經超音波震盪,是以酸水解法製備澱粉奈米結晶粒子的最適條件。然而在試驗中亦發現,澱粉奈米結晶粒子絮聚嚴重,無法形成穩定懸浮液,因此需尋找適當的分散劑以提供良好分散之澱粉奈米結晶粒子懸浮液。由視黏度和界面電位之測定結果得知,六偏磷酸鈉添加量為0.1 mM時,具有良好之澱粉奈米結晶粒子分散效果。在偏磷酸根吸附試驗上得知,偏磷酸根吸附於澱粉奈米結晶粒子之行為,符合Langmuir等溫吸附曲線,並計算出1.5%澱粉奈米結晶粒子之最大偏磷酸根吸附量為0.114 mole/kg。以0.1 mM六偏磷酸鈉分散的澱粉奈米結晶粒子懸浮液在沉降試驗中具有最好的穩定度,此外,以高濃度固形物與分散劑之澱粉奈米結晶粒子懸浮液方式貯存六天後,取出稀釋成含0.1 mM濃度分散劑之懸浮液,仍可維持長時間的穩定。澱粉奈米結晶粒子以六偏磷酸鈉分散後,可以以穿透式電子顯微鏡直接觀察其形態。觀察結果為澱粉奈米結晶粒子包括粒徑約10 nm的單一cluster,以及粒徑大於50 nm由多個clusters並排而成的片狀粒子。而動態光散射測得之粒徑數量百分比分布為40-200 nm,此測定值則包括澱粉奈米結晶粒子外部的電雙層,因此,較穿透式電子顯微鏡觀察量測值為大。
zh_TW
dc.description.abstractCellulose, chitin and starch were the sources of polysaccharides in this research. When they submitted the acid hydrolysis, the amorphous regions were removed and finally got the nano-scale crystalline regions which were namely polysaccharide nanocrystals. The acid hydrolysis of cellulose was reacting at 70℃ for 10 mins with sulfuric acid of 65 wt% and chitin nanocrystals were prepared by hydrolyzing in 3N hydrochloric acid boiling for 90 mins. Both of them got acid groups on their surfaces after hydrolyzing which dissociated and charged as pH above 1 and thus they were able to form stable nanocrystals suspensions. Cellulose and chitin nanocrystals were rod-like shape with diameter around 20 nm and length distribution of 200-400 nm for cellulose nanocrystals, 200-500 nm for chitin ones according to transmission electronic microscope images. Besides, as the concentration of cellulose and chitin nanocrystals suspensions was beyond the critical concentration, both arranged the cholesteric liquid crystalline phase with special fingerprint texture could be observed under optical polarized microscope. In this research, the multilayers thin films composed of positive charged chitosan and negative charged cellulose nanocrystals were prepared by spin-coating on silicon wafers. The multilayers thin films showed blue, yellow and purple color in turn when bilayers increased form 2 to 5.
According to the yield curve of hydrolysates, granular morphology variation and the crystallinity variation of X-ray patterns all concluded that the soft-shells were absent after hydrolyzing for three days with 3.16 M sulfuric acid at 40℃. From the chain length distribution of amylopectin in hydrolysates on different days, the amorphous regions within blocklets which were located the branching points of amylopectin were almost hydrolyzed. Therefore, it was the optimal condition to prepared starch nanocrystals with acid hydrolysis that the hydrolysates on the 5th day were submitted to sonication. However, during the experiment, it was observed that the aggregation of starch nanocrystals was so serious that they could not form stable suspensions. For this reason the suitable dispersant was required to disperse the starch nanocrystals suspension well. According to the results of apparent viscosity and zeta potential investigation, sodium hexametaphosphates with concentration of 0.1 mM showed excellent dispersing power. Besides, the adsorption test of hexametaphosphates groups showed that the adsorption behavior corresponded to Langmuir adsorption isotherm curve. Hence, the maximum adsorption amount of hexametaphosphates groups for 1.5% starch nanocrystals was calculated to be 0.114 mole/kg. The result of sedimentation test indicated that the best stability of starch nanocrystals suspension occurred while dispersed with 0.1 mM sodium hexametaphosphates. Moreover, even if the starch nanocrystals suspensions with condensed solid and dispersant content have been stored for 6 days, the diluted suspension containing 0.1 mM dispersant was still stable for a long time. When the starch nanocrystals were dispersed well, the morphology could be observed directly from images of electron transmission microscopy. The starch nanocrystals were composed of single cluster with diameter 10 nm and platelets arranged with several clusters with diameter above 50 nm. From detection with dynamic light scattering method, the particle size distribution of starch nanocrystals was 40-200 nm which included electrical double layers outside. Therefore, this particle size distribution of starch nanocrystals was larger than the observation on TEM images.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:56:41Z (GMT). No. of bitstreams: 1
