Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24790
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor馮哲川(Zhe-Chuan Feng)
dc.contributor.authorYu-Long Leeen
dc.contributor.author李育融zh_TW
dc.date.accessioned2021-06-08T05:56:29Z-
dc.date.copyright2008-02-01
dc.date.issued2008
dc.date.submitted2008-01-29
dc.identifier.citationChapter 1
[1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa,T.Yamada,
T. Matsushita, Y.Sugimoto, and H. Kiyoku: Jpn. J.Appl.
Phys., 36, L1059 (1997).
[2] H. Hirayama, Y. Enomoto, A. Kinoshita, A. Hirata, and
Y. Aoyagi: Mater. Res. Soc.Symp. Proc. 595, W11.3
(1999).
[3] H. Hirayama, Y. Enomoto, A. Kinoshita, A. Hirata, and
Y. Aoyagi: Phys. Status Solidi A 180, 157 (2000).
[4] Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, S.
Fujita, and S. Nakamura: Appl. Phys. Lett., 70, 891
(1997).
[5] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura:
Appl. Phys. Lett., 70, 2822 (1997).
[6] H. Hirayama, Y. Enomoto, A. Kinoshita, A. Hirata, and
Y. Aoyagi: Proc. 10th Int. Conf. on Metalorganic Vapor
Phase Epitaxy (ICMOVPE-X), Fr-A8, Sapporo, 2000–6
(2000).
[7] H. Hirayama, A. Kinoshita, T. Yamanaka, A. Hirata, and
Y. Aoyagi: Mater. Res. Soc. Symp. Proc. G2.8 (2001).
[8] A. Kinoshita, H. Hirayama, M. Ainoya, A. Hirata, and
Y. Aoyagi: Appl. Phys. Lett., 77, 175 (2000).
[9] M.A. Khan, V. Adivarahan, J.P. Zhang, C. Chen, E.
Kuokatis, A. Chitnis, M. Shatalov, J.W. Yang, and G.
Simin, Jpn. J. Appl. Phys. 40, L1308 (2001).
[10] J. Wu, W.W. Walukiewicz, K.M. Yu, J.W. Ager III, E.E.
Haller, H. Lu, W.J. Schaffer, Y. Saito, and Y.
Nanishi, Appl. Phys. Lett. 80, 3967 (2002).
[11] http://www.phys.ksu.edu/area/GaNgroup
[12] J. Li, K.B. Nam, J.Y. Lin, and H.X. Jiang, Appl.
Phys. Lett. 79, 3245 (2001).
[13]Semiconductors-Basic Data, 2nd revised edition, edited
by Otfried Madelung, Springer, Berlin, 1996.
[14] G. Coli, K.K. Bajaj, J. Li, J.Y. Lin, and H.X. Jiang,
Appl. Phys. Lett. 78, 1829 (2001) and Appl. Phys.
Lett. 80, 2907 (2002).
[15] H.S. Kim, R.A. Mair, J. Li, J.Y. Lin, and H.X. Jiang,
Appl. Phys. Lett. 76, 1252 (2000).
[16] G.D. Chen, M. Smith, J.Y. Lin, H X. Jiang, M. Asif
Khan, and C.J. Sun, Apppl. Phys. Lett. 67, 1653(1995).
[17] M.D. Bremser, Gallium Nitride and Related
Semiconductors, edited by J.H. Edgar, S. Strite, I.
Akssaki, H. Amano, and C. Wetzel, p. 147.
[18] K.B. Nam, J. Li, M.L. Nakarmi, J.Y. Lin, and H.X.
Jiang, Appl. Phys. Lett. 81, 1038 (2002).
[19] H. J. Chang , Ph.D. Thesis, National taiwan
University, Taiwan, 2007
[20] H. Morkoc, S. Sstrite, G. B. Gao, M. E. Lin, B.
Sverdlov, and M. Burns, J. Appl. Phys. 76, 1363(1994).
[21] S. N. Mohammad, A. A. Salvador, and H. Morkoc, Proc.
IEEE 83, 1306(1995).
[22] J. Li, K. B. Nam, J. Y. Lin, and H. X. Jiang, Appl.
Phys. Lett. 79, 3245 (2001)
[23] S. Nakamura and G. Fasol, The Blue Laser Diode,
Springer, New York, 1997.
[24] R. A. Mair, J. Y. Lin, H. X. Jiang, E. D. Jones, A.
A. Allerman, and S. it Kurtz, Appi. Phys. Left. 76,
188 2OOO).
[25] J. Han, M. H. Crawford, R. J. Shul, J. J. Figiel, M.
Bansa, L. Zhang, Y. K. Song, H. Thou, and A. V.
Nurmikko,Appl. Phys. Lett. 73, 1688 (1998).
[26] E. Munoz, E. Monroy, J.A.Garrido, I. Izpura, F.J.
Sanchez, M.A. Sanchez-Garcia, E. Calleja, B.Beaumont,
and P. Gibart, App!. Phys. Lett. 71, 870 (1997);
[27] E. Monroy, E. Munoz, F.J. Sanchez, F. Calle, E.
Calleja, B. Beaumont, P. Gibart, J.A. Munoz and F.
Cusso, Semicond. Sd. Technol. 13, 1042 (1998);
[28] D. Walker, E. Munroy, P. Kung, M. Hamilton, F.J.
Sanchez, J. Diaz and M. Razeghi, Appl. Phys. Lett.
74, 762 (1999).
[29] B.W. Lim, Q.C. Chen, J.Y. Yang, and M. AshifKhan,
Appl. Phys. Lett. 68, 3761 (1996).
[30] J.D. Brown, Z. Yu, J. Matthews, S. Harney, J. Boney,
J.F. Schetzina, J.D. Benson, K.W. Dang, C. Terrill,
T. Nohava, W. Yang and S. Krishnankutty, MRS Internet
J. Nitride Semicond. Res. 4, 9 (1999).
[31] A. Osinsky, S. Gangopadhyay, B.W. Lim, M.Z. Anwar,
M.A. Khan, D.V. Kuksenkov and H. Temkin, Appl. Phys.
Lett. 72, 742 (1998).
[32] F. G. McIntosh, K. S. Boutros, J. C. Roberts, S. M.
Bedair, E. L. Piner, and N. A. El-Masty, Appl. Phys.
Lett. 68, 40 (1996).
[33] C. H. Chen , Ph.D. Thesis, National taiwan
University, Taiwan, 2003
Chapter 2
[1] R. A. Stradling and P. C. Klipstein, in Growth and
Characterisation of Semiconductors (Hilger, 1990).
[2] Department of Physics National Taiwan University,
Optical and Electrical Properties of Type-II
GaAsSb/GaAs Multiple Quantum Wells, Tzung Te Chen.
[3] Department of Institute of Optoelectronic Sciences
College of Science National Taiwan Ocean University,
Optical properties of II-VI compound semiconductor
quantum structures, T. U. Lu..
[4] T. Akasaka, S. Ando, T. Nishida, H. Saito, and N.
Kobayashi, Appl. Phys. Lett. 79, 1414 (2001).
[5] B. Monemar, Phys. Rev. B 8, 1051 (1973).
[6] Ian Farnan, IB Mineral Sciences Module B: Transport
Properties.
[7] L. Rayleigh, G. G. Stokes, Proc. Royal Soc. London 75,
199 (1905).
[8] A. Smekal, Naturwiss. 11, 873 (1923).
[9] G. Herzberg, “Infrared and Raman spectra of
Polyatomic Molecules”, Van Nostrand, New York (1945).
[10] Sir C. V. Raman, K. S. Krishnan, Ind. J. Phys. 2, 387
(1928).
[11] Sir C. V. Raman, K. S. Krishnan, Nature 121, 501
(1928).
[12] G. S. Landsberg, L. I. Mandelstam, Naturwiss. 16, 557
(1928).
[13] G. Placzek, in Handbuck der Radiologie, ed. E. Marx,
Vol. 6, part2, p. 209, Akad emische
Verlagsgesellschaft, Leipzig (1934).
[14] Michael J. Pelletier, Ed., “Analytical Applications
of Raman Spectroscopy”, Blackwell Science:
Cambridge, MA, (1999).
[15] Philip Kim, Teri W. Odom, Jin-Lin Huang, and Charles
M. Lieber, Physical Review Letter , 82, 6, 1225-1228
(1999).
[16] Bockrath M, Cobden DH, McEuen PL, et al. Science.275,
1922(1997).
[17] Derek A. Long, “The Raman Effect: A Unified
Treatment of the Theory of Raman Scattering by
Molecules”, Wiley, England (2002).
[18] R. Saito, G. Dresselhaus, and MS Dresselhaus.,
Physical Review B, 61, 2981(2000).
[19] A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S.
Dresselhaus, A. K. Swan, M. S. Unlu, B. B. Goldberg,
M. A. Pimenta, J. H. Hafner, C. M. Lieber, and R.
Saito , Physical Review B , 65, 155412(2002).
[20] R. Saito, A. Jorio, J. H. Hafner, C. M. Lieber, M.
Hunter, T. McClure, G.Dresselhaus, and M. S.
Dresselhaus, Physical Review B , 64, 085312(2001).
[21] http://en.wikipedia.org/wiki/Scanning_Electron
_Microscope
[22] Danilatos, G,D (1988). “Foundations of environmental
scanning electron microscopy” (in English).
Advances in Electronics and Electron Physics 71:109-
250. Retrieved on 11/05/2007.
[23] Alan C. Nelson Scanning electron microscope for
visualization of wet samples.
[24] http://en.wikipedia.org/wiki/Energy-dispersive_X-
ray_spectroscopy
[25] S.N. Mohammad and H. Morkoc, Prog. Quantum Electron.
208, 361 (1996).
[26] N. Nakamura, G. Fasol, The Blue Laser Diode, Springer
Veriag, Beriin, 1997.
[27] M.A. Khan, M.S. Shur, Q.C. Chen and J.N. Kuznia,
Electron. Lett. 30, 2175 (1994).
[28] S.C. Binari, W. Kruppa, H.B. Dietrich, G. Kelner,
A.E. Wickenden and A.J. Freitas Jr., Solid State
Electron. 41, 1549 (1997).
[29] RB. Klein, J.A. Freitas Jr., S.C. Binari and A.E.
Wickenden, Appl. Phys. Lett. 75, 4016 (1999).
[30] J.Z. Li, J.Y. Lin, H.X. Jiang and M. Asif Khan, Appl.
Phys. Lett. 72, 2868 (1998).
[31] RM. Solomon and H. Morkoc, IEEE Trans. Electron
Devices ED-31, 1051 (1984).
[32] J.F. Rochette, P. Delescluse, M. Lavin, D.
Delagebeaudeuf, J. Chevrier and N.T. Linh, Inst.Phys.
Conf. Ser. 65, 385 (1982).
[33] R. Fisher, T.J. Drummond, J. Klem, W. Kopp, T.S.
Henderson, D. Perrachione and H. Morkoc, IEEE Trans.
Electron Devices ED-31, 1028 (1984).
[34] A. Kastalsky and R.A. Kiehl, IEEE Trans. Electron
Devices ED-33, 414 (1986).
[35] RM. Mooney, J. Appl. Phys. 67, Rl (1990).
[36] M.I. Nathan, Solid State Electron. 29, 167 (1986).
[37] H.J. Stormer, R. Dingle, A.C. Gossard, W.W. Wiegmann
and M.D. Sttirge, Solid State Commun. 29, 705 (1974).
[38] R.A. Linke, T. Thio, J.D. Chadi and G.E. Devlin,
Appl. Phys. Lett. 65, 16 (1994).
[39] R.L. MacDonald, R.A. Linke, J.D. Chadi, T. Thio, G.E.
Devlin and R Becla, Optics Lett. 19, 2131 (1994).
[40] D.E. Theodorou, H.J. Queisser and E. Bauser, Appl.
Phys. Lett. 41, 628 (1982).
[41] H.X. Jiang, A. Dissanayake and J.Y. Lin, Phys. Rev. B
45, 4520 (1992).
[42] M. Smith, J.Y. Lin and H.X. Jiang, Phys. Rev. B 51,
4132 (1995).
[43] M. Smith, J.Y. Lin and H.X. Jiang, Phys. Rev. B 54, 1471 (1996).
[44] CH. Henry and D.V. Lang, Phys. Rev. B 15, 989 (1977).
[45] D.V. Lang and R.A. Logan, Phys. Rev. Lett. 39, 635
(1977).
[46] D.J. Chadi and K.J. Chang, Phys. Rev. Lett. 61, 873
(1988).
[47] D.V. Lang. In: S. Pantelides (Ed.), Deep Centers in
Semiconductors, 2nd ed., Gordon and Breach, New York,
1992, p. 591.
[48] J.M. Langer. In: F. Beleznay, G. Ferenczi, J. Giber
(Eds.), New Developments in Semiconductor
Physics,Springer Verlag, Berlin, 1980, p. 123.
[49] D. Redfield, R.H. Bube, Photoinduced Defects in
Semiconductors, Cambridge University Press,
Cambridge, 1996.
[50] H.J. Queisser and D.E. Theodorou, Phys. Rev. Lett.
43, 401 (1979).
[51] H.J. Queisser and D.E. Theodorou, Phys. Rev. B 33,
4027 (1986).
[52] H.X. Jiang and J.Y. Lin, Phys. Rev. B 40, 10025
(1989).
[53] H.X. Jiang and J.Y. Lin, Phys. Rev. Lett. 64, 2547
(1990).
Chapter 3
[1] Peter Kozodoy, Monica Hansen, S. P. DenBaars and U. K.
Mishra, Appl. Phys. Lett.74, 3681 (1999).
[2] T. Mukai, H. Narimatsu and S. Nakamura, J. Crystal
Growth 189/190, 778 (1998).
[3] A. Kinoshita, H. Hirayama, M. Ainoya, A. Hirata and Y.
Aoyagi, to be submitted.
[4] H. Hirayama and Y. Aoyagi, Mater. Res. Soc. Proc. 537,
G3.74 (1999).
[5] A. Kinoshita, H. Hirayama, A. Hirata and Y. Aoyagi,
International Conference onSolid State Device and
Materials (SSDM), C-4-2, Tokyo (1999).
[6] S. Chichibu, D. A. Cohen, M. P. Mack, A. C. Abare, P.
Kozodoy, M. Minsky, S.Fleischer, S. Keller, J. E.
Bowers, U. K. Mishra, L. A. Coldren, D. R. Clarke and
S. P.DenBaars, Appl. Phys. Lett. 73, 496 (1998).
[7] P. Chen et al., Journal of Crystal Growth 273 (2004)
74–78
[8] T. Someya, K. Hoshino, J.C. Harris, K. Tachibana,
Y.Arakawa, Appl. Phys. Lett. 77 (2000) 1336.
[9] T. Nishida, H. Saito, N. Kobayashi, Appl. Phys. Lett.
79 (2001) 711.
[10] M. Iwaya, S. Terao, T. Sano, T. Ukai, R. Nakamura, S.
Kamiyama, H. Amano, I. Akasaki, Journal of Crystal
Growth 237 (2002) 951.
[11] P. Ruterana, G.D. Jores, M. Laugt, F. Omnes, E.
Bellet-Amalric, Appl. Phys. Lett. 78 (2001) 344.
[12] P. Vennegues, H. Lahreche, Appl. Phys. Lett. 77
(2000) 4310
[13] P. Ruterana, G. Nouet, W. Van der Stricht, I.
Moerman, L. Considine, Appl. Phys. Lett. 72 (1998)
1742.
[14] D. Doppalapudi, S.N. Basu, K.F. Ludwig, T.D.
Moustakas, Appl. Phys. Lett. 84 (1998) 1389.
[15] L. Vegard, Z. Phys. 5, 17(1921)
[16] D. Doppalapudi, S.N. Basu, T.D. Moustakas, Appl.
Phys. Lett. 85 (1999) 883.
[17] M.K. Behbehani, E.L. Piner, S.X. Liu, N.A. El-Masry,
S.M. Bedair, Appl. Phys. Lett. 75 (1999) 2202.
[18] G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl.
Phys. Lett. 71, 569 (1997).
[19] N. Nepal, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X.
Jianga, Appl. Phys. Lett. 88, 062103(2006).
[20] H. X. Jiang, L. Q. Zu, and J. Y. Lin, Phys. Rev. B
42, 7284 _1990_.2M. S. Lee and K. K. Bajaj, J. Appl.
Phys. 73, 1788 (1993).
[21] M. S. Lee and K. K. Bajaj, J. Appl. Phys. 73, 1788
(1993).
[22] G. Coli, K. K. Bajaj, J. Li, J. Y. Lin, and H. X.
Jiang, Appl. Phys. Lett. 78, 1829 (2001)
[23] G. Coli, K. K. Bajaj, J. Li, J. Y. Lin, and H. X.
Jiang, Appl. Phys. Lett. 80, 2907 (2002)
[24] A. Bell, S. Srinivasan, C. Plumlee, H. Omiya, F. A.
Ponce, J. Christen, S. Tanaka, A. Fujioka, and Y.
Nakagawa, J. Appl. Phys. 95, 4670 (2004).
[25] B. K. Meyer, G. Steude, A. Goldner, A. Hofmann, H.
Amano, and I. Akasaki, Phys. Status Solidi 216, 187
(1999).
[26] K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P.
Liu, and I. G. Chen, Appl. Phys. Lett. 84, 3307
(2004).
[27] Yukio Narukawa, Yoichi Kawakami, Shigeo Fujita, and
Shuji Nakamura, Phys. Rev. B 59,10283 (1999).
[28] Annamraju Kasi Viswanath, J.I. Lee, S.T. Kim, Dongho
Kim, J. Crys. Growth 260, 322 (2004).
Chapter 4
[1] M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T.
Olson, Appl. Phys. Lett. 63, 1214 (1993).
[2] H. Morkoc, S. Strite, G. B. Gao, M. E. Lin, B.
Sverdlov, and M.Burns, J. Appl. Phys. 76, 1363 (1994).
[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T.
Mstsusshita, h. Kiyoko, and Y. Sugimoto, Jpn. J. Appl.
Phys. 35, L74 (1996).
[4] C. H. Chen and Y. F. Chen, An Shih, S. C. Lee, and H.
X. Jiang, Appl. Phys. Lett. 78, 3035 (2001).
[5] D. R. Hang, C. H. Chen, Y. F. Chen, H. X. Jiang, J.
Appl. Phys. 90, 1887 (2001).
[6] Y. Narukawa, Y. Kawakami, M. Funato, S. Fujita, and S.
Nakamura, Appl. Phys. Lett. 70, 981 (1997).
[7] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura,
Appl. Phys. Lett. 70, 2822(1997).
[8] H. C. Yang , P. F. Kao, T. Y. Lin, Y. F. Chen, K.H.
Chen, L. C. Chen, and Jen-Inn Chyi, Appl. Phys. Lett.
76, 3712 (2000).
[9] M. E. Aumer, S. F. LeBoeut, S. M. Bedair, M. Smith, J.
Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 77, 821
(2000).
[10] M. A. Khan, J. W. Yang, G. Smith, R. Gaska, M. S.
Shur, G. Tamulaitis, A.Zukauskas, D. J. Smith, D.
Chandrasekhar, and R. Bicknell-Tassiua, Appl. Phys.
Lett. 76, 1161(2000)
[11] T. N. Odera. J. I.i , J.Y. Lin, and H. X. Jiang,
Appl. Phys. Lett. 77, 791(2000)
[12] J. Li, K. B. Nam, K. H. Kim, J.Y. Lin, and H. X.
Jiang, Appl. Phys. Lett. 78, 61(2001)
[13] T. Matsuoka, J. Cryst. Growth 189/190, 19(1998)
[14] I-hsiu Ho, and G. B. stringfellow, Appl. Phys. Lett.
69, 2701 (1996).
[15] H. Siegle, G. Kaczmarczyk, L. Filippidis, A. P.
Litvinchuk,, A. Hoffmann, and C. Thomsen, Phys. Rev.
B55, 7000(1997)
[16] Guanghong Wei, Jian. Zi, Kaiming Zhang, and Xide Xie,
Appl. Phys. Lett. 82, 4693 (1997).
[17] L. H. Robins, A. J. Paul, C. A. Parker, J. C.
Roberts, S. M. Bedair, E. L. Piner, and N. A. E1-
Masry, MRS Internet J. Nitride Semicond. Res. 4S1,
G3.22 (1999).
[18] J. Wagner, A. Ramarkrishnan, H. Obloh, and M. Maier,
Appl. Phys. Lett. 74, 3863 (1999).
[19] M. Yoshikawa, J. Wagner, H. Obloh, M. Kunzer, and M.
Maier, J. Appl. Phys. 87, 2853 (2000).
[20] D. Behr, R. Niebuhr, J. Wagner, H. Obloh, K.-H.
Bachem, and U. Kaufmann, Appl. Phys. Lett. 70, 363
(1997).
[21] F. Demangeot, J. Groenen, J. Frandom, M. A. Renucci ,
O. Briot, S. Clur, and R. L. Aulombard, Appl. Phys.
Lett. 72, 2674 (1998).
[22] S. M. Olsthoorn, F. A. J. M. Driessen, A. P. A.
M.Eijkelenboom, and L. J. Giling, J. Appl. Phys. 73,
7798 (1993).
[23] H. Nashiki, I. Suemune, H. Suzuki, T. Obinata, K.
Vesugi, and J. Nakahara, Appl. Phys. Lett. 70, 2350
(1997).
[24] P. G. Eliseev, P. Perlin, J. Lee, and M. Osinski,
Appl. Phys. Lett. 71, 569 (1997).
[25] S. T. Davey, E. G. Scott, B.Wakefield, and G.
J.Davies, Semicond. Sci. Technol. 3, 365 (1988).
[26] C. H. Chen, L. Y. Huang, Y. F. Chen, H. X. Jiang, and
J. Y. Lin, Appl. Phys. Lett. 80, 1397 (2002).
[27] J. Kakalions, R A. Street, and W. B. Jackson, Phys.
Revt .Lett. 59, 1037 (1987).
[28] Y. F. Chen, S. F. Huang, S. W. Chen, Phys. Rev. B
44,12748 (1991).
[29] A. S. Dissanayake, J. Y. Lin, and H. X. Jiang, Phys.
Rev. B48, 8145 (1993).
[30] H. C. Yang, T. Y. Lin, and Y.F. Chen, Appl. Phys.
Lett. 78, 338 (2001).
[31] C. H. Chen , Ph.D. Thesis, National taiwan
University, Taiwan, 2003
[32] G. Eliseev, P. Perlin, J. Lee, and M. Osinski, Appl.
Phys. Lett. 71, 569 (1997).
[33] R. Bhat, M. A. Koza, K. Kasha, S. J. Allen, W. P,
Hong, S. A. Schwarz, G. K. Chang, and P. Lin, J.
Cryst. Growth 108, 441 (1991).
[34] L. Aina, M. Mattingly, A. Fathimulla, E. A. Martin,
T. Loughran, and L. Stecker, J. Cryst. Growth 93, 911
(1988).
[35] H. Kamei, K. Hashizume, M. Murata, N. Kuwata, K. Ono,
and K. Yoshida, J. Cryst. Gqowth 93, 329 (1988).
[36] W. P. Hong, A. Chin, N. Debbar, J. Hinckley, P. K.
Bhattacharya, J. Singh, and R. C. Clarke, J. Vat.
Sci. Technol. B 5, 800 (1987).
[37] J. E. Oh, P. K. Bhattacharya, Y. C. Chen, 0. Aina,
and M. Mattingly, J. Electron. Mater. 19, 435 (1990).
[38] W. E. Quinn, M. C. Tamargo, M. J. S. P. Bras& R. E.
Nahory, and H. H. Farrell, J. Vat. Sci. Technol. B
10, 978 (1992).
[39] D. F. Welch, G. W. Wicks, L. F. Eastman, P.
Parayanthal, and F. H. Pollak, Appl. Phys. Lett. 46,
169 (1985).
[40] K. S. Ramaiah, Y. K. Su, S. J. Chang, B. Kerr, H. P.
Liu, and I. G. Chen, Appl. Phys. Lett. 84, 3307
(2004).
[41] Yukio Narukawa, Yoichi Kawakami, Shigeo Fujita, and
Shuji Nakamura, Phys. Rev. B 59,10283 (1999).
[42] Annamraju Kasi Viswanath, J.I. Lee, S.T. Kim, Dongho
Kim, J. Crys. Growth 260, 322 (2004).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24790-
dc.description.abstract本論文研究三族氮化物半導體的光學與電學性質,研究的樣品包括氮化鋁鎵薄膜結構及氮化銦鋁鎵薄膜結構,內容主要分為兩部份 :
(1)氮化鋁鎵三元薄膜結構的光電性質:
這部份我們主要探討氮化鋁鎵的光電性質。我們利用XRD,電子束電子顯微鏡, 電子束螢光等實驗,光學與結構特性的修正提供了一個直接的證據支持鎵奈米團是主導其發光來源,我們的結果對於將來光電元件發光效率的增加可提供一個重要的貢獻。
(2) 氮化銦鋁鎵四元薄膜結構的光電性質:
這部份我們主要探討氮化銦鋁鎵的光電性質。但從過去的文獻中得知,氮化銦鋁鎵的量子發光效率比氮化鋁鎵來的好,但是其物理成因並不是十分清楚。首先, 我們利用光激螢光光譜與拉曼光譜的量測,來證明量子發光效率變好是因為似氮化銦鎵合金團的形成。之後,我們更進一步的量測掃描式電子顯微鏡影像,陰極螢光光普與能量分散光譜。從這些量測中,我們得到直接的證據,證明此四元化合物高效率螢光發光是來自於似氮化銦鎵合金團。由於激子被侷限在這些奈米尺度的量子合金團中,因此發光效率有所提高。接著我我們進行光電導的量測,針對持續光電導的衰減動力學分析,並結合光激螢光光譜與光激螢光激發譜,得到此四元化合物所引起的侷限能級深度。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-08T05:56:29Z (GMT). No. of bitstreams: 1
ntu-97-R94941035-1.pdf: 3920877 bytes, checksum: 55fcca3dcb15f2e516a44b1492b25ffb (MD5)
Previous issue date: 2008
en
dc.description.tableofcontentsContents
致謝.................................................Ι
摘要.................................................Ⅱ
ABSTRACT.............................................Ⅳ
Contents............................................. V
List of figures....................................ⅤIII
Chapter 1 Introduction...................................1
1.1 III-Nitride semiconductors............................1
1.2 Properties of alloys..................................2
1.2.1 AlGaN alloy.....................................2
1.2.2 InAlGaN quaternary alloy........................5
References................................................6
Chapter 2 Experimental Details...........................9
2.1Photoluminescence(PL)..................................9
2.1.1 PL Experimental Setup..........................15
2.2 Photoluminescence Excitatio..........................16
2.2.1 Photoluminescence Excitation Experimental setup..17
2.3 X-ray diffraction(XRD)...............................18
2.4 Raman scattering.....................................21
2.5 Scanning Electron Microscopy (SEM)...................27
2.6 Energy dispersive X-ray spectrometry (EDS)...........28
2.7 Persistent photoconductivity (PPC)...................29
References...............................................33
Chapter 3 Optical Structural Properties and Experimental
Procedures of AlGaN grown by MOCVD.........37
3.1 Sample growth........................................37
3.1.1 Introduction....................................37
3.1.2 Experimental setup..............................38
3.1.3 Results and discussion..........................38
3.1.4 Conclusion......................................43
3.2 X-ray Diffraction Measurement........................44
3.3 SEM and EDS Measurement..............................45
3.4 PL Experimental Results..............................48
References...............................................57
Chapter 4 Optical Structural Properties and Experimental Procedures of InAlGaN grown by MOCVD.....................60
4.1 Sample growth........................................60
4.1.1 Introduction..................................60
4.1.2 Experimental setup............................61
4.1.3 Results and discussion........................64
4.1.3.1 Mechanism of enhanced luminescence........64
4.1.3.2 Nanoclusters induced enhancement of
luminescence.............................69
4.1.3.3 Persistent photoconductivity..............73
4.1.4 Conclusion....................................78
4.2 X-ray Diffraction Measurement........................80
4.3 SEM and EDS Measurement..............................81
4.4 PL Experimental Results..............................84
References...............................................93
Appendix.................................................97
[1] InAlGaN
[2] AlGaN
[3] 4H-SiC
[4] ZnO
dc.language.isozh-TW
dc.subjectnanoclusterzh_TW
dc.subject奈米聚集點en
dc.title寬能隙半導體:氮化鋁鎵和氮化銦鋁鎵之量測分析與研究zh_TW
dc.titleWide band gap semiconductors:
measurement and analysis of AlGaN, InAlGaN
en
dc.typeThesis
dc.date.schoolyear96-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李粵堅(Jack Lee),彭鈺華(Yu-Hwa Peng)
dc.subject.keywordnanocluster,zh_TW
dc.subject.keyword奈米聚集點,en
dc.relation.page125
dc.rights.note未授權
dc.date.accepted2008-01-30
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-97-1.pdf
  未授權公開取用
3.83 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved