Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24735Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李百祺 | |
| dc.contributor.author | Je-Yu Tsai | en |
| dc.contributor.author | 蔡哲宇 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:39:03Z | - |
| dc.date.copyright | 2011-08-04 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-25 | |
| dc.identifier.citation | [1] M. D. Zimmerman, N. Chaimanonart and D. J. Young, “In Vivo RF Powering for Advanced Biological Research,” IEEE Engineering in Medicine and Biology Society (EMBS), pp. 2506-2509, 2006.
[2] “Symptoms of Spinal Cord Disorders,” [Online]. Available: http://www.wrongdiagnosis.com/s/spinal_cord_disorders/symptoms.htm. [Accessed: Jun. 01, 2011]. [3] M. Rizzone , M. Lanotte , B. Bergamasco , A. Tavella , E. Torre , G. Faccani , A. Melcarne and L. Lopiano, “Deep Brain Stimulation of The Subthalamic Nucleus in Parkinson’s Disease: Effects of Variation in Stimulation Parameters,” Journal Neurol Neurosurg Psychiatry, Vol. 71, pp. 215–219, 2001. [4] “Paralyzed Man Can Move with Electrical Stimulator Implant,” [Online]. Available: http://www.theledger.com/article/20110520/NEWS/110529940. [Accessed: Jun. 01, 2011]. [5] “Spinal Cord Neurostimulators for Treatment of Back Pain,” [Online]. Available: http://hubpages.com/hub/Spinal-Cord-Simulators. [Accessed: Jun. 01, 2011]. [6] T. Cameron, G. E. Loeb, R. A. Peck, J. H. Schulman, P. Strojnik, P. R. Troyk, ”Micromodular Implants to Provide Electrical Stimulation of Paralyzed Muscles and Limbs,” IEEE Transactions on Biomedical Engineering, Vol. 44, pp.781–90, 1997. [7] R. L. Vereecken, J. Das and P. Grisar, “Electrical Sphincter Stimulation in The Treatment of Detrusor Hyperreflexia of Paraplegics,” Neurourol Urodyn, Vol. 3, pp. 145–154, 1984. [8] J. D. Weiland, W. Liu and M. S. Humayun, “Retinal Prosthesis,” Annual Review of Biomedical Engineering, Vol. 7, pp. 361–401, 2005. [9] T. J. Foutz and C. C. McIntyre, “Evaluation of Novel Stimulus Waveforms for Deep Brain Stimulation,” Journal of Neural Engineering, Vol. 7, pp. 1-10, 2010. [10] C. R. Butson and C. C. McIntyre, “Differences Among Implanted Pulse Generator Waveforms Cause Variations in The Neural Response to Deep Brain Stimulation,” Clinical Neurophysiology, Vol. 118, pp. 1889–1894, 2007. [11] J. F. Rizzo, J. Wyatt, J. Loewenstein, S. Kelly, and D. Shire, “Methods and Perceptual Thresholds for Short-Term Electrical Stimulation of Human Retina with Microelectrode Arrays,” Investigative Ophthalmology and Visual Science, Vol. 44, pp.5355–5361, 2003. [12] “Deep Brain Stimulation Surgery Treatment for Parkinson’s Disease,” [Online]. Available: http://www.medicinenet.com/deep_brain_stimulation/article.htm. [Accessed: Jun. 02, 2011]. [13] “Bionic Humans: Top 10 Technologies,” [Online]. Available: http://www.technewsdaily.com/bionic-humans-top-10-technologies-0352/1. [Accessed: Jun. 02, 2011]. [14] “Spinal Cord Stimulation,” [Online]. Available: http://www.mayfieldclinic.com/PE-STIM.htm. [Accessed: Jun. 02, 2011]. [15] D. J. Young, P. Cong; M. A. Suster, N. Chimanonart, W. H. Ko, “Wireless Power Recharging for Implantable Bladder Pressure Chronic Monitoring,” IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), pp.604-607, 2010. [16] K. Hachisuka, A. Nakata, T. Takeda, Y. Terauchi, K. Shiba, K. Sasaki, H. Hosaka and K. Itao, “Development and Performance Analysis of An Intra-Body Communication Device,” International Conference of Solid-State Sensors, Vol. 2, pp. 1722–1725, 2003. [17] M. Mark, T. Bjorninen, Y. D. Chen, S. Venkatraman, L. Ukkonen, L. Sydänheimo, J. M. Carmena and J. M. Rabaey, “Wireless Channel Characterization for Mm-Size Neural Implants,” IEEE Engineering in Medicine and Biology Society (EMBS), pp. 1565 – 1568, 2010. [18] C. T. Charles, “Wireless Data Links for Biomedical Implants: Current Research and Future Directions,” IEEE Biomedical Circuits and Systems (BioCAS), pp. 13-16, 2007. [19] D. C. Ng, S. Bai, G. Felic and E. Skafidas, “Closed-Loop Inductive Link for Wireless Powering of A High Density Electrode Array Retinal Prosthesis,” IEEE Electromagnetic Compatibility Symposium Adelaide (EMCSA), pp. 92-97, 2009. [20] P. C. Li, “Principles of Medical Ultrasound”. [21] “Nanomedicine, Vol. 1: Basic Capabilities,” [Online]. Available: http://www.nanomedicine.com/index.htm. [Accessed: Jun. 22, 2011]. [22] A. Ahlbom, U. Bergqvist, J. H. Bernhardt et al., “Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic, and Electromagnetic Fields (up to 300 GHz),” Health Physics, Vol. 74, pp. 494-522, 1998. [23] E. Hecht, “The Permittivity (ε) and Relative Permittivity (ε/εo) of Some Common Substances, Physics Calculus,” Brooks/Cole Publishing Company, Vol. 2, Table 17.3, pp. 664, 1996. [24] R. T. Hitchcock and R. Patterson, “Radio-Frequency and ELF Electromagnetic Energies, A Handbook for Professionals,” Van Nostrand Reinhold, pp. 27, 1995. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24735 | - |
| dc.description.abstract | 本研究的目的在於利用超音波來代替傳統射頻電磁波(radio frequency electromagnetic wave),在人體內進行訊號傳輸的探討和測量。由於超音波相對射頻電磁波而言,超音波本身能夠輕易的進行聚焦設計,而聚焦點設計的用意,在於人體傳輸的路徑上並不會因為能量過大而使得溫度上升,導致人體組織的損壞破損,更重要的是,超音波傳導的方式為機械波,因此不會有射頻電磁波輻射汙染的疑慮,適合進行人體內的訊號傳輸。
由於目前利用射頻電磁波做為進行人體能量傳輸的電刺激器,效率還是依舊太低[1],針對此缺點,本論文中,我們提出一個超音波無線電刺激器的實驗架構,以解決人體中的電刺激器能量不足的問題,目前在人體安全規範下,6(mm)感測器在能量接收最大可達15.91(mW)。而另一方面我們可以藉由超音波訊號負載資料訊號,來控制人體中的電刺激器能夠依照指示來工作,利用目前所設計的編碼,藉由電腦模擬測試獲得資料錯誤率在10-6以下,我們可以證明利用超音波來傳送資料是可行的。針對超音波在人體組織的傳遞上,在能量傳輸方面,我們設計的超音波感測器必須與後端電路的電阻抗做匹配,才可達到能量傳輸效率的最佳化。而在整體能量傳輸的過程中,我們分別進行每一層級的電路架構做能量損耗的測試,藉由這些測試,我們可以針對每一層級的能量損耗情形做適當的改進與改善。 本研究在資料編碼中,我們針對超音波的特性分別提出了Amplitude Shift Keying with Carrier (ASK-Carrier)和Frequency Shift Keying with Pulse Width Modulation (FSK-PWM)及傳統PSK (Phase shift keying)的編碼方式來進行資料傳輸,並且我們設計了實驗架構來模擬比較這三者的資料傳輸的錯誤率,以提供未來超音波在編碼設計上的依據。 | zh_TW |
| dc.description.abstract | This study investigates the communication in vivo, which aims to use the ultrasound instead of the RF-EM wave (radio-frequency electromagnetic wave). As opposed to RF-EM wave, the ultrasound is easier on focus design than RF-EM, the focus design can prevent the damage of tissue on transmission path when concentrates the energy on the object, and the most important thing is that the ultrasound is a mechanical wave, there will be no electromagnetic radiation contamination, which would be more suitable than RF-EM on the communication in vivo. In response to the inefficiency of RF-EM electrical-stimulator on the communication in vivo [1], we proposes a structure of wireless ultrasonic electrical-stimulator to solve the lack of energy with implanted electrical-stimulator; under the safety regulations in the human body, the 6mm sensor can receive at most 15.91 mW. On the other hand, we can load the instructions on the ultrasound signal to control implanted electrical-stimulator, in our designed coding, the BER (bit error rate) of the data transmission is below 10-6 with the computer simulation, and we can demonstrate that the communication in vivo by using ultrasound is feasible. On power transmission, in order to achieve the optimal energy transfer efficiency, our ultrasonic sensor design must match the electrical impedance of stimulator circuit. And in process of overall energy transmission, we measure each level of the stimulator circuit structure of energy consumption, and then we can make an appropriate improvement to increase the efficiency on energy transfer by these tests. In this study, we design and measure the bit error rate of Amplitude Shift Keying with Carrier (ASK-Carrier) and Frequency Shift Keying with Pulse Width Modulation (FSK-PWM), and we also measure the BER of traditional coding: PSK (Phase shift keying), by comparing these coding, we could provide the basis on coding design in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:39:03Z (GMT). No. of bitstreams: 1 ntu-100-R98945010-1.pdf: 10379786 bytes, checksum: 4057bc4a1d707209fbabcc83dd2ee814 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii Contents v List of Tables viii LIST OF FIGURES ix Chpater 1 緒論 1 1.1 神經疾病 1 I. 腦神經疾病 1 II. 脊髓神經疾病 1 1.2 神經電刺激器 1 I. 神經治療目前趨勢 1 II. 神經電刺激工作模式 2 1.3 有線和無線神經電刺激器的差異 3 I. 有線神經電刺激器 3 II. 射頻電磁波無線神經電刺激器 4 A. 電刺激應用種類 4 B. 無線電刺激器通訊模式 6 1.4 超音波與射頻電磁波在人體中的比較 7 Chpater 2 微型超音波感測器 15 2.1 壓電材料原理 15 III. 壓電轉換 15 IV. 頻率 15 V. 匹配層 16 2.2 微型感測器製作 17 I. 材料選擇 17 II. 切割壓電材料 17 III. 研磨壓電材料 17 IV. 電極層 18 V. 匹配層 18 VI. 背後層 18 VII. 封裝 19 VIII. 防水層 19 2.3 結果量測 20 I. 中心頻率 20 II. 電阻抗 21 III. 測量回波訊號頻率響應 24 Chpater 3 超音波無線訊號傳輸 26 3.1 研究目的 26 3.2 無線能量傳輸 27 I. 實驗架構 27 II. 實驗結果 28 3.3 電路各層級能量傳輸效率 29 I. 超音波發射探頭損耗 30 II. 生物仿體能量衰減 32 III. 微型超音波感測器損耗 33 C. 雙向介入損耗 33 D. 發射能量轉換損耗 35 E. 接收能量轉換損耗 36 IV. 後端整流電路之能量損耗 36 V. 結論 37 VI. 附加結果與討論 37 3.4 能量傳輸對人體影響 40 Chpater 4 無線資料傳輸 42 4.1 研究目的 42 4.2 資料傳輸錯誤率測量架構 43 I. Amplitude Shift Keying with Carrier (ASK-Carrier) 44 II. Frequency Shift Keying with Pulse Width Modulation (FSK-PWM) 47 III. Phase shift keying (PSK) 49 Chpater 5 超音波無線神經電刺激器 53 5.1 電刺激器電路整合 53 5.2 資料校驗波形設計 54 5.3 電刺激器工作內容 55 5.4 電刺激器實體架構 58 Chpater 6 結果與討論 61 Chpater 7 未來工作 63 參考文獻 66 | |
| dc.language.iso | zh-TW | |
| dc.subject | 無線能量傳輸 | zh_TW |
| dc.subject | 射頻電磁波 | zh_TW |
| dc.subject | 超音波 | zh_TW |
| dc.subject | 電刺激器 | zh_TW |
| dc.subject | 資料傳輸錯誤率 | zh_TW |
| dc.subject | ultrasound | en |
| dc.subject | wireless power transfer | en |
| dc.subject | bit error rate | en |
| dc.subject | stimulator | en |
| dc.subject | radio-frequency electromagnetic wave | en |
| dc.title | 超音波無線神經電刺激器 | zh_TW |
| dc.title | Ultrasonic wireless neural stimulator | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 郭柏齡,劉深淵,田維誠 | |
| dc.subject.keyword | 射頻電磁波,超音波,電刺激器,資料傳輸錯誤率,無線能量傳輸, | zh_TW |
| dc.subject.keyword | radio-frequency electromagnetic wave,ultrasound,stimulator,bit error rate,wireless power transfer, | en |
| dc.relation.page | 69 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 生醫電子與資訊學研究所 | zh_TW |
| Appears in Collections: | 生醫電子與資訊學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-100-1.pdf Restricted Access | 10.14 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