ntu-97-R94623011-1.pdf: 3391259 bytes, checksum: aaf9152c813a5ca34fac108c87bd401d (MD5)
Previous issue date: 2008
en
dc.description.tableofcontents中文摘要......................................I
Abstract....................................III
表目錄.....................................VIII
圖目錄.......................................IX
第一章、前言..................................1
第二章、文獻整理..............................3
一、多醣來源之生物材料........................3
(一) 纖維素...................................3
(二) 幾丁質...................................4
(三) 澱粉.....................................3
(四) 纖維素奈米結晶粒子.......................7
(五) 幾丁質奈米結晶粒子.......................7
(六) 澱粉奈米結晶粒子.........................8
二、生物奈米結晶粒子的應用....................9
(一) 補強材料 (Reinforcement).................9
(二) 液向型液晶..............................10
(三) 其他....................................11
三、酸水解澱粉...............................13
四、奈米粒子之分散與穩定.....................14
(一) 膠體分散機制............................14
(二) 六偏磷酸鈉..............................17
第三章、材料與方法...........................19
一、材料.....................................19
二、儀器設備.................................19
三、多醣奈米結晶粒子之製備方法與應用.........20
(一) 纖維素奈米結晶粒子之製備................20
(二) 幾丁質奈米結晶粒子之製備................21
(三) 以纖維素奈米結晶粒子與幾丁聚醣製備多層膜21
(四) 不同酸水解程度澱粉之製備................22
(四) 不同酸水解程度澱粉之製備................23
(五) 澱粉奈米結晶粒子之製備 .................23
四、奈米結晶粒子性質之檢測...................23
(一) 穿透式電子顯微鏡觀察....................23
(二) 粒徑分布................................23
(三) 表面電荷量..............................24
(四) 液晶現象之觀察..........................24
(五) 光學顯微鏡觀察..........................24
(六) X-ray 繞射儀測定........................25
(七) 鏈長分布測定............................25
(八) 視黏度測定..............................26
(九) 界面電位測定............................26
(十) 六偏磷酸根吸附量測定....................26
(十一) FTIR結構分析測定......................27
(十二) 懸浮液穩定性試驗......................28
第四章、結果與討論...........................29
一、纖維素奈米結晶粒子之製備與性質...........29
二、幾丁質奈米結晶粒子之製備與性質...........30
三、纖維素與幾丁質奈米結晶粒子之膽固醇型液晶相..33
四、多層膜之製備與觀察.......................36
五、酸水解澱粉...............................37
(一) 澱粉酸水解曲線..........................37
(二) 不同程度酸水解澱粉粒之外觀變化..........38
(三) 不同程度酸水解澱粉粒之結晶性變化........40
(四) 不同程度酸水解澱粉粒之鏈長分布變化......41
(五) 結論....................................45
六、澱粉奈米結晶粒子.........................45
(一) 澱粉奈米結晶粒子之製備..................45
(二) 使用六偏磷酸鈉作為澱粉奈米結晶粒子分散劑之探
討..................46
1. 澱粉奈米結晶粒子之視黏度..................47
2. 澱粉奈米結晶粒子之界面電位................48
3. 澱粉奈米結晶粒子之六偏磷酸根吸附量........49
4. 澱粉奈米結晶粒子之FTIR結構分析............52
5. 澱粉奈米結晶粒子懸浮液之穩定性............54
(三) 澱粉奈米結晶粒子之外觀 .................55
(四) 粒徑分布................................56
七、總結.....................................58
第五章、結論.................................60
第六章、參考文獻.............................62
附錄.........................................69
dc.language.isozh-TW
dc.title酸水解法製備多醣奈米結晶粒子之研究zh_TW
dc.titleResearch on the Preparation of Polysaccharide Nanocrystals with Acid Hydrolysisen
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張永和(Yung-Ho Chang),陳炯堂,陳立仁(Li-Jen Chen),李敏雄(Min-Hsiung Lee)
dc.subject.keyword纖維素奈米結晶粒子,幾丁質奈米結晶粒子,澱粉奈米結晶粒子,膽固醇型液晶相,多層膜,高效能陰離子交換層析儀,六偏磷酸鈉,zh_TW
dc.subject.keywordcellulose nanocrystals,chitin nanocrystals,starch nanocrystals,cholesteric liquid crystalline phase,multilayer thin films,high performance anionic exchange chromatography,sodium hexametaphosphates,en
dc.relation.page69
dc.rights.note未授權
dc.date.accepted2008-01-28
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
顯示於系所單位:農業化學系

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  目前未授權公開取用
3.31 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved