請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24766
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 吳忠幟(Chung-Chih Wu) | |
dc.contributor.author | Hsing-Hung Hsieh | en |
dc.contributor.author | 謝信弘 | zh_TW |
dc.date.accessioned | 2021-06-08T05:56:12Z | - |
dc.date.copyright | 2008-02-18 | |
dc.date.issued | 2008 | |
dc.date.submitted | 2008-02-01 | |
dc.identifier.citation | [1-1] J. E. Lilienfeld, US Patent No. 1,900,018 (1933).
[1-2] O. Heil, Brit. Patent No. 439, 457 (1935). [1-3] P. K. Weimer, Proceedings of the Institute of Radio Engineers 50, 1462 (1962). [1-4] W. E. Spear, P. G. LeComber, Solid State Communications 17, 1193 (1975). [1-5] P. G. LeComber, W. E. Spear, and A. Ghaith, Electronics Letters 15, 179 (1979). [1-6] S. W. Depp, A. Juliana, and B. G. Buth, Proceedings of the 1980 IEDM, 703 (1980). [1-7] A. Tsumura, H. Koezuka, and T. Ando, Applied Physics Letters 49, 1210 (1986). [1-8] F. Garnier, Advanced Materials 2, 592 (1990). [1-9] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003). [1-10] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004). [1-11] C. R. Kagan, and P. Andry, Thin-Film Transistors (Marcel Dekker, New York, 2003). [1-12] H. C. Pao, and C. T. Sah, Solid-State Electronics 9, 927 (1966). [1-13] H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, Journal of Non-Crystalline Solids 198-200, 165 (1996). [1-14] H. Hosono, M. Yasukawa, and H. Kawazoe, Journal of Non-Crystalline Solids 203, 334 (1996). [1-15] H. Hosono, Journal of Non-Crystalline Solids 352, 851 (2006). [1-16] K. Nomura, T. Kamiya, H. Ohta, K. Ueda, M. Hirano, and H. Hosono, Applied Physics Letters 85, 1993 (2004). [1-17] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films 486, 38 (2005). [2-1] A. Nathan, A. Kumar, K. Sakariya, P. Servati, S Sambandan, and D. Striakhilev, IEEE Journal of Solid-State Circuits 39, 1477 (2004). [2-2] Z. Meng and M. Wong, IEEE Transactions on Electron Devices ED-49, 991 (2003). [2-3] J. W. Park, M. C. Lee, W. J. Nam, I. H. Song, and M. K. Han, IEEE Electron Device Letters 22, 402 (2001). [2-4] K. Nomura, H. Ohta, K. Ueda, T. Kamiya, M. Hirano, and H. Hosono, Science 300, 1269 (2003). [2-5] R. L. Hoffman, B. J. Norris, and J. F. Wager, Applied Physics Letters 82, 733 (2003). [2-6] P. F. Garcia, R. S. McLean, M. H. Reilly, and G. Nunes Jr., Applied Physics Letters 82, 1117 (2003). [2-7] S. Masuda, K. Kitamura, Y. Okumura, S. Miyatake, H. Tabata, and T. Kawai, Journal of Applied Physics 93, 1624 (2003). [2-8] J. Nishii, F. M. Hossain, S. Takagi, T. Aita, K. Saikusa, Y. Ohmaki, I. Ohkubo, S. Kishimoto, A. Ohtomo, T. Fukumura, F. Matsukura, Y. Ohno, H. Koinuma, H. Ohno, and M. Kawasaki, Japanese Journal of Applied Physics 42, L347 (2003). [2-9] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004). [2-10] Y. Kwon, Y. Li, Y. W. Heo, M. Jones, P. H. Holloway, D. P. Norton, Z. V. Park, and S. Li, Applied Physics Letters 84, 2685 (2004). [2-11] Y. Taur and T. H. Ning, Fundamentals of Modern VLSI Devices (Cambridge University Press, Cambridge, 1998). [2-12] L. D. Yau, Solid-State Electronics 17, 1059 (1974). [2-13] Y. Taur, G. J. Hu, R. H. Dennard, L. M. Terman, C. Y Ting, and K. E. Petrillo, IEEE Transactions on Electron Devices ED-32, 203 (1985). [2-14] R. R. Troutman, IEEE Transactions on Electron Devices ED-26, 461 (1979). [2-15] S. Luan, and G. W. Neudeck, Journal of Applied Physics 72, 766 (1992). [3-1] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, Advanced Materials 17, 590 (2005). [3-2] H.-H. Hsieh, and C.-C. Wu, Applied Physics Letters 89, 041109 (2006). [3-3] R. E. Presley, D. Hong, H. Q. Chiang, C. M. Hung, R. L. Hoffman, and J. F. Wager, Solid-State Electronics 50, 500 (2006). [3-4] H. Hosono, M. Yasukawa, and H. Kawazoe, Journal of Non-Crystalline Solids 203, 334 (1996). [3-5] R. Martins, P. Barquinha, A. Pimentel, L. Pereira, and E. Fortunato, Physica Status Solidi (a) 202, R95 (2005). [3-6] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004). [3-7] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Japanese Journal of Applied Physics 45, 4303 (2006). [3-8] D. Hong, H. Q. Chiang, R. E. Presley, N. L. Dehuff, J. P. Bender, C. H. Park, J. F. Wager, and D. A. Keszler, Thin Solid Films 515, 2717 (2006). [3-9] B. Yaglioglu, H. Y. Yeom, R. Beresford, and D. C. Paine, Applied Physics Letters 89, 062103 (2006). [3-10] M. J. Vellekoop, C. C. G. Visser, P. M. Sarro, and A. Venema, Sensors and Actuators A21-A23, 1027 (1990). [3-11] T. Xu, G. Wu, G. Zhang, and Y. Hao, Sensors and Actuators A 104, 61 (2003). [3-12] V. Bhatt, P. Pal, and S. Chandra, Surface & Coatings Technology 198, 304 (2005). [3-13] J. Bailat, E. Vallat-Sauvain, A. Vallat, and A. Shah, Journal of Non-Crystalline Solids 338-340, 32 (2004). [3-14] K. S. Ahn, Y. C. Nah, and Y. E. Sung, Journal of Vacuum Science and Technology A 20, 1468 (2002). [3-15] V. Kapustianyk, B. Turko, A. Kostruba, Z. Sofiani, B. Derkowska, S. Dabos-Seignon, B. Barwinski, Yu. Eliyashevskyi, and B. Sahraoui, Optics Communications 269, 346 (2007). [3-16] T. Yamanaka, S. J. Fang, H. C. Lin, J. P. Snyder, and C. R. Helms, IEEE Electron Device Letters 17, 178 (1996). [3-17] S. E. Fritz, T. W. Kelley, and C. D. Frisbie, Journal of Physical Chemistry B 109, 10574 (2005). [4-1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004). [4-2] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, Advanced Materials 17, 590 (2005). [4-3] M. S. Grover, P. A. Hersh, H. Q. Chiang, E. S. Kettenring, J. F. Wager, and D. A. Keszler, Journal of Physics D-Applied Physics 40, 1335 (2007). [4-4] A. Suresh, P. Wellenius, A. Dhawan, and J. Muth, Applied Physics Letters 90, 123512 (2007). [4-5] H.-H. Hsieh, and C.-C. Wu, Applied Physics Letters 91, 013502 (2007). [4-6] H. Hosono, Journal of Non-Crystalline Solids 352, 851 (2006). [4-7] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Japanese Journal of Applied Physics 45, 4303 (2006). [4-8] R. Hayashi, M. Ofuji, N. Kaji, K. Takahashi, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Journal of the SID 15, 915 (2007). [4-9] H. S. Bae, J. H. Kim, and S. Im, Electrochemical and Solid-State Letters 7, G279 (2004). [4-10] K. Remashan, J. H. Jang, D. K. Hwang, and S. J. Park, Applied Physics Letters 91, 182101 (2007). [4-11] J. Jo, O. Seo, E. Jeong, H. Seo, B. Lee, and Y.-I. Choi, Japanese Journal of Applied Physics 46, 2493 (2007). [4-12] M.-S. Oh, D.-K. Hwang, J.-H. Lim, Y.-S. Choi, and S.-J. Park, Applied Physics Letters 91, 212102 (2007). [4-13] R. B. M. Cross, and M. M. De Souza, Applied Physics Letters 89, 263513 (2006). [4-14] P. Gorrn, P. Holzer, T. Riedl, W. Kowalsky, J. Wang, T. Weimann, P. Hinze, and S. Kipp, Applied Physics Letters 90, 063502 (2007). [4-15] G. N. Parsons, J. H. Souk, and J. Batey, Journal of Applied Physics 70, 1554 (1991). [4-16] C. R. Kagan, and P. Andry, Thin-Film Transistors (Marcel Dekker, New York, 2003). [4-17] Y.-L. Wang, F. Ren, W. Lim, D. P. Norton, S. J. Pearton, I. I. Kravchenko, and J. M. Zavada, Applied Physics Letters 90, 232103 (2007). [4-18] C.-H. Lee, D. Striakhilev, and A. Nathan, IEEE Transaction on Electron Devices 54, 45 (2007). [4-19] S. M. Jahinuzzaman, A. Sultana, K. Sakariya, P. Servati, and A. Nathan, Applied Physics Letters 87, 023502 (2005). [4-20] M. J. Powell, C. van Berkel, I. D. French, and D. H. Nicholls, Applied Physics Letters 51, 1242 (1987). [4-21] H.-H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, and C.-C. Wu, Applied Physics Letters (accepted). [5-1] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004). [5-2] E. Fortunato, P. Barquinha, A. Pimentel, A. Goncalves, A. Marques, L. Pereira, and R. Martins, Advanced Materials 17, 590 (2005). [5-3] D. Hong, H. Q. Chiang, R. E. Presley, N. L. Dehuff, J. P. Bender, C. H. Park, J. F. Wager, and D. A. Keszler, Thin Solid Films 515, 2717 (2006). [5-4] H. H. Hsieh, and C. C. Wu, Applied Physics Letters 89, 041109 (2006). [5-5] H.-H. Hsieh, and C.-C. Wu, Applied Physics Letters 91, 013502 (2007). [5-6] H.-N. Lee, J. Kyung, S. K. Kang, D. Y. Kim, M.-C. Sung, S.-J. Kim, C. N. Kim, H. G. Kim, and S.-t. Kim, SID ’07 Technical Digest, 1826 (2007). [5-7] M.-C. Sung, H.-N. Lee, C. N. Kim, S. K. Kang, D. Y. Kim, S.-J. Kim, S. K. Kim, S.-K. Kim, H.-G. Kim, and S.-t. Kim, IMID ’07 Technical Digest, 133 (2007). [5-8] I.-D. Kim, Y.W. Choi, and H. L. Tuller, Applied Physics Letters 87, 043509 (2005). [5-9] R. Hayashi, M. Ofuji, N. Kaji, K. Takahashi, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Journal of the SID 15, 915 (2007). [5-10] M. H. Lee, K.-Y. Ho, P.-C. Chen, C.-C. Cheng, S. T. Chang, M. Tang, M. H. Liao, and Y.-H. Yeh, IEEE IEDM 2006 Technical Digest, 299 (2006). [5-11] Y.-H. Yeh, C.-C. Cheng, K.-Y. Ho, P.-C. Chen, M. H. Lee, J.-J. Huang, H.-L. Tyan, C.-M. Leu, C.-S. Chang, K.-C. Lee, S.-Y. Fang, T.-H. Chen, and C.-Y. Pan, SID ’07 Technical Digest, 1677 (2007). [5-12] H.-H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, and C.-C. Wu, Applied Physics Letters (accepted). [5-13] R. E. Presley, D. Hong, H. Q. Chiang, C. M. Hung, R. L. Hoffman, and J. F. Wager, Solid-State Electronics 50, 500 (2006). [5-14] M. Ofuji, K. Abe, H. Shimizu, N. Kaji, R. Hayashi, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, IEEE Electron Device Letters 28, 273 (2007). [5-15] J. Sun, D. A. Mourey, D. Zhao, S. K. Park, S. F. Nelson, D. H. Levy, D. Freeman, P. Cowdery-Corvan, Lee. Tutt, and T. N. Jackson, IEEE IEDM 2007 Technical Digest, 579 (2007). [6-1] A. Nathan, A. Kumar, K. Sakariya, P. Servati, S Sambandan, and D. Striakhilev, IEEE Journal of Solid-State Circuits 39, 1477 (2004). [6-2] S. Y. Myong, and K. S. Lim, Applied Physics Letters 88, 243510 (2006). [6-3] S.-J. Lee, S.-G. Yoon, K.-J. Choi, S.-O. Ryu, S.-M. Yoon, N.-Y. Lee, and B.-G. Yu, Journal of Vacuum Science and Technology B 24, 2312 (2006). [6-4] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature 432, 488 (2004). [6-5] E. Fortunato, P. Barquinha, A. Pimentel, L. Pereira, G. Goncalves, and R. Martins, Physica Status Solidi Rapid Research Letters 1, R34 (2007). [6-6] H. Q. Chiang, J. F. Wager, R. L. Hoffman, J. Jeong, and D. A. Keszler, Applied Physics Letters 86, 013503 (2005). [6-7] H.-H. Hsieh, and C.-C. Wu, Applied Physics Letters 91, 013502 (2007). [6-8] Y.-L. Wang, F. Ren, W. Lim, D. P. Norton, S. J. Pearton, I. I. Kravchenko, and J. M. Zavada, Applied Physics Letters 90, 232103 (2007). [6-9] H. Hosono, Journal of Non-Crystalline Solids 352, 851 (2006). [6-10] A. Takagi, K. Nomura, H. Ohta, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, Thin Solid Films 486, 38 (2005). [6-11] K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, Physical Review B 75, 035212 (2007). [6-12] S. K. O'Leary, Journal of Materials Science: Materials in Electronics 15, 401 (2004). [6-13] M. L. Benkhedir, M. Brinza, and G. J. Adriaenssens, Journal of Physics: Condensed Matter 16, S5253 (2004). [6-14] O. Tal, Y. Rosenwaks, Y. Preezant, N. Tessler, C. K. Chan, and A. Kahn, Physical Review Letters 95, 256405 (2005). [6-15] ATLAS User’s Manual: Device Simulation Software (SILVACO International, Santa Clara, CA, 2007). [6-16] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, Japanese. Journal of Applied Physics 45, 4303 (2006). [6-17] R. Hayashi, M. Ofuji, N. Kaji, K. Takahashi, K. Abe, H. Yabuta, M. Sano, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano, and H. Hosono, Journal of the SID 15, 915 (2007). [6-18] C. R. Kagan, and P. Andry, Thin-Film Transistors (Marcel Dekker, New York, 2003), p. 87. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24766 | - |
dc.description.abstract | 透明氧化物半導體在近幾年相當受到注目且發展迅速,這些氧化物半導體因為含有具特殊電子結構(n-1)d10ns0 (n>=4)之重金屬陽離子,使得它們擁有許多優越且有趣的特性。它們的電子結構提供了良好的載子傳輸途徑,且不太會受原子排列狀況的影響,不論是結晶或非晶材料均可具備高載子傳輸率。它們可以在低溫或室溫環境下即成長出高品質薄膜,因而可適用在各式基板上。另外它們多是寬能隙材料,在可見光範圍是透明的,可用來提高平面顯示器的開口率與解析度,甚至可用以製作透明電子元件,以及許多新穎的應用。
本論文針對氧化物半導體,研究其在實際元件如薄膜電晶體上的可實用性,以單一氧化物材料如氧化鋅、混合氧化物材料如氧化鋅銦鎵,來製作各種微小化高品質的氧化物薄膜電晶體。由於單一氧化物材料容易結晶、產生晶界而劣化元件特性,因此本論文首先以熱退火方式使晶界融合,來製作多晶氧化鋅透明薄膜電晶體,並且研究其因尺度的縮放產生的效應。緊接著本論文研究薄膜厚度對於氧化鋅型態的影響,並進而以全蝕刻製程製作出非晶氧化鋅透明薄膜電晶體,證實其元件特性較多晶氧化鋅透明薄膜電晶體為佳。 而在混合氧化物材料氧化鋅銦鎵的部份,本論文搭配不同成長條件與絕緣層選擇,製作出高載子移動率與高穩定性之透明薄膜電晶體,並探討不同條件對元件特性的影響。進一步地,本論文將氧化鋅銦鎵薄膜電晶體製作在軟性塑膠基板上,並且同時製作一些小型積體電路如反相器與環形震盪器等,這些元件與電路在軟性基板上均仍可正常操作。另外,本論文亦提出以元件模擬軟體搭配適合的氧化物半導體模型,包含有能隙間能態密度分布模型與載子移動率模型等,準確地模擬出與實驗結果吻合的氧化物半導體薄膜電晶體元件特性,並針對其物理機制進行探討。 | zh_TW |
dc.description.abstract | Transparent oxide semiconductors composed of heavy metal cations with specific electronic configuration of (n-1)d10ns0 (n>=4) have gained widely attentions in recent years. The ns orbitals provide efficient transport path which is not sensitive to the film disorder. Thus, high mobility can be obtained in both crystalline and amorphous oxide semiconductors. Oxide semiconductors are also suitable to a large variety of substrates because they can be deposited at low temperature or even room temperature. In addition, they are usually wide-bandgap materials and thus are transparent in the visible range, which can benefit the resolution of displays by increasing the aperture ratio or be used for transparent electronics.
This dissertation investigates the application of oxide semiconductors for thin film transistors (TFTs). Various high performance TFTs based on oxide semiconductors with heavy metal cations, e.g. single-component oxide semiconductors such as zinc oxide (ZnO) and multi-component oxide semiconductors such as indium gallium zinc oxide (IGZO), were successfully fabricated. The miniaturized transparent thin-film transistors (TTFTs) having various channel widths and lengths are fabricated using polycrystalline ZnO, and their typical and scaling behaviors are studied. Generally single-component oxide semiconductors easily form polycrystalline phases, and their grain boundaries would deteriorate the device performances. Thus a post annealing is performed to re-fuse the grain boundaries. Furthermore, the thickness dependent morphologies of ZnO are also studied in this dissertation. By simply reducing the thickness of ZnO films, ZnO can be intentionally grown into the amorphous phase without grain boundaries. Both top-gate and bottom-gate amorphous ZnO TTFTs of micrometer scales are effectively implemented using fully lithographic and etching processes. As for the multi-component oxide semiconductors, a representative material system, amorphous indium gallium zinc oxide (a-IGZO), is studied in this dissertation. High mobility and high stability a-IGZO TTFTs are fabricated using different gate insulators and different deposition conditions for the channel. The influences of gate insulator and oxygen partial pressure on device performance and stability are investigated. A process for fine fabrication of a-IGZO TFTs and integrated circuits such as inverters and ring oscillators on flexible and transparent plastic substrates is also successfully developed in this dissertation. In addition to the experimental works, a model of the carrier transport and the subgap density of states in a-IGZO is reported for device simulation of a-IGZO TFTs operated in both the depletion mode and the enhancement mode. It is found that a simple model using a constant mobility and two-step subgap density of states reproduced well the characteristics of the a-IGZO TFTs. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:56:12Z (GMT). No. of bitstreams: 1 ntu-97-D92943024-1.pdf: 3900129 bytes, checksum: 934e8f133276af4727997ee34da037b4 (MD5) Previous issue date: 2008 | en |
dc.description.tableofcontents | Chapter 1 General Introduction 1
1.1 Background of Thin film Transistors 1 1.1.1 The History 1 1.1.2 The Structures and Operations 3 1.2 Materials Design Concepts of Oxide Semiconductors 6 1.2.1 The Specific Electronic Configurations 6 1.2.2 The Unique Carrier Transport Properties 7 1.3 Dissertation Organization 10 References 12 Chapter 2 Microfabrication of Polycrystalline ZnO Transparent Thin Film Transistors (TTFTs) and Their Scaling Behaviors 20 2.1 Introduction 20 2.2 Experiments 22 2.3 Results and Discussions 24 2.3.1 Miniaturized Polycrystalline ZnO TTFTs 24 2.3.2 Scaling Behaviors of Polycrystalline ZnO TTFTs 26 2.4 Summary 31 Reference 32 Chapter 3 Amorphous ZnO Transparent Thin Film Transistors Fabricated Using Fully Lithographic and Etching Processes 42 3.1 Introduction 42 3.2 Experiments 44 3.3 Results and Discussions 46 3.3.1 Thickness Dependent Morphologies of ZnO 46 3.3.2 Amorphous ZnO TTFTs 48 3.4 Summary 51 Reference 52 Chapter 4 High-Performance and High-Stability Amorphous Indium Gallium Zinc Oxide (a-IGZO) Transparent Thin Film Transistors 60 4.1 Introduction 60 4.2 Experiments 63 4.3 Results and Discussions 65 4.3.1 Influences of Gate Insulators and IGZO Growth Conditions on TTFTs Mobility 65 4.3.2 Influences of Gate Insulators and IGZO Growth Conditions on TTFTs Stability 67 4.4 Summary 71 Reference 72 Chapter 5 Flexible Amorphous Indium Gallium Zinc Oxide Thin Film Transistors and Integrated Circuits 82 5.1 Introduction 82 5.2 Experiments 84 5.3 Results and Discussions 86 5.3.1 Characteristics of Amorphous IGZO TFTs on Flexible Substrates 86 5.3.2 Characteristics of Amorphous IGZO TFT Integrated Circuits on Flexible Substrates 88 5.4 Summary 90 Reference 91 Chapter 6 Modeling of Amorphous Indium Gallium Zinc Oxide Thin Film Transistors 103 6.1 Introduction 103 6.2 Experiments 105 6.3 Methods and Models Used for Simulation 107 6.4 Results and Discussions 109 6.4.1 Effects of Different Models of Subgap Density of States 109 6.4.2 Influences of Subgap States on Amorphous IGZO TFT Characteristics 110 6.5 Summary 114 Reference 115 Chapter 7 Summary and Future Work 123 7.1 Dissertation Summary 123 7.2 Suggestions for Future Research 126 Reference 129 Acknowledgements 131 Publication List 133 | |
dc.language.iso | en | |
dc.title | 氧化物半導體薄膜電晶體之研究 | zh_TW |
dc.title | Studies of Oxide-Semiconductor-Based Thin Film Transistors | en |
dc.type | Thesis | |
dc.date.schoolyear | 96-1 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 林志隆(Chih-Lung Lin),郭宇軒(Yu-Hsuan Kuo),葉永輝(Yung-Hui Yeh),陳介偉(Chieh-Wei Chen) | |
dc.subject.keyword | 氧化鋅,氧化鋅銦鎵,透明,薄膜電晶體,氧化物半導體,非晶半導體,全微影術與蝕刻製程,軟性電子,TCAD模擬,能態密度, | zh_TW |
dc.subject.keyword | zinc oxide (ZnO),indium gallium zinc oxide (IGZO),transparent,thin film transistors (TFTs),oxide semiconductors,amorphous semiconductors,fully lithographic and etching processes,flexible electronics,TCAD modeling,density of states (DOS), | en |
dc.relation.page | 138 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2008-02-02 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
顯示於系所單位: | 電子工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-97-1.pdf 目前未授權公開取用 | 3.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。