Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24678
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬
dc.contributor.authorChih-Wei Wangen
dc.contributor.author王誌偉zh_TW
dc.date.accessioned2021-06-08T05:36:18Z-
dc.date.copyright2005-01-31
dc.date.issued2005
dc.date.submitted2005-01-25
dc.identifier.citation許宗銘。2000。靈芝菌(Ganoderma lucidum)轉形系統之研究。國立中興大學植物學系碩士論文。
Adams, D. J. 2004. Fungal cell wall chitinases and glucanases. Microbiology 150: 2029-2035.
Adaskaveg, J. E., Blanchette, R. A., and Gilbertson, R. L. 1991. Decay of date palm wood by white-rot and brown-rot fungi. Canadian Journal of Botany 69: 615-629.
Adaskaveg, J. E., and Gilbertson, R. L. 1988. Basidiospores, pilocystidia, and other basidiocarp characters in several species of the Ganoderma lucidum complex. Mycologia 80: 493-507.
Adaskaveg, J. E., Miller, R. W., and Gilbertson, R. L. 1993. Wood decay, lignicolous fungi, and decline of peach trees in South Carolina. Plant Disease 77: 707-711.
Ainsworth, G. C. 1962. Longevity of Schizophyllum commune. II. Nature 195: 1120-1121.
Ausubel, F. M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl K. 1999. Preparation and analysis of RNA: primer extension, p4-19~4-21. In Short protocols in molecular biology. John Wiley&Sons, Inc. Canada.
Braaksma, A., van Doorn, A. A., Kieft, H., and Aelst, A. C. 1998. Morphometric analysis of ageing mushrooms (Agaricus bisporus) during postharvest development. Postharvest Biology and Technology 13: 71-79.
Broda, P., Sims, P. F. G., and Mason, J. C. 1989. Easys in Biochemistry 24: 411
Brown, G. D., and Gordon, S. 2001. Immune recognition. A new receptor for beta-glucans. Nature 413: 36-37.
Burgess, T., Laurent, P., Dell, B., Malajczuk, N., and Martin, F. 1995. Effect of fungal-isolate aggressivity on the biosynthesis of symbiosis-related polypeptides in differentiating eucalypt ectomycorrhizas. Planta 195: 408-417.
Burnett, J. H. 1975. Mycogenetics. London: Wiley.
Campbell, J. A., Davies, G. J., Bulone, V. V., and Henrissat, B. 1998. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. The Biochemical Journal 329: 719.
Cappellaro, C., Mrsa, V., and Tanner, W. 1998. New potential cell wall glucanases of Saccharomyces cerevisiae and their involvement in mating. Journal of Bacteriology 180: 5030-5037.
Chanter, D. O., and Thornley, J. H. M. 1978. Mycelial growth and the initiation and growth of sporophores in the mushroom crop: a Mathematical Model. Journal of General Microbiology 106: 55-65.
Chen, S., Ge, W., and Buswell, J. A. 2004. Molecular cloning of a new laccase from the edible straw mushroom Volvariella volvacea: possible involvement in fruit body development. FEMS Microbiology Letters 230: 171-176.
Cid, V.J., Duran, A., del Rey, F., Snyder, M.P., Nombela, C., and Sanchez, M. 1995. Molecular basis of cell integrity and morphogenesis in Saccharomyces cerevisiae. Microbiological Reviews 59: 345-386.
Colman-Lerner, A., Chin, T. E., and Brent, R. 2001. Yeast Cbk1 and Mob2 activate daughter-specific genetic programs to induce asymmetric cell fates. Cell 107: 739-750.
Coutinho, P. M., and Henrissat, B. 1999. Carbohydrate-Active Enzymes server at URL: http://afmb.cnrs-mrs.fr/CAZY/
Craig, G. D., Newsam, R. J., Gull, K., and Wood, D. A. 1979. An ultrastructural and autoradiographic study of stipe elongation in Agaricus bisporus. Protoplasma 98: 15-29.
de Groot, P. W., Roeven, R. T., Van Griensven, L. J., Visser, J., and Schaap, P. J. 1999. Different temporal and spatial expression of two hydrophobin-encoding genes of the edible mushroom Agaricus bisporus. Microbiology 145: 1105-1113.
de Nobel, H., Ruiz, C., Martin, H., Morris, W., Brul, S., Molina, M., and Klis, F. M. 2000. Cell wall perturbation in yeast results in dual phosphorylation of the Slt2/Mpk1 MAP kinase and in an Slt2-mediated increase in FKS2-lacZ expression, glucanase resistance and thermotolerance. Microbiology 146: 2121-2132.
Eastwood, D. C., Kingsnorth, C. S., Jones, H. E., and Burton, K. S. 2001. Genes with increased transcript levels following harvest of the sporophore of Agaricus bisporus have multiple physiological roles. Mycological Research 105: 1223-1230.
Edelstein, L. 1982. Journal of Theoretical Biology 98: 679.
Endo, H., Kajiwara, S., Tsunoka, O., and Shishido, K. 1994. A novel cDNA, priBc, encoding a protein with a Zn(II)2Cys6 zinc cluster DNA-binding motif, derived from the basidiomycete Lentinus edodes. Gene 139: 117-121.
Fincham, J. R. S., Day, P. R., and Radford, A. 1979. Fungal Genetics. Blackwell Oxford.
Force, A., Lynch, M., Pickett, F. B., Amores, A., Yan, Y. L., and Postlethwait, J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151: 1531-1545.
Galun, E. 1972. Morphogenesis of Trichoderma: autoradiography of intact colonies labeled by (3H) N-acetylglucosamine as a marker for new cell wall biogenesis. Archiv fur Mikrobiologie 86: 305-314.
Garcia Mendoza, C., Avellan, M. A., Sanchez, E., Novaes-Ledieu, M. 1987. Differentiation and wall chemistry of Agaricus bisporus vegetative and aggregated mycelia. Archiv fur Mikrobiologie 148: 68-71.
Garcia, R., Bermejo, C., Grau, C., Perez, R., Rodriguez-Pena, J. M., Francois, J., Nombela, C., and Arroyo, J. 2004. The global transcriptional response to transient cell wall damage in Saccharomyces cerevisiae and its regulation by the cell integrity signaling pathway. The Journal of Biological Chemistry 279: 15183-15195.
Gold, M. H., Wariishi, H., and Valli, K. 1989. Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. American Chemical Society Symposium 121: 37.
Goldman, R. C., Sullivan, P. A., Zakula, D., and Capobianco, J. O. 1995. Kinetics of beta-1,3 glucan interaction at the donor and acceptor sites of the fungal glucosyltransferase encoded by the BGL2 gene. European journal of Biochemistry 227: 372-378.
Gooday, G. W. 1971. An autoradiographic study of hyphal growth of some fungi. The Journal of General Microbiology 67: 125-133.
Gooday, G. W. 1975. The control of differentiation in fruit bodies of Coprinus cinereus. Rep. Tottori. Mycol. Inst. (Japan) 12: 151-160.
Gooday, G. W. 1979. Chitin synthesis and differentiation in Coprinus cinereus. In: Burnett JH, Trinci APJ (eds) Fungal walls and hyphal growth. Cambridge University Press, Cambridge, pp.203-223.
Gooday, G. W. 1982. Metabolic control of fruit body morphogenesis in Coprinus cinereus. In: Wells K, Wells EK(eds) Basidium and basidiocarp: evolution, cytology, function, and development. Springer, Berlin Heidelberg New York, pp.157-173.
Hagen, I., Ecker, M., Lagorce, A., Francois, J. M., Sestak, S., Rachel, R., Grossmann, G., Hauser, N. C., Hoheisel, J. D., Tanner, W., and Strahl, S. 2004. Sed1p and Srl1p are required to compensate for cell wall instability in Saccharomyces cerevisiae mutants defective in multiple GPI-anchored mannoproteins. Molecular Microbiology 52: 1413-1425.
Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. The Biochemical Journal 280: 309-316.
Henrissat, B., and Bairoch, A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. The Biochemical Journal 293: 781-788.
Henrissat, B., and Bairoch, A. 1996. Updating the sequence-based classification of glycosyl hydrolases. The Biochemical Journal 316: 695-696.
Henrissat, B., and Davies, G. 1997. Structural and sequence-based classification of glycoside hydrolases. Current Opinion in Structural Biology 7: 637-644.
Hoge, J. H. C., Springer, L., and Wesseles, J. G. H. 1982. Changes in complex RNA during fruit-body initiation in the fungus Schizophyllum commune. Experimental Mycology 6: 233-243.
Igual, J. C., Johnson, A. L., and Johnston, L. H. 1996. Coordinated regulation of gene expression by the cell cycle transcription factor Swi4 and the protein kinase C MAP kinase pathway for yeast cell integrity. The EMBO Journal 15: 5001-5013.
Jacob, C., Courbot, M., Brun, A., Steinman, H. M., Jacquot, J. P., Botton, B., and Chalot, M. 2001. Molecular cloning, characterization and regulation by cadmium of a superoxide dismutase from the ectomycorrhizal fungus Paxillus involutus. European Journal of Biochemistry 268: 3223-3232.
Jennings, D. H. 1984. In The Ecology and Physiology of the Fungal Mycelium, D. H. J. a. A. D. M. Rayner, ed (Cambridge: Cambridge University Press), pp. 143-164.
Jung, U. S., and Levin, D. E. 1999. Genome-wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway. Molecular Microbiology 34: 1049-1057.
Kajiwara, S., Yamaoka, K., Hori, K., Miyazawa, H., Saito, T., Kanno, T., and Shishido, K. 1992. Isolation and sequence of a developmentally regulated putative novel gene, priA, from the basidiomycete Lentinus edodes. Gene 114: 173-178.
Kamada, T. 1994. Stipe Elongation in Fruit Bodies. In The Mycota, J. G. H. Wessels, and Meinhardt, F., ed (Springer-Verlag: Berlin/Heidelberg), pp. 367-379.
Kamada, T., Fugii, T., Takemaru, T. 1980. Stipe elongation during basidiocarp maturation in Coprinus macrorhizus: changes in activity of cell wall lytic enzymes. Trans Mycol. Soc. Jpn. 21: 359-367.
Kamada, T., Fujii, T., Nakagawa, T., and Takemaru, T. 1985. Changes in (1-3)-β-glucanase activities during stipe elongation in Coprinus cinereus. Curr. Microbial. 12: 257-260.
Kamada, T., Hamada, Y., Takemaru, T. 1982. Autolysis in vitro of the stipe cell wall in Coprinus macrorhizus. The Journal of General Microbiology 128: 1041-1046.
Kamada, T., Miyazaki, S. and Takemaru, T. 1976. Quantitative changes of DNA, RNA and protein during basidiocarp maturation in Coprinus macrorhizus. Trans Mycol. Soc. Jpn. 17: 451-460.
Kamada, T., and Takemaru, T. 1977a. Stipe elongation during basidiocarp maturation in Coprinus macrorhizus: mechanical properties of stipe cell wall. Plant and Cell Physiology 18: 831-840.
Kamada, T., and Takemaru, T. 1977b. Stipe elongation during basidiocarp maturation in Coprinus macrorhizus: changes in polysaccharide composition of stipe cell wall during elongation. Plant and Cell Physiology 18: 1291-1300.
Kamada, T., and Takemaru, T. 1983. Modification of cell-wall polysaccharides during stipe elongation in the basidiomycete Coprinus cinereus. The Journal of General Microbiology 129: 703-709.
Klis, F. M., Mol, P., Hellingwerf, K., and Brul, S. 2002. Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiology reviews 26: 239-256.
Koltin, Y., Wesseles, J. G. H. and van der Valk, P. 1973. Archiv fur Mikrobiologie 91: 179
Kollar, R., Reinhold, B. B., Petrakova, E., Yeh, H. J., Ashwell, G., Drgonova, J., Kapteyn, J. C., Klis, F. M., and Cabib, E. 1997. Architecture of the yeast cell wall. Beta(1-->6)-glucan interconnects mannoprotein, beta(1-->)3-glucan, and chitin. The Journal of Biological Chemistry 272: 17762-17775.
Kondoh, O., and Shishido, K. 1995. Characterization of the promoter region of a cell-adhesion protein gene derived from the basidiomycete Lentinus edodes. FEMS Microbiology Letters 130: 189-192.
Kues, ursula. 2000. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiology and Molecular Biology Reviews 64: 316-353.
Lagorce, A., Hauser, N. C., Labourdette, D., Rodriguez, C., Martin-Yken, H., Arroyo, J., Hoheisel, J. D., and Francois, J. 2003. Genome-wide analysis of the response to cell wall mutations in the yeast Saccharomyces cerevisiae. The Journal of Biological Chemistry 278: 20345-20357.
La Valle, R., Sandini, S., Gomez, M. J., Mondello, F., Romagnoli, G., Nisini, R., and Cassone, A. 2000. Generation of a recombinant 65-kilodalton mannoprotein, a major antigen target of cell-mediated immune response to Candida albicans. Infection and Immunity 68: 6777-6784.
Laine, R. A. 1994. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology 4: 759-767.
Laurent, P., Voiblet, C., Tagu, D., de Carvalho, D., Nehls, U., De Bellis, R., Balestrini, R., Bauw, G., Bonfante, P., and Martin, F. 1999. A novel class of ectomycorrhiza-regulated cell wall polpeptides in Pisolithus tinctorius. Molecular Plant-Microbe Interactions 12: 862-871.
Lee, S. H., Kim, B. G., Kim, K. J., Lee, J. S., Yun, D. W., Hahn, J. H., Kim, G. H., Lee, K. H., Suh, D. S., Kwon, S. T., Lee, C. S., and Yoo, Y. B. 2002. Comparative analysis of sequences expressed during the liquid-cultured mycelia and fruit body stages of Pleurotus ostreatus. Fungal Genetics and Biology 35: 115-134.
Lu, B.C. 1982. In Basidium and Basidiocarp, K. Wells, and Wells, E. K., ed (New York: Springer-Verlag), pp. 93-112.
Lugones, L. G., Bosscher, J. S., Scholtmeyer, K., de Vries, O. M., and Wessels, J. G. 1996. An abundant hydrophobin (ABH1) forms hydrophobic rodlet layers in Agaricus bisporus fruiting bodies. Microbiology 142: 1321-1329.
Lugones, L. G., Scholtmeijer, K., Klootwijk, R., and Wessels, J. G. 1999a. Introns are necessary for mRNA accumulation in Schizophyllum commune. Molecular Microbiology 32: 681-689.
Lugones, L. G., Woesten, H. A. B., Birkenkamp, K. U., Sjollema, K. A., Zagers, J., and Wessels, J. G. H. 1999b. Hydrophobins line air channels in fruiting bodies of Schizoplyllum commune and Agaricus bisporus. Mycological research 103: 635-640.
Lugones, L. G., Wosten, H. A., and Wessels, J. G. 1998. A hydrophobin (ABH3) specifically secreted by vegetatively growing hyphae of Agaricus bisporus (common white button mushroom). Microbiology 144: 2345-2353.
Marchant, R. 1978. Wall composition of monokaryons and dikaryons of Coprinus cinereus. The Journal of General Microbiology 106: 195-199.
Marchler-Bauer, A., Anderson, J. B., DeWeese-Scott, C., Fedorova, N. D., Geer, L. Y., He, S., Hurwitz, D. I., Jackson, J. D., Jacobs, A. R., Lanczycki, C. J., Liebert, C. A., Liu, C., Madej, T., Marchler, G. H., Mazumder, R., Nikolskaya, A. N., Panchenko, A. R., Rao, B. S., Shoemaker, B. A., Simonyan, V., Song, J. S., Thiessen, P. A., Vasudevan, S., Wang, Y., Yamashita, R. A., Yin, J. J., and Bryant, S. H. 2003. CDD: a curated Entrez database of conserved domain alignments. Nucleic acids research 31: 383-387.
Mol, P. C., and Wessels, J. G. H. 1990. Differences in wall structure between substrate hyphae and hyphae of fruit-body stipes in Agaricus bisporus. Mycological Research 94: 472-479.
Moore, D., Elhiti, M. M. Y., and Butler, R. D. 1979. Morphogenesis of the carpophore of coprinus cinereus. New Phytologist 83: 695.
Mrsa, V., Klebl, F., and Tanner, W. 1993. Purification and characterization of the Saccharomyces cerevisiae BGL2 gene product, a cell wall endo-beta-1,3-glucanase. Journal of Bacteriology 175: 2102-2106.
Mulder, G. H., and Wessels, J. G. H. 1986. Molecular cloning of RNAs differentially expressed in monokaryons and dikaryons of Schizophyllum commune in relation to fruiting. Experimental Mycology 10: 214-227.
Ning, J., Zhang, W., Yi, Y., Yang, G., Wu, Z., Yi, J., and Kong, F. 2003. Synthesis of beta-(1-->6)-branched beta-(1-->3) glucohexaose and its analogues containing an alpha-(1-->3) linked bond with antitumor activity. Bioorganic and Medicinal Chemistry 11: 2193-2203.
Odier, E. 1987. “Lignin Enzymic and Microbial Degradation”. INRA, Paris
Ospina-Giraldo, M. D., Collopy, P. D., Romaine, C. P., and Royse, D. J. 2000. Classification of sequences expressed during the primordial and basidiome stages of the cultivated mushroom Agaricus bisporus. Fungal Genetics and Biology 29: 81-94.
Polidori, E., Saltarelli, R., Ceccaroli, P., Buffalini, M., Pierleoni, R., Palma, F., Bonfante, P., and Stocchi, V. 2004. Enolase from the ectomycorrhizal fungus Tuber borchii Vittad.: biochemical characterization, molecular cloning, and localization. Fungal Genetics and Biology 41: 157-167.
Popolo, L., Gualtieri, T., and Ragni, E. 2001. The yeast cell-wall salvage pathway. Med. Mycol. 39 Suppl 1: 111-121.
Raper, C. A. 1988. In Genetics of Plant Pathogenic Fungi, G. S. Sidhu, ed (London: Academic Press), pp. 511-522.
Raudaskoski, M., and Salonen, M. 1982. Scanning Electron Microscope Study of Fruit Body Differentiation in Schizophyllum commune. Transactions of the British Mycological Society 78: 475.
Reinhardt, M. O. 1892. Das Wachsthum der Pilzyphen. Jahrb. Wiss. Bot. 23: 479-566.
Rodriguez-Pena, J. M., Cid, V. J., Arroyo, J., and Nombela, C. 2000. A novel family of cell wall-related proteins regulated differently during the yeast life cycle. Molecular and Cellular Biology 20: 3245-3255.
Ryvarden, L. 1994. Can we trust morphology in Ganoderma? In: Buchanan, P. K., Hseu, R. S. and Moncalvo, J. M. (eds) Ganoderma-Systematics, Phytopathology and Phamacology. Proceedings of contributed symposia 59A, B, Fith International Mycological Congress. Vancouver, Auguest 14-21, 1994, pp. 19-24.
Seo, G. S., and Kirk, P. M. 2000. Ganodermataceae:Nomenclature and Classification, p.3-22. In Ganoderma Disease of Perennial Crops. CABI Publishing, New York,USA.
Sestak, S., Hagen, I., Tanner, W., and Strahl, S. 2004. Scw10p, a cell-wall glucanase/transglucosidase important for cell-wall stability in Saccharomyces cerevisiae. Microbiology 150: 3197-3208.
Shiao, M. S. 2003. Natural products of the medicinal fungus Ganoderma lucidum: occurrence, biological activities, and pharmacological functions. Chemical Record 3: 172-180.
Shiao, M. S., Lee, K. R., Lin, L. J. and Wang, C. T. 1994. Natural products and biological activities of the Chinese medical fungus, Ganoderma lucidum. In food Phytochemicals for Cancer Prevention. Ⅱ: Teas, Species, and Herbs (C. T. Ho, T. Osawa, M. T. Huang, R. T. Rosen, eds.), Washington, DC, American Chemical Society, 342-354.
Shiao, M. S. and Lin, L. J. 1987. Two new triterpenes of the fungus Ganoderma lucidum. Journal of Natural Products 50: 886-890.
Shin, G. C. and Seo, G. S. 1988. Classification of strains of Ganoderma lucidum. Korean Journal of Mycology 16: 235-241.
Smits, G. J., van den Ende, H., and Klis, F. M. 2001. Differential regulation of cell wall biogenesis during growth and development in yeast. Microbiology 147: 781-794.
Sone, Y., Okuda, R., and Wada, N. 1985. Structures and antitumor activities of the polysaccharides isolated from fruiting body and the growing culture of mycelium of Ganoderma lucidum. Agricultural and Biological Chemistry 49: 2641-2653.
Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K., Eisen, M. B., Brown, P. O., Botstein, D., and Futcher, B. 1998. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9: 3273-3297.
Stamets, P. 1993. Evaluating a mushroom strain:Photosensitivity. In Growing Gourmet and Medical Mushrooms. (Berkely, California.: Ten Speed Press.), pp. 117-126.
Stephenson, N. A., Gooday, G. W. 1984. Nuclear numbers in the stipe cells of Coprinus cinereus. Transactions of the British Mycological Society 82: 531-534
Taylor, G. 1996. Sialidases: structures, biological significance and therapeutic potential. Current Opinion in Structural Biology 6: 830-837.
Trinci, A. P. J. 1974. A study of the kinetics of hyphal extension and branch initiation of fungal mycelia. Jornal of General Microbiology 81: 225-236.
Valk, P van der, and Marchant, R. 1978. Hyphal ultrastructure in fruit-body primordial of the basidio mycetes Schizophyllum commune and Coprinus cinereus. Protoplasma 95: 57-72.
Varghese, J. N., Garrett, T. P., Colman, P. M., Chen, L., Hoj, P. B., and Fincher, G. B. 1994. Three-dimensional structures of two plant beta-glucan endohydrolases with distinct substrate specificities. Proceedings of the National Academy of Sciences of the United States of America 91: 2785-2789.
Vetvicka, V., Thornton, B. P., and Ross, G. D. 1996. Soluble beta-glucan polysaccharide binding to the lectin site of neutrophil or natural killer cell complement receptor type 3 (CD11b/CD18) generates a primed state of the receptor capable of mediating cytotoxicity of iC3b-opsonized target cells. The Journal of clinical investigation 98: 50-61.
von Itzstein, M., and Colman, P. 1996. Design and synthesis of carbohydrate-based inhibitors of protein-carbohydrate interactions. Current Opinion in Structural Biology 6: 703-709.
Wang, Y. Y., Khoo, K. H., Chen, S. T., Lin, C. C., Wong, C. H., and Lin, C. H. 2002. Studies on the immuno-modulating and antitumor activities of Ganoderma lucidum (Reishi) polysaccharides: functional and proteomic analyses of a fucose-containing glycoprotein fraction responsible for the activities. Bioorganic and Medicinal Chemistry 10: 1057-1062.
Webster, J. 1980. Introduction to Fungi. (Cambridge: Cambridge University Press.
Wesseles, J. G. H. 1965. Wentia 13: 1.
Wesseles, J. G. H. 1986. Cell wall synthesis in apical hyphal growth. International Review of Cytology 104: 37.
Wesseles, J. G. H. 1990. In Tip Growth in Plant and Fungal Cells, I.B. Heath, ed (San Diego: Academic Press.
Wessels, J. G. H. 1992a. Gene expression during in Schizophyllum commune. Mycological Research 97: 538-542.
Wessels, J. G. H. 1992b. Fruiting in the higher fungi. Advances in Microbial Physiology 34: 147-202.
Willment, J. A., Gordon, S., and Brown, G. D. 2001. Characterization of the human beta-glucan receptor and its alternatively spliced isoforms. The Journal of Biological Chemistry 276: 43818-43823.
Wong, W. M., and Gruen, H. E. 1977. Changes in cell size and nuclear number during elongation of Flammulina velutipes fruit bodies. Mycologia 69: 899-913.
Zhao, J. D. and Zhang, X. Q. 1994. Importance, distribution and taxonomy of Ganodermataceae in China. In: Buchanan, P. K., Hseu, R. S. and Moncalvo, J. M.(eds) Ganoderma – Systematics, Phytopathology and Pharmacology. Proceedings of Contributed Symposia 59A, B, Fifth International Mycological Cogress, Vancouver, August 14-21, 1994, pp. 1-2.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24678-
dc.description.abstract許多研究報告皆指出靈芝多醣體(polysaccharides)具有免疫調節與抑制腫瘤的活性,為了從分子層次了解這些多醣體生合成的途徑,本實驗室利用自靈芝基因體資料庫所獲得的序列資料,設計引子對,以RACE (rapid amplification of cDNA ends )選殖與多醣生合成有關之基因的全長度cDNA序列。本論文為針對其中兩個基因glp5-1與glp5-2進行選殖與分析。glp5全長度cDNA 有1583 bp,可以轉譯359個胺基酸,預期的蛋白質分子量為39.7 kDa。Glp5胺基酸序列和洋菇基因shs4 (AJ271693)有70%之相似度,並可能參與1,6-β-glucan的生合成,序列分析結果顯示,SHS4與Glp5-1之胺基酸序列皆含有一個可能的exo-β-1,3 glucanase domain,其他含有該domain的基因主要有在啤酒酵母菌所發現的scw4、scw10、scw11與bgl2等,這些基因依CAZy分類系統被歸類於Glycoside hydrolase family 17。其中只有Bgl2已確定具有endo-1,3-β-glucanase和glucanosyltransferase酵素活性,可以在1,3-β-glucan長鏈上加入1,6-β鍵結的葡萄糖分子,其他三個基因則只能經由突變分析推測其可能的功能為1,3-β-glucanase或1,3-β-glucanosyltransferase。利用BLAST的方法在許多已完成基因體定序的真菌資料庫與EST資料庫,發現許多擔子菌皆可以找到glp5的同源性基因。glp5-2為glp5的同源性基因,位於glp5-1 DNA下游約0.4 kb的位置,經由RACE的實驗得到全長glp5-2 cDNA 序列共1845 bp,可以轉譯414個胺基酸,預期的蛋白質分子量為44.6 kDa。北方雜合分析的結果顯示,glp5-1基因在靈芝菌絲及子實體都會表現,液態培養時期中隨著培養天數的增加,表現量有下降的趨勢,而在不同子實體分化時期與不同子實體部位之表現量差異不大。glp5-2基因在菌絲時期及子實體時期亦皆有表現,但在子實體時期菌傘生長部位的表現量較菌柄部位高出許多。為了對Glp5蛋白有更深入的研究,本研究在E. coli的系統表現Glp5-1蛋白,將該表現蛋白純化後,施打兔子生產抗Glp5-1抗體。經由西方雜合分析的結果發現,靈芝菌絲其細胞壁與培養液,及子實體細胞壁粗抽蛋白中,均含大小約63 kDa的蛋白可被抗體偵測到,顯示Glp5-1蛋白可能位於細胞壁,而Glp5-1/Glp5-2之功能仍有待進一步的探討。zh_TW
dc.description.abstractPolysaccharides from Ganoderma lucidum have been reported to exhibit immuno-modulation and antitumor activties. The molecular basis of polysaccharides biosynthetic pathway was not yet clear. Sequences of potentially related genes were retrieved from the G. lucidum genome database and primers were desigened to isolate the corresponding clones. Full-length cDNA sequences of target genes were initially obtained by RACE (rapid amplification of cDNA ends). Among them, two genes named glp5-1 and glp5-2 were further characterized in this sudy. glp5-1 cDNA contained an open reading frame of 1,077 nucleotides, which encodes a protein with 359 amino acid residues and an estimated molecular mass of 39.7 kDa. Glp5 has 70% amino acid sequences similarity with SHS4, reported in Agaricus bisporus, and a putative exo-β-1,3 glucanase domain was also identified. SHS4 has been reported to have 42% amino acid similarity with 1,6-β-glucan synthase gene in Pseudomonas putida KT2400. Expression level of shs4 gene is correlated with the increase of 1,6-β-linked glucan side branches and considered to participate in the biosynthesis of 1,6-β-glucan. Genes with such domain include scw4, scw10, scw11, and bgl2 reported in yeast. These four genes were classified as glycoside hydrolase family 17 by CAZy database. Bgl2 has been reported to have endo-1,3-β-glucanase and glucanosyltransferase activity. Others were reported to have putative 1,3-β-glucanase or 1,3-β-glucanosyltransferase activity by genetic analysis. In searching available genome database of other fungi, we have found that glp5-1 homologous genes were highly conserved in many basidiomycetes. Further study also found that glp5-2, a homologous gene of glp5-1, was located about 400 nucleotides downstream of glp5-1 gene. glp5-2 cDNA had an open reading frame of 1,242 nucleotides encoding a 414-amino acid protein with a predicted size of 44.6 kDa. Northern blot analysis showed that glp5-1 mRNA both expressed in mycelium and fruit body stage of G. lucidum, and was decreased in mycelium stage with increasing culture period. In fruit body stage, glp5-2 mRNA expression was greatly induced in pileus of growth area than in stipe. Glp5-1 recombinat protein expressed by E. coli was purified and used to raise antibody for further experiments. Western blot analysis showed a size of 63 kDa protein was detected in cell wall fraction of both mycelium and fruit body. Indicated Glp5-1 is a cell wall protein. The estimated size of Glp5-1 protein based on western blot signals was larger than that predicted from amino acid sequences. Glycosylation of Glp5-1 protein may occurr in G. lucidum. The functions of Glp5-1 and Glp5-2 proteins need to be further investgated.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:36:18Z (GMT). No. of bitstreams: 1
ntu-94-R91633008-1.pdf: 1077184 bytes, checksum: bd7cf41e4345cbe3c0b07db284b19d2d (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要………………………………………………………………..……..…...….1
英文摘要……………………………………………………………..…….………….2
研究動機…………………………………………………………………...………….3
壹、前人研究………………………………………………………………...…...…..4
一、關於靈芝……………….…..………………………………………….........4
二、高等真菌子實體發育之相關研究………………………………………....4
(一)、子實體初期構造的發育(Development of Emergent Structures)........5
(二)、擔子菌子實體蕈柄延伸(stipe elongation)相關之研究……………..6
(三)、擔子菌子實體發育相關基因之研究……………………………...…7
三、靈芝功能性物質..………………………......................................................8
(一)、關於β-glucan........................................................................................8
四、關於SHS4基因:…………………………..……. …....................................9
五、關於Glycoside hydrolase相關基因之研究………………………………..9
(一)、Glycoside hydrolase基因之分類…………………………………….9
(二)、SHS4基因之分類…………………………………………………...10
(三)、含有Exo-1,3-beta-glucanase domain之基因………………………10
(四)、酵母菌中Glucosyl hydrolases(GH) family 17相關基因之研究….10
貳、材料與方法……………………………………………….…….……..….……..12
一、靈芝來源:………………………………………………………….….…....12
二、靈芝核酸製備:……………………………...……......………….......…….12
(一)、靈芝total RNA之抽取……………………………………………..12
(二)、抽取靈芝poly(A)+ RNA………………………………………….…12
三、基因全序列之選殖:……………….…………………………. .….…....….13
(一)、第一股cDNA之合成……………………………………………….13
1.合成5’-RACE-Ready cDNA…………………………………...….13
2.合成3’-RACE-Ready cDNA…………………………………...….13
(二)、5’-RACE及3’-RACE…………………………………………..…...13
(三)、自電泳膠體回收DNA片段……………………………..…………14
(四)、將PCR擴增產物選殖至T-Vector (TA cloning) …………………..14
(五)、質體小量製備(mini-prep) ……………………………………….…15
(六)、核酸定序及序列分析……………………………………………….15
(七)、利用Reverse transcription PCR(RT-PCR)進行Glp5與Glp5-2基因全序列之增幅……………………………………………………….16
四、北方雜合分析 (Northern hybridization analysis)……………......….…...16
(一)、RNA 電泳分析………………………………………………….....16
(二)、RNA 轉漬…………………………………………………………..17
(三)、核酸探針製備………………………………………………………17
(四)、前置雜合反應 (Prehybridization) …………………………..…..…17
(五)、雜合反應 (Hybridization) ……………………………………….…17
(六)、標示核酸探針之冷光偵測(Detection of DIG-labeled DNA probe)..18
五、基因組南方雜合分析(Genomic Southern hybridization)…………………18
(一)、靈芝genomic DNA之抽取………………………………………...18
(二)、Genomic DNA 之酵解與瓊脂膠體電泳………………………..….19
(三)、DNA 毛細管轉漬法(Capillay transfer) …………………………….19
(四)、核酸探針之製備………………………………………………….....19
(五)、雜合前置反應與雜合反應……………………………………….….20
六、Glp5與Glp5-2基因引子延伸實驗(primer extension):………………….20
(一)、磷酸化標定寡核苷酸引子………………………………………….20
(二)、沉澱磷酸化標定之寡核苷酸引子與靈芝total RNA…………...…20
(三)、引子延伸反應 (primer extension reaction) ……………………..…20
(四)、質體DNA定序反應………………………………………………..21
七、以大腸桿菌(Escherichia coli)系統表現Glp5蛋白質………...…....….…21
(一)、表現載體(pQE31-Glp5)之構築……………………………….…….21
(二)、大腸桿菌勝任細胞製備…………………………………………….21
(三)、大腸桿菌細胞轉形………………………………………………....22
(四)、表現Glp5蛋白質…………………………………………………...22
(五)、純化重組Glp5蛋白質……………………………………………...22
八、免疫學試驗……………………………………………………………….23
(一)、抗血清製備……………………………………………………….…23
(二)、Glp5免疫球蛋白(Immunoglobulin G, IgG)之純化…………………23
(三)、西方轉漬反應……………………………………………………....23
九、靈芝細胞質、細胞壁及培養液蛋白質之萃取…………………….……24
(一)、靈芝菌絲培養液蛋白質之抽取…………………………………….24
(二)、靈芝細胞質蛋白質之萃取………………………………….………24
(三)、靈芝細胞壁蛋白質之萃取…………………………………………24
十、篩選fosmid clone………………………………………………….……..24
(一)、自fosmid library初步篩選帶有Glp5-2基因的選殖株…..………25
(二)、以菌落雜合分析(colony hybridization)篩選出帶有Glp5與Glp5-2的 fosmid clone……………………………………………………25
(三)、抽取fosmid clone之質體DNA……………………………………26
十一、Glp5與Glp5-2基因置換載體(gene replacement vector)之構築…….26
參、結果………………………………………………………...………….……......27
一、glp5與glp5-2 cDNA全長度序列選殖結果…………………………….27
二、Glp5與Glp5-2胺基酸序列與其他基因庫中相似基因之序列排併比較28
三、glp5與glp5-2基因在靈芝基因組之存在情形……………………….…28
四、北方雜合反應分析glp5與glp5-2基因訊息RNA的表現情形……….28
五、於大腸桿菌系統表現純化Glp5蛋白………………..…………….....…29
六、西方轉漬分析Glp5蛋白………………….……………………….….…29
七、靈芝glp5與glp5-2 基因置換載體之構築……………………………...29
肆、討論……………………………………………………………….…...….…….30
伍、圖表……………………………………………………………..…..…..…....…36
陸、參考文獻………………………………………………………..…..….…….…50
柒、附錄………………………………………………………………..…..…….….60
dc.language.isozh-TW
dc.title靈芝β葡聚醣生合成相關基因glp5-1及glp5-2之選殖與分析zh_TW
dc.titleMolecular cloning and characterization of β-glucan biosynthesis related genes, glp5-1 and glp5-2, in Ganoderma lucidumen
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree碩士
dc.contributor.oralexamcommittee曾顯雄,蕭明熙,李佳音,沈偉強
dc.subject.keyword靈芝,葡聚醣,zh_TW
dc.subject.keywordGanoderma lucidum,beta-glucan,en
dc.relation.page62
dc.rights.note未授權
dc.date.accepted2005-01-26
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
1.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved