請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24796
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王愛玉 | |
dc.contributor.author | Wen-Bin Chiu | en |
dc.contributor.author | 邱文彬 | zh_TW |
dc.date.accessioned | 2021-06-08T05:56:33Z | - |
dc.date.copyright | 2008-02-18 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-01-29 | |
dc.identifier.citation | Albrecht,G. and Mustroph,A. (2003) Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta 217:252-260.
Alonso,A.P., Raymond,P., Hernould,M., Rondeau-Mouro,C., de Graaf,A., Chourey,P., Lahaye,M., Shachar-Hill,Y., Rolin,D., and Dieuaide-Noubhani,M. (2007) A metabolic flux analysis to study the role of sucrose synthase in the regulation of the carbon partitioning in central metabolism in maize root tips. Metab Eng 9:419-432. Alwine,J.C., Kemp,D.J., and Stark,G.R. (1977) Method for Detection of Specific Rnas in Agarose Gels by Transfer to Diazobenzyloxymethyl-Paper and Hybridization with Dna Probes. Proceedings of the National Academy of Sciences of the United States of America 74:5350-5354. Amor,Y., Haigler,C.H., Johnson,S., Wainscott,M., and Delmer,D.P. (1995) A membrane-associated form of sucrose synthase and its potential role in synthesis of cellulose and callose in plants. Proc.Natl.Acad.Sci.U.S.A 92:9353-9357. Anguenot,R., Nguyen-Quoc,B., Yelle,S., and Michaud,D. (2006) Protein phosphorylation and membrane association of sucrose synthase in developing tomato fruit. Plant Physiol Biochem. Anguenot,R., Yelle,S., and Nguyen-Quoc,B. (1999) Purification of tomato sucrose synthase phosphorylated isoforms by Fe(III)-immobilized metal affinity chromatography. Arch.Biochem.Biophys. 365:163-169. Baroja-Fernandez,E., Munoz,F.J., Akazawa,T., and Pozueta-Romero,J. (2001) Reappraisal of the currently prevailing model of starch biosynthesis in photosynthetic tissues: a proposal involving the cytosolic production of ADP-glucose by sucrose synthase and occurrence of cyclic turnover of starch in the chloroplast. Plant Cell Physiol 42:1311-1320. Baroja-Fernandez,E., Munoz,F.J., Saikusa,T., Rodriguez-Lopez,M., Akazawa,T., and Pozueta-Romero,J. (2003) Sucrose synthase catalyzes the de novo production of ADPglucose linked to starch biosynthesis in heterotrophic tissues of plants. Plant Cell Physiol 44:500-509. Barratt,D.H., Barber,L., Kruger,N.J., Smith,A.M., Wang,T.L., and Martin,C. (2001) Multiple, distinct isoforms of sucrose synthase in pea. Plant Physiol 127:655-664. Baud,S., Vaultier,M.N., and Rochat,C. (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J.Exp.Bot. 55:397-409. Binh,N.Q., Krivitzky,M., Huber,S.C., and Lecharny,A. (1990) Sucrose Synthase in Developing Maize Leaves - Regulation of Activity by Protein Level During the Import to Export Transition. Plant Physiology 94:516-523. Birnboim,H.C. and Doly,J. (1979) Rapid Alkaline Extraction Procedure for Screening Recombinant Plasmid Dna. Nucleic Acids Research 7:1513-1523. Black,C.C., Mustardy,L., Sung,S.S., Kormanik,P.P., Xu,D.P., and Paz,N. (1987) Regulation and Roles for Alternative Pathways of Hexose Metabolism in Plants. Physiologia Plantarum 69:387-394. Bradford,M.M. (1976) Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing Principle of Protein-Dye Binding. Analytical Biochemistry 72:248-254. Carlson,S.J. and Chourey,P.S. (1996) Evidence for plasma membrane-associated forms of sucrose synthase in maize. Mol.Gen.Genet. 252:303-310. Carlson,S.J., Chourey,P.S., Helentjaris,T., and Datta,R. (2002) Gene expression studies on developing kernels of maize sucrose synthase (SuSy) mutants show evidence for a third SuSy gene. Plant Mol.Biol. 49:15-29. Chan,H.Y., Ling,T.Y., Juang,R.H., Ting,I.N., Sung,H.Y., and Su,J.C. (1990) Sucrose Synthase in Rice Plants - Growth-Associated Changes in Tissue Specific Distributions. Plant Physiology 94:1456-1461. Chen,Y.C. and Chourey,P.S. (1989) Spatial and Temporal Expression of the 2 Sucrose Synthase Genes in Maize - Immunohistological Evidence. Theoretical and Applied Genetics 78:553-559. Chikano,H., Ogawa,M., Ikeda,Y., Koizumi,N., Kusano,T., and Sano,H. (2001) Two novel genes encoding SNF-1 related protein kinases from Arabidopsis thaliana: differential accumulation of AtSR1 and AtSR2 transcripts in response to cytokinins and sugars, and phosphorylation of sucrose synthase by AtSR2. Mol.Gen.Genet. 264:674-681. Chomczynski,P. and Sacchi,N. (1987) Single-Step Method of Rna Isolation by Acid Guanidinium Thiocyanate Phenol Chloroform Extraction. Analytical Biochemistry 162:156-159. Chourey,P.S. (1981) Genetic-Control of Sucrose Synthetase in Maize Endosperm. Molecular & General Genetics 184:372-376. Chourey,P.S. and Nelson,O.E. (1976) Enzymatic Deficiency Conditioned by Shrunken 1 Mutations in Maize. Biochemical Genetics 14:1041-1055. Chourey,P.S., Latham,M.D., and Still,P.E. (1986) Expression of 2 Sucrose Synthetase Genes in Endosperm and Seedling Cells of Maize - Evidence of Tissue Specific Polymerization of Protomers. Molecular & General Genetics 203:251-255. Chourey,P.S., Taliercio,E.W., and Kane,E.J. (1991) Tissue-Specific Expression and Anaerobically Induced Posttranscriptional Modulation of Sucrose Synthase Genes in Sorghum-Bicolor M. Plant Physiology 96:485-490. Chourey,P.S., Taliercio,E.W., Carlson,S.J., and Ruan,Y.L. (1998) Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Mol.Gen.Genet. 259:88-96. Coleman,H.D., Ellis,D.D., Gilbert,M., and Mansfield,S.D. (2006) Up-regulation of sucrose synthase and UDP-glucose pyrophosphorylase impacts plant growth and metabolism. Plant Biotechnol.J. 4:87-101. D'Aoust,M.A., Yelle,S., and Nguyen-Quoc,B. (1999) Antisense inhibition of tomato fruit sucrose synthase decreases fruit setting and the sucrose unloading capacity of young fruit. Plant Cell 11:2407-2418. Duncan,K.A., Hardin,S.C., and Huber,S.C. (2006) The three maize sucrose synthase isoforms differ in distribution, localization, and phosphorylation. Plant Cell Physiol 47:959-971. Duncan,K.A. and Huber,S.C. (2007) Sucrose Synthase Oligomerization and F-actin Association are Regulated by Sucrose Concentration and Phosphorylation. Plant Cell Physiol 48:1612-1623. Echt,C.S. and Chourey,P.S. (1985) A Comparison of 2 Sucrose Synthetase Isozymes from Normal and Shrunken-1 Maize. Plant Physiology 79:530-536. Feng,Q., Zhang,Y.J., Hao,P., Wang,S.Y., Fu,G., Huang,Y.C., Li,Y., Zhu,J.J., Liu,Y.L., Hu,X., Jia,P.X., Zhang,Y., Zhao,Q., Ying,K., Yu,S.L., Tang,Y.S., Weng,Q.J., Zhang,L., Lu,Y., Mu,J., Lu,Y.Q., Zhang,L.S., Yu,Z., Fan,D.L., Liu,X.H., Lu,T.T., Li,C., Wu,Y.R., Sun,T.G., Lei,H.Y., Li,T., Hu,H., Guan,J.P., Wu,M., Zhang,R.Q., Zhou,B., Chen,Z.H., Chen,L., Jin,Z.Q., Wang,R., Yin,H.F., Cai,Z., Ren,S.X., Lv,G., Gu,W.Y., Zhu,G.F., Tu,Y.F., Jia,J., Zhang,Y., Chen,J., Kang,H., Chen,X.Y., Shao,C.Y., Sun,Y., Hu,Q.P., Zhang,X.L., Zhang,W., Wang,L.J., Ding,C.W., Sheng,H.H., Gu,J.L., Chen,S.T., Ni,L., Zhu,F.H., Chen,W., Lan,L.F., Lai,Y., Cheng,Z.K., Gu,M.H., Jiang,J.M., Li,J.Y., Hong,G.F., Xue,Y.B., and Han,B. (2002) Sequence and analysis of rice chromosome 4. Nature 420:316-320. Fu,H. and Park,W.D. (1995) Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell 7:1369-1385. Geigenberger,P. and Stitt,M. (1993) Sucrose Synthase Catalyzes A Readily Reversible-Reaction Invivo in Developing Potato-Tubers and Other Plant-Tissues. Planta 189:329-339. Geigenberger,P., Langenberger,S., Wilke,I., Heineke,D., Heldt,H.W., and Stitt,M. (1993) Sucrose Is Metabolized by Sucrose Synthase and Glycolysis Within the Phloem Complex of Ricinus-Communis l Seedlings. Planta 190:446-453. Gross,K.C. and Pharr,D.M. (1982) Cucumber Fruit Sucrose Synthase Isozymes. Phytochemistry 21:1241-1244. Haagenson,D.M., Klotz,K.L., and McGrath,J.M. (2006) Sugarbeet sucrose synthase genes differ in organ-specific and developmental expression. J.Plant Physiol 163:102-106. Hardin,S.C., Duncan,K.A., and Huber,S.C. (2006) Determination of structural requirements and probable regulatory effectors for membrane association of maize sucrose synthase 1. Plant Physiol 141 :1106-1119. Hardin,S.C. and Huber,S.C. (2004) Proteasome activity and the post-translational control of sucrose synthase stability in maize leaves. Plant Physiol Biochem. 42:197-208. Hardin,S.C., Tang,G.Q., Scholz,A., Holtgraewe,D., Winter,H., and Huber,S.C. (2003) Phosphorylation of sucrose synthase at serine 170: occurrence and possible role as a signal for proteolysis. Plant J. 35:588-603. Hardin,S.C., Winter,H., and Huber,S.C. (2004) Phosphorylation of the amino terminus of maize sucrose synthase in relation to membrane association and enzyme activity. Plant Physiol 134:1427-1438. Hisajima,S. and Ito,T. (1981) Purification and Properties of Sucrose Synthetase from Morning-Glory Callus Cells. Biologia Plantarum 23:356-364. Huang,D.Y. and Wang,A.Y. (1998) Purification and characterization of sucrose synthase isozymes from etiolated rice seedlings. Biochem.Mol.Biol.Int. 46:107-113. Huang,J.W., Chen,J.T., Yu,W.P., Shyur,L.F., Wang,A.Y., Sung,H.Y., Lee,P.D., and Su,J.C. (1996) Complete structures of three rice sucrose synthase isogenes and differential regulation of their expressions. Biosci.Biotechnol.Biochem. 60:233-239. Huber,S.C. and Akazawa,T. (1986) A Novel Sucrose Synthase Pathway for Sucrose Degradation in Cultured Sycamore Cells. Plant Physiology 81:1008-1013. Huber,S.C., Huber,J.L., Liao,P.C., Gage,D.A., McMichael,R.W., Jr., Chourey,P.S., Hannah,L.C., and Koch,K. (1996) Phosphorylation of serine-15 of maize leaf sucrose synthase. Occurrence in vivo and possible regulatory significance. Plant Physiol 112:793-802. Kikuchi,S., Satoh,K., Nagata,T., Kawagashira,N., Doi,K., Kishimoto,N., Yazaki,J., Ishikawa,M., Yamada,H., Ooka,H., Hotta,I., Kojima,K., Namiki,T., Ohneda,E., Yahagi,W., Suzuki,K., Li,C.J., Ohtsuki,K., Shishiki,T., Otomo,Y., Murakami,K., Iida,Y., Sugano,S., Fujimura,T., Suzuki,Y., Tsunoda,Y., Kurosaki,T., Kodama,T., Masuda,H., Kobayashi,M., Xie,Q.H., Lu,M., Narikawa,R., Sugiyama,A., Mizuno,K., Yokomizo,S., Niikura,J., Ikeda,R., Ishibiki,J., Kawamata,M., Yoshimura,A., Miura,J., Kusumegi,T., Oka,M., Ryu,R., Ueda,M., Matsubara,K., Kawai,J., Carninci,P., Adachi,J., Aizawa,K., Arakawa,T., Fukuda,S., Hara,A., Hashizume,W., Hayatsu,N., Imotani,K., Ishii,Y., Itoh,M., Kagawa,I., Kondo,S., Konno,H., Miyazaki,A., Osato,N., Ota,Y., Saito,R., Sasaki,D., Sato,K., Shibata,K., Shinagawa,A., Shiraki,T., Yoshino,M., Hayashizaki,Y., and Yasunishi,A. (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376-379. Kleczkowski,L.A. (1994) Glucose Activation and Metabolism Through Udp-Glucose Pyrophosphorylase in Plants. Phytochemistry 37:1507-1515. Kleczkowski,L.A. (1999) A phosphoglycerate to inorganic phosphate ratio is the major factor in controlling starch levels in chloroplasts via ADP-glucose pyrophosphorylase regulation. FEBS Lett. 448:153-156. Kleczkowski,L.A., Geisler,M., Ciereszko,I., and Johansson,H. (2004) UDP-glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol 134:912-918. Koch,K.E. (1996) Carbohydrate-modulated gene expression in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47:509-540. Koch,K.E., Wu,Y., and Xu,J. (1996) Sugar and metabolic regulation of genes for sucrose metabolism: Potential influence of maize sucrose synthase and soluble invertase responses on carbon partitioning and sugar sensing. Journal of Experimental Botany 47:1179-1185. Komatsu,A., Moriguchi,T., Koyama,K., Omura,M., and Akihama,T. (2002) Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. J.Exp.Bot. 53:61-71. Konishi,T., Ohmiya,Y., and Hayashi,T. (2004) Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with various beta-glucan synthases in the stem. Plant Physiol 134:1146-1152. Larsen,A.E., Salerno,G.L., and Pontis,H.G. (1986) Sucrose Synthase from Wheat Leaves - Comparison with the Wheat-Germ Enzyme. Physiologia Plantarum 67:37-42. Lehrach,H., Diamond,D., Wozney,J.M., and Boedtker,H. (1977) RNA Molecular-Weight Determinations by Gel-Electrophoresis Under Denaturing Conditions, A Critical Re-Examination. Biochemistry 16:4743-4751. Leloir,L.F. (1964) Nucleoside Diphosphate Sugars + Saccharide Synthesis. Biochemical Journal 91:1-&. Leloir,L.F. and Cardini,C.E. (1953) The Biosynthesis of Sucrose. Journal of the American Chemical Society 75:6084. Liao,Y.C. and Wang,A.Y. (2003) Sugar-modulated gene expression of sucrose synthase in suspension-cultured cells of rice. Physiologia Plantarum 118:319-327. Martin,T., Frommer,W.B., Salanoubat,M., and Willmitzer,L. (1993) Expression of An Arabidopsis Sucrose Synthase Gene Indicates A Role in Metabolization of Sucrose Both During Phloem Loading and in Sink Organs. Plant Journal 4:367-377. Matic,S., Akerlund,H.E., Everitt,E., and Widell,S. (2004) Sucrose synthase isoforms in cultured tobacco cells. Plant Physiol Biochem. 42:299-306. Mauseth,J.D. (1981) A Morphometric Study of the Ultrastructure of Echinocereus-Engelmannii (Cactaceae) .2. the Mature, Zonate Shoot Apical Meristem. American Journal of Botany 68:96-100. Mauseth,J.D. (1981) A Morphometric Study of the Ultrastructure of Echinocereus-Engelmannii (Cactaceae) .3. Subapical and Mature Tissues. American Journal of Botany 68:531-534. Morse,E.E. (1947) Anthrone in Estimating Low Concentrations of Sucrose. Analytical Chemistry 19:1012-1013. Moriguchi,T. and Yamaki,S. (1988) Purification and Characterization of Sucrose Synthase from Peach (Prunus-Persica) Fruit. Plant and Cell Physiology 29:1361-1366. Munoz,F.J., Baroja-Fernandez,E., Moran-Zorzano,M.T., Viale,A.M., Etxeberria,E., Alonso-Casajus,N., and Pozueta-Romero,J. (2005) Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves. Plant Cell Physiol 46:1366-1376. Murata,T. (1972) Sucrose Synthetase of Rice Grains and Potato-Tubers. Agricultural and Biological Chemistry 36:1815-&. Murray,M.G. and Thompson,W.F. (1980) Rapid Isolation of High Molecular-Weight Plant Dna. Nucleic Acids Research 8:4321-4325. Nakai,T., Konishi,T., Zhang,X.Q., Chollet,R., Tonouchi,N., Tsuchida,T., Yoshinaga,F., Mori,H., Sakai,F., and Hayashi,T. (1998) An increase in apparent affinity for sucrose of mung bean sucrose synthase is caused by in vitro phosphorylation or directed mutagenesis of Ser11. Plant Cell Physiol 39:1337-1341. Nakai,T., Tonouchi,N., Konishi,T., Kojima,Y., Tsuchida,T., Yoshinaga,F., Sakai,F., and Hayashi,T. (1999) Enhancement of cellulose production by expression of sucrose synthase in acetobacter xylinum. Proc.Natl.Acad.Sci.U.S.A 96:14-18. Nakai,T., Tonouchi,N., Tsuchida,T., Mori,H., Sakai,F., and Hayashi,T. (1997) Expression and characterization of sucrose synthase from mung bean seedlings in Escherichia coli. Biosci.Biotechnol.Biochem. 61:1500-1503. Nelson,N. (1944) A photometric adaptation of the Somogyi method for the determination of glucose. Journal of Biological Chemistry 153:375-380. Nolte,K.D. and Koch,K.E. (1993) Companion-Cell Specific Localization of Sucrose Synthase in Zones of Phloem Loading and Unloading. Plant Physiol 101:899-905. Nomura,T. and Akazawa,T. (1973) Enzymic Mechanism of Starch Synthesis in Ripening Rice Grains .7. Purification and Enzymic Properties of Sucrose Synthetase. Archives of Biochemistry and Biophysics 156:644-652. Pozueta-Romero,J., Yamaguchi,J., and Akazawa,T. (1991) ADPG formation by the ADP-specific cleavage of sucrose-reassessment of sucrose synthase. FEBS Lett. 291:233-237. Reinders,A., Schulze,W., Kuhn,C., Barker,L., Schulz,A., Ward,J.M., and Frommer,W.B. (2002) Protein-protein interactions between sucrose transporters of different affinities colocalized in the same enucleate sieve element. Plant Cell 14:1567-1577. Romer,U., Schrader,H., Gunther,N., Nettelstroth,N., Frommer,W.B., and Elling,L. (2004) Expression, purification and characterization of recombinant sucrose synthase 1 from Solanum tuberosum L. for carbohydrate engineering. J.Biotechnol. 107:135-149. Rouhier,H. and Usuda,H. (2001) Spatial and temporal distribution of sucrose synthase in the radish hypocotyl in relation to thickening growth. Plant Cell Physiol 42:583-593. Ruan,Y.L. and Chourey,P.S. (1998) A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds. Plant Physiol 118:399-406. Salnikov,V.V., Grimson,M.J., Delmer,D.P., and Haigler,C.H. (2001) Sucrose synthase localizes to cellulose synthesis sites in tracheary elements. Phytochemistry 57:823-833. Salnikov,V.V., Grimson,M.J., Seagull,R.W., and Haigler,C.H. (2003) Localization of sucrose synthase and callose in freeze-substituted secondary-wall-stage cotton fibers. Protoplasma 221:175-184. Schafer,W.E., Rohwer,J.M., and Botha,F.C. (2004) Protein-level expression and localization of sucrose synthase in the sugarcane culm. Physiol Plant 121:187-195. Sebkova,V., Unger,C., Hardegger,M., and Sturm,A. (1995) Biochemical, physiological, and molecular characterization of sucrose synthase from Daucus carota. Plant Physiol 108:75-83. Shaw,J.R., Ferl,R.J., Baier,J., St Clair,D., Carson,C., McCarty,D.R., and Hannah,L.C. (1994) Structural features of the maize sus1 gene and protein. Plant Physiol 106:1659-1665. Silva,C., Tereso,S., Nolasco,G., and Oliveira,M.M. (2003) Cellular location of Prune dwarf virus in almond sections by in situ reverse transcription-polymerase chain reaction. Phytopathology 93:278-285. Silvius,J.E. and Snyder,F.W. (1979) Comparative Enzymic Studies of Sucrose Metabolism in the Taproots and Fibrous Roots of Beta-Vulgaris l. Plant Physiology 64:1070-1073. Sonnewald,U., Hajirezaei,M.R., Kossmann,J., Heyer,A., Trethewey,R.N., and Willmitzer,L. (1997) Increased potato tuber size resulting from apoplastic expression of a yeast invertase. Nature Biotechnology 15:794-797. Stitt,M., Cseke,C., and Buchanan,B.B. (1984) Regulation of Fructose 2,6-Bisphosphate Concentration in Spinach Leaves. European Journal of Biochemistry 143:89-93. Stitt,M., Gerhardt,R., Kurzel,B., and Heldt,H.W. (1983) A Role for Fructose 2,6-Bisphosphate in the Regulation of Sucrose Synthesis in Spinach Leaves. Plant Physiology 72:1139-1141. Sturm,A., Lienhard,S., Schatt,S., and Hardegger,M. (1999) Tissue-specific expression of two genes for sucrose synthase in carrot (Daucus carota L.). Plant Mol.Biol. 39:349-360. Subbaiah,C.C., Palaniappan,A., Duncan,K., Rhoads,D.M., Huber,S.C., and Sachs,M.M. (2006) Mitochondrial localization and putative signaling function of sucrose synthase in maize. J.Biol.Chem. Su,J.C. (1965) Carbohydrate Metabolism in Shoots of Bamboo Leleba Oldhami .I. Preliminary Survey of Soluble Saccharides and Sucrose-Degrading Enzymes. Botanical Bulletin of Academia Sinica 6:153-&. Su,J.C. and Preiss,J. (1977) Sucrose Synthase from Corn Kernels. Seikagaku 49:6. Su,J.C. and Preiss,J. (1978) Purification and Properties of Sucrose Synthase from Maize Kernels. Plant Physiology 61:389-393. Su,J.C., Wu,J.L., and Yang,C.L. (1977) Sucrose Synthetase .2. Purification and Characterization of Sucrose Synthetase from Shoot of Bamboo Leleba-Oldhami. Plant Physiology 60:17-21. Sun,J.D., Loboda,T., Sung,S.J.S., and Black,C.C. (1992) Sucrose Synthase in Wild Tomato, Lycopersicon-Chmielewskii, and Tomato Fruit Sink Strength. Plant Physiology 98:1163-1169. Tanase,K. and Yamaki,S. (2000) Purification and characterization of two sucrose synthase isoforms from Japanese pear fruit. Plant and Cell Physiology 41:408-414. Tang,G.Q. and Sturm,A. (1999) Antisense repression of sucrose synthase in carrot (Daucus carota L.) affects growth rather than sucrose partitioning. Plant Mol.Biol. 41:465-479. Tomlinson,P.T., Duke,E.R., Nolte,K.D., and Koch,K.E. (1991) Sucrose Synthase and Invertase in Isolated Vascular Bundles. Plant Physiology 97:1249-1252. Towbin,H., Staehelin,T., and Gordon,J. (1979) Electrophoretic Transfer of Proteins from Polyacrylamide Gels to Nitrocellulose Sheets - Procedure and Some Applications. Proceedings of the National Academy of Sciences of the United States of America 76:4350-4354. Tsai,Z.C. and Wang,A.Y. (2003) Identification of rice manganese-dependent protein kinases that phosphorylate sucrose synthase at multiple serine residues. Botanical Bulletin of Academia Sinica 44:141-150. Ueda K. (1960) Studies on the physiology of bamboo; with reference to practical application. Forests Bulletin 30. Kyoto, Japan: Kyoto University. Wang,A.Y., Kao,M.H., Yang,W.H., Sayion,Y., Liu,L.F., Lee,P.D., and Su,J.C. (1999) Differentially and developmentally regulated expression of three rice sucrose synthase genes. Plant Cell Physiol 40:800-807. Wang,A.Y., Yu,W.P., Juang,R.H., Huang,J.W., Sung,H.Y., and Su,J.C. (1992) Presence of three rice sucrose synthase genes as revealed by cloning and sequencing of cDNA. Plant Mol.Biol. 18:1191-1194. Wang,F., Sanz,A., Brenner,M.L., and Smith,A. (1993) Sucrose Synthase, Starch Accumulation, and Tomato Fruit Sink Strength. Plant Physiol 101:321-327. Wang,F., Smith,A.G., and Brenner,M.L. (1994) Temporal and Spatial Expression Pattern of Sucrose Synthase during Tomato Fruit Development. Plant Physiol 104:535-540. Wang,M.B., Boulter,D., and Gatehouse,J.A. (1992) A complete sequence of the rice sucrose synthase-1 (RSs1) gene. Plant Mol.Biol. 19:881-885. Wang,M.B., Boulter,D., and Gatehouse,J.A. (1992) A Complete Sequence of the Rice Sucrose Synthase-1 (Rss1) Gene. Plant Molecular Biology 19:881-885. Weber,H., Borisjuk,L., Heim,U., Sauer,N., and Wobus,U. (1997) A role for sugar transporters during seed development: Molecular characterization of a hexose and a sucrose carrier in fava bean seeds. Plant Cell 9:895-908. Weber,H., Buchner,P., Borisjuk,L., and Wobus,U. (1996) Sucrose metabolism during cotyledon development of Vicia faba L. is controlled by the concerted action of both sucrose-phosphate synthase and sucrose synthase: expression patterns, metabolic regulation and implications for seed development. Plant J. 9:841-850. Winter,H., Huber,J.L., and Huber,S.C. (1998) Identification of sucrose synthase as an actin-binding protein. FEBS Lett. 430:205-208. Wittich,P.E. and Vreugdenhil,D. (1998) Localization of sucrose synthase activity in developing maize kernels by in situ enzyme histochemistry. Journal of Experimental Botany 49:1163-1171. Wolf,S., Deom,C.M., Beachy,R., and Lucas,W.J. (1991) Plasmodesmatal Function Is Probed Using Transgenic Tobacco Plants That Express A Virus Movement Protein. Plant Cell 3:593-604. Wolosiuk,R.W. and Pontis,H.G. (1971) Evidence of Existence of 2 Forms of Sucrose Synthetase. Febs Letters 16:237-&. Xu,J., Avigne,W.T., McCarty,D.R., and Koch,K.E. (1996) A similar dichotomy of sugar modulation and developmental expression affects both paths of sucrose metabolism: Evidence from a maize invertase gene family. Plant Cell 8:1209-1220. Yen,S.F., Su,J.C., and Sung,H.Y. (1994) Purification and characterization of rice sucrose synthase isozymes. Biochem.Mol.Biol.Int. 34:613-620. Yu,W.P., Wang,A.Y., Juang,R.H., Sung,H.Y., and Su,J.C. (1992) Isolation and sequences of rice sucrose synthase cDNA and genomic DNA. Plant Mol.Biol. 18:139-142. Zhang,X.Q. and Chollet,R. (1997) Seryl-phosphorylation of soybean nodule sucrose synthase (nodulin-100) by a Ca2+-dependent protein kinase. FEBS Lett. 410:126-130. Zhang,X.Q., Lund,A.A., Sarath,G., Cerny,R.L., Roberts,D.M., and Chollet,R. (1999) Soybean nodule sucrose synthase (nodulin-100): further analysis of its phosphorylation using recombinant and authentic root-nodule enzymes. Arch.Biochem.Biophys. 371:70-82. Zrenner,R., Salanoubat,M., Willmitzer,L., and Sonnewald,U. (1995) Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants (Solanum tuberosum L.). Plant J. 7:97-107. 王素秋 (1989) 豌豆蔗糖合成酶之研究,碩士論文,國立台灣大學農業化學研究所。 伊央撒耘 (2001) 水稻蔗糖合成酶結構與功能之研究,博士論文,國立台灣大學農業化學研究所。 吳其真 (1998) 甘藷澱粉磷解酶之生化及免疫學研究,碩士論文,國立台灣大學農業化學研究所。 宋賢一 (1973) 蔗糖合成酵素在植物醣類代謝之功用,博士論文,國立台灣大學農業化學研究所。 岩素芬 (1992) 水稻蔗糖合成酶異構酶之純化與鑑定,博士論文,國立台灣大學農業化學研究所。 林奕孜 (2003) 綠竹蔗糖轉運子之分子檢定,碩士論文,國立台灣大學農業化學研究所。 林秋宏 (2001) 綠竹筍蔗糖合成酶 cDNA 之選殖與檢定,碩士論文,國立台灣大學農業化學研究所。 邱文彬 (2001) 綠竹基因組庫之建構及蔗糖合成 高茂涵,王愛玉 (1999) 蔗糖、光照及溫度對水稻白化苗蔗糖合成異構酶含量之影響。中國農業化學會誌 37,207-214。 張久瑗 (1978) 綠竹筍之蔗糖合成酵素之純化及第四級結構之探討,碩士論文,國立台灣大學農業化學研究所。 張睿哲 (2004) 水稻蔗糖合成酶 RSus1 基因調控區域中 cis-elements 之探討,碩士論文,國立台灣大學微生物與生化學研究所。 張駿儒 (2002) 綠竹筍蔗糖合成酶之生化檢定,碩士論文,國立台灣大學農業化學研究所。 莊榮輝 (1985) 水稻蔗糖合成酶之研究-其純化、生物化學及免疫性質之比較,博士論文,國立台灣大學農業化學研究所。 陳志祐 (2003) 綠竹纖維素合成酶之分子檢定,碩士論文,國立台灣大學農業化學研究所。 黃如瑋 (1994) 水稻蔗糖合成酶異構基因之選殖及影響表現生理條件的研究,博士論文,國立台灣大學農業化學研究所。 黃德宜 (2003) 水稻蔗糖合成酶 RSuS3 基因表現與酵素功能之探討,博士論文,國立台灣大學農業化學研究所。 黃瀅如 (2000) 綠竹筍蔗糖合成酶之純化與生化性質探討,碩士論文,國立台灣大學農業化學研究所。 葉英晉 (2000) 好竹連山,大地別冊,大地地理出版事業股份有限公司。 廖憶純 (2002) 水稻懸浮培養細胞中蔗糖合成酶基因表現受糖調控之研究,博士論文,國立台灣大學農業化學研究所。 蔡承佳 (2003) 蛋白質磷酸化對水稻蔗糖合成酶酵素功能及基因表現的影響,博士論文,國立台灣大學農業化學研究所。 謝孟勳 (2002) 綠竹纖維素合成酶 cDNA 之選殖與檢定,碩士論文,國立台灣大學農業化學研究所。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24796 | - |
dc.description.abstract | 竹子生長十分快速,先前以綠竹 Bamboo oldhamii 的研究顯示蔗糖合成酶SuS 可催化蔗糖與 UDP 反應生成果糖與 UDPG 之可逆反應,在快速生長的竹筍與幼竹中,對於旺盛的細胞壁多醣類合成相當重要,本論文的目的即在探討 SuS 在竹快速生長所扮演的角色。
針對由綠竹筍 cDNA 所選殖出的四株BoSus cDNA (BoSus1、BoSus2、BoSus3 與 BoSus4) 進行序列分析與基因體拷貝數分析,並以 northern 分析、半定量 RT-PCR、免疫組織定位及 in situ RT-PCR 探討各基因在不同生長時期竹筍及不同組織中的表現,此外,也以大腸桿菌表現 4 種重組 BoSuS,並以鈷金屬離子結合膠體 (colbat-based immobilized metal affinity chromatography) 純化,探討不同 BoSuS 之生化特性。 BoSus1 與 BoSus3 在序列上有極高的同質性,兩者可能是重複基因 (duplicate gene) 或是異源同型基因 (homeologous),同樣的 BoSus2與 BoSus4 序列上也有極高的同質性。動力學上的分析顯示,兩個相似度極高的 BoSuS 異構酶對蔗糖有近似的 Km,但對 UDP 的 Km 則不同。Northern 分析及半定量RT-PCR 結果顯示這四個 BoSus 基因在綠竹各組織部位均有表現,但表現量各自不同,並可發現 BoSus 表現量與竹筍生長的速度成正相關。醣類分析的結果顯示不同生長時期的竹筍各部位之蔗糖濃度的變化趨勢與 BoSus mRNA 及 BoSuS 的表現量變化趨勢呈正相關。 利用水稻多株與單株抗體進行組織定位的研究,在未出土竹筍與葉鞘中之薄壁細胞與維管束、成熟葉中之表皮細胞、葉肉細胞與維管束以及在未展開的葉片 (嫩葉) 的各組織中均可偵測到 BoSuS。以 in situ RT-PCR 探討 4 個基因在未出土竹筍、葉片以及葉鞘中的表現,發現 4 種 BoSus 基因在未出土竹筍與葉鞘的薄壁細胞中均有表現,其中 BoSus2 基因在中間與尖端部位各組織有較明顯的表現差異。在嫩葉與成熟葉各組織中可見 4 種 BoSus 基因表現的差異性,但在葉鞘各組織中 4 種 BoSus 基因則有相近似的表現。 這樣的結果意味著 4 種 BoSuS 在來源與積貯組織均扮演著蔗糖裝載/卸載的角色。BoSuS 在快速生長的綠竹中扮演降解蔗糖以提供細胞壁多醣類合成、澱粉合成所需基質與生長所需能量的角色,而每一種 BoSuS 在不同組織中各有其不同重要性。 | zh_TW |
dc.description.abstract | Bamboo is distinguished by its rapid growth. Research on the green bamboo Bambusa oldhamii has suggested that sucrose synthase (SuS), which catalyzes the reversible conversion of sucrose and UDP into UDP-glucose and fructose, is important in providing substrates for the highly active synthesis of cell wall polysaccharides in growing shoots and young culm. The objective of this study is to elucidate the role of SuS in bamboo growth.
Four SuS cDNA clones (BoSus1, BoSus2, BoSus3 and BoSus4) isolated from a cDNA library of etiolated bamboo shoots were characterized by sequences analysis and Southern analysis. Northern analysis, semi-quantitative RT-PCR, immunohistochemical analysis and in situ RT-PCR were used for investigating the expression patterns of each gene in bamboo shoots at various growth stages and in various tissues. In addition, recombinant BoSuS proteins were produced in Escherichia coli and purified by immobilized metal affinity chromatography for functional identification. BoSus1 and BoSus3 may be duplicate or homeologous genes, the sequences of which show high identity. Similarly, BoSus2 shows high identity with BoSus4. Kinetic analysis showed that the two BoSuS isoforms of each type had similar Michaelis constant (Km) values for sucrose, but different values for UDP. Northern analysis and semi-quantitative RT-PCR showed that the four genes were expressed in various bamboo organs but were differentially regulated. Immunohistochemical analysis using polyclonal and monoclonal antibodies against rice SuS revealed that BoSuS was widely distributed in different tissues of unexpanded leaf. In etiolated shoot and leaf sheath, BoSuS was detected in the parenchyma cells and vascular tissues. In mature leaves, SuS was located in epidermal cells, mesophyll and vascular tissues. In situ RT-PCR analysis showed that the four BoSuS were all expressed in parenchyma cells of leaf sheath and all part of etiolated shoot. The BoSus2 has significant differential expression patterns in the middle and top regions of etiolated shoots. In sink leaf (unexpanded leaf) and mature leaf, the four BoSus gene were also differentially expressed but exhibited similar expression pattern in leaf sheath. The results underscore the roles of SuS in sucrose loading/unloading in both source and sink organs. Multiple BoSuS isoforms play a variety of important roles in green bamboo, directing translocated carbon towards both the polysaccharide biosynthesis and energy production necessary to support the rapid growth of bamboo. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:56:33Z (GMT). No. of bitstreams: 1 ntu-97-D90623603-1.pdf: 7144729 bytes, checksum: cc84f708e7b32051bd4a91c9881a1cc2 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | 縮寫表 1
關鍵詞 4 中 文 摘 要 5 Abstract 7 第一章 研 究 背 景 9 1.1 蔗糖合成酶之酵素性質與基因 9 1.1.1 蔗糖合成酶催化之反應 9 1.1.2 蔗糖合成酶異構酶與其基因 10 1.1.3 蔗糖合成酶與磷酸化修飾 12 1.2 蔗糖合成酶的生理角色 13 1.2.1 參與澱粉合成 13 1.2.2 參與細胞壁多醣類之合成 15 1.2.3 參與蔗糖運輸 16 1.3 本實驗室在蔗糖合成酶的研究基礎 16 1.3.1 水稻蔗糖合成酶 (RSuS) 16 1.3.2 綠竹筍蔗糖合成酶 18 1.4 本論文之源起及目的 19 1.4.1 竹子 19 1.4.1 已知關於竹子的研究 20 1.4.3 本論文的主要目的 22 1.5 本論文之研究內容 22 1.5.1 4 株 BoSus cDNA 23 1.5.2 4 種 BoSus 之基因表現 23 1.5.3 4 種 BoSuS 在未出土竹筍及葉片中的分布 23 1.5.4 4 種 BoSus mRNA 在未出土竹筍及葉片中的表現情形 24 1.5.5 4 種重組 rBoSuS之動學力常數 24 1.5.6 竹筍各部位與 SuS 有關之醣類與 UDPG 含量 24 第二章 材 料 與 方 法 25 2.1 實驗材料 25 2.1.1 植物材料 25 2.1.2 質體 25 2.1.3 菌種 25 2.1.4 抗體 26 2.2 實驗藥品 26 2.2.1 化學試劑 26 2.2.2 培養基 26 2.3 儀器設備 26 2.3.1 離心機 26 2.3.2 分光光度計 27 2.3.3 蛋白質電泳、轉印系統 27 2.3.4 核酸電泳系統 27 2.3.5 UV 照相系統: 27 2.3.6 其他 28 2.4 實驗方法 29 2.4.1 RNA之抽取及分析方法 29 2.4.1.1 全部RNA之抽取 29 2.4.1.2 甲醛瓊脂糖膠體電泳 30 2.4.1.3 Northern 轉印法 31 2.4.1.4 探針雜合反應 32 2.4.1.5 半定量RT-PCR 32 2.4.2 DNA之抽取與分析方法 33 2.4.2.1 質體DNA之小量分離 33 2.4.2.2 竹筍染色體DNA之抽取 34 2.4.2.3 DNA瓊脂糖膠體電泳 35 2.4.2.4 DNA 片段的分離與純化 35 2.4.2.5 Southern 轉印及雜合分析 36 2.4.3 放射性探針之製備 36 2.4.3.1 以 Random priming 法製備放射性探針 36 2.4.3.2 以 PCR 法製備放射性探針 37 2.4.4 重組蔗糖合成酶的純化與檢定 38 2.4.4.1 重組蔗糖合成酶之大量純化 38 2.4.4.2 親和層析與濃縮 38 2.4.4.3 蛋白質定量法 39 2.4.4.4 SDS-PAGE 電泳檢定 39 2.4.4.5 Native-PAGE 電泳檢定 40 2.4.4.6 Western 轉印分析法 40 2.4.5 蔗糖合成酶活性測定 41 2.4.5.1 蔗糖分解方向 41 2.4.5.2 蔗糖合成方向 43 2.4.6. 酵素動力學 44 2.4.6.1 蔗糖降解方向 44 2.4.6.2 蔗糖合成方向 44 2.4.6.3 反應初速率 (Vo) 之計算 44 2.4.7 抗體製備 (參考吳,1998) 47 2.4.7.1 Monospecific 抗體製備 47 2.4.8 免疫組織定位與 in-situ RT-PCR 50 2.4.8.1組織固定 50 2.4.8.2脫水 50 2.4.8.3 滲蠟與埋蠟 50 2.4.8.4 載玻片處理與切片 51 2.4.8.5 脫蠟與復水 52 2.4.8.6 免疫組織定位分析 52 2.4.8.7 In-situ RT-PCR 53 2.4.8.8 脫水與封片 53 2.4.9 以酵素法分析竹筍各組織部位之葡萄糖、果糖、蔗糖與UDPG含量 54 2.4.9.1 樣本製備及反應液配製 55 2.4.9.2 葡萄糖、果糖與蔗糖分析 55 2.4.9.3 UDPG 分析 56 第三章 結 果 與 討 論 57 3.1 綠竹蔗糖合成酶基因序列及基因拷貝數目之分析 57 3.1.1 蔗糖合成酶基因之相似性 57 3.1.2 綠竹筍蔗糖合成酶基因拷貝數分析 59 3.1.3 討論 60 3.2 重組綠竹筍蔗糖合成酶之生化性質檢定 61 3.2.1 重組蔗糖合成酶之純化 61 3.2.2 酵素動力學研究 62 3.2.2.1 rBoSuS1 63 3.2.2.2 rBoSuS3 64 3.2.2.3 rBoSuS2 65 3.2.2.4 rBoSuS4 66 3.2.3 討論 67 3.3 蔗糖合成酶基因表現分析 70 3.3.1 不同生長時期之竹筍與幼竹不同部位的北方雜合分析 70 3.3.2 不同生長時期葉片之北方雜合分析 71 3.3.3 半定量 RT-PCR 分析之結果 72 3.3.4 討論 74 3.4 免疫組織定位與in-situ RT-PCR 75 3.4.1抗體製備 75 3.4.2. In situ RT-PCR 實驗條件探討 77 3.4.3. 實驗材料 77 3.4.4 未出土竹筍分析結果 78 3.4.4.1 基部 78 3.4.4.2 中間部位 78 3.4.4.3 中間部位縱切 79 3.4.4.4 尖端部位 80 3.4.5 嫩葉 81 3.4.6 成熟葉 82 3.4.7 葉鞘 82 3.4.8 討論 83 3.5 不同生長時期竹筍各部位組織醣類與 UDPG 分析 87 3.5.1 各部位組織含水量 87 3.5.2 葡萄糖、果糖、蔗糖與 UDPG 含量 88 3.5.3 討論 88 3.6 綜合討論 90 3.6.1 整體 BoSuS 表現情形 90 3.6.2 已知之 4 種 BoSuS 可能的角色 92 第四章 結論 95 第五章 未來研究方向 97 5.1 BoSuS 活性與結構探討 97 5.2 磷酸化修飾對 BoSuS 的影響 98 5.3 Sus1-type 與 Sus2-type BoSuS 專一性抗體製備 98 5.4 篩選出其他的 BoSus cDNA 98 5.5 蛋白質間的交互作用 99 5.6 BoSuS是否扮演酵素之外的角色 99 參 考 文 獻 101 圖表目錄 表一、綠竹蔗糖合成酶 cDNA 摘要 112 表二、以 PCR 增殖 4 種 BoSus 基因之 intron 序列所使用之引子 113 表三、綠竹與水稻蔗糖合成酶基因部分 intron 序列長度 114 表四、以PCR製備南方雜合與北方雜合專一性探針所使用之引子 115 表五、重組綠竹蔗糖合成酶之純化1 116 表六、四種重組蔗糖合成酶在蔗糖降解與合成方向之酵素動力學常數 117 表七、半定量 RT-PCR 反應所使用之引子 118 表八、合成胜肽序列 119 表九、未出土竹筍各部位 in-situ RT-PCR 結果彙整 120 表十、葉片與葉鞘 in-situ RT-PCR 結果彙整 121 表十一、不同生長時期之竹筍各部位組織之含水量 122 圖一、綠竹 BoSus cDNAs 與水稻蔗糖合成酶 RSus cDNAs 推衍出之胺基酸序列比對 123 圖二、比較單子葉植物與阿拉伯芥之蔗糖合成酶之胺基酸序列 124 圖三、以 PCR 法增殖放大 BoSus1 之5’ 端intron 序列 125 圖四、BoSus1 在 5’ 端之 intron 序列 126 圖五、BoSus3 在 5’ 端之 intron 序列 127 圖六、BoSus2 在 5’ 端之 intron 序列 128 圖七、BoSus4 在 5’ 端之 intron 序列 129 圖八、BoSus1 在 3’ 端之 intron 序列 130 圖九、BoSus2 在 3’ 端之 intron 序列 131 圖十、BoSus4 在 3’ 端之 intron 序列 132 圖十一、BoSus3 在 3’ 端之 intron 序列 133 圖十二、BoSus1 與 BoSus3 之 intron 1 序列比對圖 134 圖十三、BoSus1 與 BoSus3 之 intron13 與 intron14 序列比對圖 135 圖十四、BoSus2 與 BoSus4 之 intron 1 序列比對圖 136 圖十五、BoSus2 與 BoSus4 3’ 端之 intron 序列比對圖 137 圖十六、兩種 BoSus cDNA 之 3’-UTR 序列比對 138 圖十七、綠竹染色體 DNA 之 Southern 分析 139 圖十八、重組綠竹蔗糖合成酶之純化結果 140 圖十九、固定蔗糖濃度下,UDP 濃度對 rBoSuS1 反應速率的影響 141 圖二十、固定 UDP 濃度下,蔗糖濃度對 rBoSuS1 反應速率的影響 142 圖二十一、果糖濃度對 rBoSuS1 在不同 UDPG 濃度下之反應速率的影響 143 圖二十二、UDPG濃度對 rBoSuS1 在不同果糖濃度下之反應速率的影響 144 圖二十三、固定蔗糖濃度下,UDP 濃度對 rBoSuS3 反應速率的影響 145 圖二十四、固定 UDP 濃度下,蔗糖濃度對 rBoSuS3 反應速率的影響 146 圖二十五、果糖濃度對 rBoSuS3 在不同 UDPG 濃度下之反應速率的影響 147 圖二十六、UDPG濃度對 rBoSuS3 在不同果糖濃度下之反應速率的影響 148 圖二十七、固定蔗糖濃度下,UDP 濃度對 rBoSuS2 反應速率的影響 149 圖二十八、固定 UDP 濃度下,蔗糖濃度對 rBoSuS2 反應速率的影響 150 圖二十九、果糖濃度對 rBoSuS2 在不同 UDPG 濃度下之反應速率的影響 151 圖三十、UDPG 濃度對 rBoSuS2 在不同果糖濃度下之反應速率的影響 152 圖三十一、固定蔗糖濃度下,UDP 濃度對 rBoSuS4 反應速率的影響 153 圖三十二、固定 UDP 濃度下,蔗糖濃度對 rBoSuS4 反應速率的影響 154 圖三十三、綠竹筍不同部位之 northern 分析 155 圖三十四、綠竹筍不同部位之整體 BoSus mRNA 之相對含量 156 圖三十五、不同生長時期綠竹幼竹之 northern 分析 157 圖三十六、不同生長時期綠竹幼竹之整體 BoSus mRNA 之相對含量 158 圖三十七、綠竹筍及葉片之 northern 分析 159 圖三十八、綠竹及葉片之整體 BoSus mRNA 之相對含量 160 圖三十九、測試用於 RT-PCR 之最適 annealing 溫度 161 圖四十、用於 RT-PCR 之綠竹筍樣品 162 圖四十一、以半定量 RT-PCR 分析 BoSus2 mRNA 量所需的適當反應循環數 163 圖四十二、以半定量 RT-PCR 分析綠竹樣品中 4 種 BoSus mRNA 之含量 164 圖四十三、綠竹不同部位之 4 種 BoSus mRNA 定量分析 165 圖四十四、RSuS 之多株與單株抗體與四種 rBoSuS 之反應分析 166 圖四十五、綠竹不同組織或器官中之 native PAGE 及 western 167 圖四十六、綠竹不同組織或器官中之 BoSuS 蛋白質相對含量分析 168 圖四十七、Pectinase 的處理時間測試 169 圖四十八、未出土竹筍基部免疫組織定位與 in-situ RT-PCR 分析 170 圖四十九、未出土竹筍中間部位免疫組織定位與 in-situ RT-PCR 172 圖五十、未出土竹筍中間部位縱切面免疫組織定位與 in-situ RT-PCR 174 圖五十一、未出土竹筍尖端部位免疫組織定位與 in-situ RT-PCR 176 圖五十二、嫩葉免疫組織定位與 in-situ RT-PCR 178 圖五十三、成熟葉免疫組織定位與 in-situ RT-PCR 180 圖五十四、葉鞘免疫組織定位與 in-situ RT-PCR 182 圖五十五、不同生長時期之竹筍各部位葡萄糖、果糖、蔗糖與 UDPG 含量 184 圖五十六、未出土竹筍之澱粉碘染色 185 附 錄 附錄 A、綠竹四種蔗糖合成酶 cDNA 序列比對及相似度 (資料來源:林,2001) 186 附錄 B、綠竹筍蔗糖合成酶 BoSuS1 及 BoSuS3 胺基酸序列比對 189 附錄 C、綠竹筍蔗糖合成酶 BoSuS2 及 BoSuS4 胺基酸序列比對 190 附錄 D、探針專一性測試 191 | |
dc.language.iso | zh-TW | |
dc.title | 綠竹蔗糖合成酶異構酶之基因表現與生理功能探討 | zh_TW |
dc.title | Studies on the gene expression and physiological functions of sucrose synthase isozymes in green bamboo Bambusa oldhamii | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 蘇仲卿,宋賢一,林耀輝,張珍田,王淑珍,楊健志 | |
dc.subject.keyword | 綠竹,蔗糖合成酶,cDNA 選殖,差異性表現,重組蛋白質,免疫化學染色,組織內RT-PCR, | zh_TW |
dc.subject.keyword | Bambusa oldhamii (bamboo,cDNA cloning,Differential gene expression,Recombinant proteins,Sucrose synthase,Immunohistochemistry,In-situ RT-PCR, | en |
dc.relation.page | 191 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-01-29 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 微生物與生化學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 6.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。