Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24664
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊西苑
dc.contributor.authorShu-Chun Liuen
dc.contributor.author劉淑君zh_TW
dc.date.accessioned2021-06-08T05:35:39Z-
dc.date.copyright2011-08-09
dc.date.issued2011
dc.date.submitted2011-07-27
dc.identifier.citation徐凡皓 2004 蚯蚓 Metaphire posthuma 中間絲蛋白質之探討: 胺基酸序列與組織表現 國立台灣大學分子與細胞生物學研究所碩士論文
Aitken, N., S. Smith, C. Schwarz, and P.A. Morin. 2004. Single nucleotide polymorphism (SNP) discovery in mammals: a targeted-gene approach. Mol Ecol. 13:1423-1431.
Alvarado-Bremer, J.R., I. Naseri, and B. Ely. 1997. Orthodox and unorthodox phylogenetic relationships among tunas revealed by the nucleotide sequence analysis of the mitochondrial DNA control region. Journal of Fish Biology. 50:540-554.
Alvarado-Bremer, J.R., B. Stequert, N.W. Robertson, and B. Ely. 1998. Genetic evidence for inter-oceanic subdivision of bigeye tuna (Thunnus obesus Lowe) populations. Marine biology 132:547-557.
Alvarado-Bremer, J.R., J. Vinas, J. Mejutoc, B. Ely, and C. Pla. 2005. Comparative phylogeography of Atlantic bluefin tuna and swordfish: the combined effects of vicariance, secondary contact, introgression, and population expansion on the regional phylogenies of two highly migratory pelagic fishes. Molecular phylogenetics and evolution 36:169-187.
Arce, M.E., S.I. Sánchez, F.L. Aguilera, L.R. Seguin, A.M. Seltzer, and G.M. Ciuffo. 2011. Purkinje cells express Angiotensin II AT2 receptors at different developmental stages. Neuropeptides. 45:69-76.
Arnason, U., A. Gullberg, and B. Widegren. 1991. The complete nucleotide sequence of the mitochondrial DNA of the fin whale, Balaenoptera physalus. J. Mol. Evol. 33:556-568.
Arnason, U., and E. Johnsson. 1992. The complete mitochondrial DNA sequence of the harbor seal, Phoca vitulina. J. Mol. Evol. 34:493-505.
Backstrom, N., S. Fagerberg, and H. Ellegren. 2008. Genomics of natural bird populations: a gene-based set of reference markers evenly spread across the avian genome. Mol Ecol. 17:964-980.
Bae, M.K., S.R. Kim, H.J. Lee, H.J. Wee, M.A. Yoo, S. Ock Oh, S.Y. Baek, B.S. Kim, J.B. Kim, Y. Sik, and S.K. Bae. 2006. Aspirin-induced blockade of NF-kappaB activity restrains up-regulation of glial fibrillary acidic protein in human astroglial cells. Biochim Biophys Acta. 1763:282-289.
Baker, C.S., A. Perry, G.K. Chambers, and P.J. Smith. 1995. Population variation in the mitochondrial cytochrome b gene of the orange roughy Holplosethus atlanticus and the hoki Macruronus novaezelandiae. Marine Biology. 122:503-509.
Block, B.A., J.R. Finnerty, A.F.R. Stewart, and J. Kidd. 1993. Evolution of endothermy in fish: mapping physiological traits on a molecular phylogeny. Science. 260:210-214.
Bongcam-Rudloff, E., M. Nister, Betsholtz, C., J.L. Wang, Stenman, G., K. Huebner, C.M. Croce, and B. Westermark. 1991. Human glial fibrillary acidic protein: complementary DNA cloning, chromosome localization, and messenger RNA expression in human glioma cell lines of various phenotypes. Cancer research 51:1553-1560.
Brown, G.G., G. Gadaleta, G. Pepe, C. Saccone, and E. Sbisa. 1986. Structural conservation and variation in the D-loop-containing region of vertebrate mitochondrial DNA. Journal of Molecular Biology. 192:503-511.
Calendini, F., and J.F. Martin. 2005. PaupUP v1.0.3.1 A free graphical frontend for Paup* Dos software. http://www.agro‐montpellier.fr/sppe/Recherche/JFM/PaupUp/main.htm.
Cao, Y., J. Adachi, A. Janke, S. Pii~ibo, and M. Hasegawa. 1994. Phylogenetic Relationships Among Eutherian Orders Estimated from Inferred Sequences of Mitochondrial Proteins: Instability of a Tree Based on a Single Gene. Journal of Molecular Evolution. 39:519-527.
Cardone, B., and B.I. Roots. 1990. Comperative immunohistochemical study of glial filament proteins (glial fibrillary acidic protein and vimentin) in goldfish, octopus, and snail. Glia 3:180-192.
Carlsson, J., J.R. McDowell, P. Diaz-Jaimes, J.E. Carlsson, S.B. Boles, J.R. Gold, and J.E. Graves. 2004. Microsatellite and mitochondrial DNA analyses of Atlantic bluefin tuna (Thunnus thynnus thynnus) population structure in the Mediterranean Sea. Molecular ecology 13:3345-3356.
Carpenter, K.E., B.B. Collette, and J.L. Russo. 1995. Unstable and stable classifications of scombroid fishes. Bulletin of marine science 56:379-405.
Chen, F.-C., and W.-H. Li. 2001. Genomic Divergences between Humans and Other Hominoids and the Effective Population Size of the Common Ancestor of Humans and Chimpanzees. The American Journal of Human Genetics. 68:444-456.
Chow, S., T. Nakagawa, N. Suzuki, H. Takeyama, and T. Matsunaga. 2006. Phylogenetic relationships among Thunnus species inferred from rDNA ITS1 sequence. Journal of Fish Biology. 68:24-35.
Cohen, I., and M. Schwartz. 1993. cDNA clones from fish optic nerve. Comparative biochemistry and physiology 104b:439-447.
Collette, B.B., T. Potthoff, W.J. Richards, S. Ueyanag, J.L. Russo, and Y. Y. Nishikawa. 1984. Scombroidei: development and relationships. ASIH Spec Pub No. 1:561-620.
Consortium, R.G.S.P. 2004. Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature. 428:493-521.
Cote, F., J.F. Collard, and J.P. Julien. 1993. Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell. 73:35-46.
Dalziel, A.C., C.D. Moyes, E. Fredriksson, and S.C. Lougheed. 2006. Molecular Evolution of Cytochrome c Oxidase in High-Performance Fish (Teleostei: Scombroidei). Journal of Molecular Evolution. 62:319-331.
Douzery, E., and F.M. Catzeflis. 1995. Molecular evolution of the mitochondrial 12S ribosomal-RNA in Ungulata (Mammalia). Journal of Molecular Evolution. 41:622-636.
Eng, L.F., R.S. Ghirnikar, and Y.L. Lee. 2000. Glial fibrillary acidic protein: GFAP-31 years (1969-2000). Neurochemical research 25:1439-1451.
Erber, A., D. Riemer, M. Bovenschulte, and K. Weber. 1998. Molecular phylogeny of metazoan intermediate filament proteins. J Mol Evol. 47:751-762.
Felsenstein, J. 2004. Inferring phylogeny. Sinauer Associates, Inc., USA.:664.
Finnerty, J.R., and B.A. Block. 1995. Evolution of cytochrome b in the Scombroidei (Teleostei): molecular insights into billfish (Istiophoridae and Xiphiidae) relationships. Fishery bulletin 93:78-96.
Fuchs, E., and D.W. Cleveland. 1998. A structural scaffolding of intermediate filaments in health and disease. Science. 279:514-519.
Fuchs, E., and K. Weber. 1994. Intermediate filaments: structure, dynamic, function and disease. Annual review of biochemistry. 63:345-382.
Gazave, E., T. Marqués-Bonet, O. Fernando, B. Charlesworth, and A. Navarro. 2007. Patterns and rates of intron divergence between humans and chimpanzees. Genome biology. 8:R21.
Gibbs, R.H.J., and B.B. Collette. 1967. Comparative anatomy and systematics of the tunas, genus Thunnus. . Fish Wildl Ser Fish Bull. 66:65-130.
Goldman, R., A. Goldman, K. Green, J. Jones, S. Jones, and H. Yang. 1986. Intermediate filament networks: organization and possible functions of a diverse group of cytoskeletal elements. Journal of cell science.Supplement. . 5:69-97.
Goldman, R.D., Y. Gruenbaum, R.D. Moir, D.K. Shumaker, and T.P. Spann. 2002. Nuclear lamins: building blocks of nuclear architecture. Genes Dev. 16:533-547.
Gorospe, J.R., S. Naidu, A.B. Johnson, V. Puri, G.V. Raymond, S.D. Jenkins, R.C. Pedersen, D. Lewis, P. Knowles, R. Fernandez, D. De Vivo, M.S. van der Knaap, A. Messing, M. Brenner, and E.P. Hoffman. 2002. Molecular findings in symptomatic and pre-symptomatic Alexander disease patients. Neurology. 58:1494-1500.
Grant, W.S., and B.W. Bowen. 1998. Population histories in deep evolutionary lineages of marine fishes: insights from sardines and anchovies and lessons for conservation. Journal of heredity 89:415-426.
Grant, W.S., and R.S. Waples. 2000. Spatial and temporal scales of genetic variability in marine species: implications for fisheries oceanography. Fisheries oceanography: an integrative approach to fisheries ecology and management 61-93.
Grodzicher, T., J. WilliamsI , P. Sharp, and J. Sambrook 1974. Physical mapping of temperature-sensitive mutations of adenovirus. In Cold Spring Harbor Symposium Quantitative Biology. 39:439-446.
Guérette, D., P.A. Khan, P.E. Savard, and M. Vincent. 2007. Molecular evolution of type VI intermediate filament proteins. BMC Evolutionary Biology. 7:164.
Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series. 41:95-98.
Hannic, C., V. Laudet, V. Barriel, and F.M. Catzeflis. 1995. Evolutionary relationships of acomys and other murids (Rodentia, Mammalia) based on complete 12S ribosomal-RNA mitochondrial genesequences. Israel Journal of Zoology. 41:131-146.
Head, M.W., E. Corbin, and J.E. Goldman. 1993. Overexpression and abnormal modification of the stress proteins alpha B-crystallin and HSP27 in Alexander disease. Am J Pathol. 143:1743-1753.
Hebert, P.D.N., S. Ratnasingham, and J.R. de Waard. 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society B: Biological Sciences. 270:S96-S99.
Herrmann, H., and U. Aebi. 2000. Intermediate filaments and their associates: multi-talented structural elements specifying cytoarchitecture and cytodynamics. Current Opinion in Cell Biology. 12:79-90.
Herrmann, H., and R. Foisner. 2003. Intermediate filaments: novel assembly models and exciting new functions for nuclear lamins. Cell Mol Life Sci. 60:1607-1612.
Huelsenbeck, J.P., J.J. Bull, and C.W. Cunningham. 1996. Combining data in phylogenetic analysis. Trends Ecol Evol. 11:152-158.
Huelsenbeck, J.P., and F. Ronquist. 2001. MRBAYES: Bayesian inference of phylogeny. . Bioinformatics. 17:754-755.
Igea, J., J. Juste, and J. Castresana. 2010. Novel intron markers to study the phylogeny of closely related mammalian species. BMC Evolutionary Biology. 10:369.
Irwin, D.M., T.D. Kocher, and A.C. Wilson. 1991. Evolution of the cytochrome b gene of mammals J. Mol. Evol. 32:128-144.
Isaacs, A., M. Baker, F. Wavrant-De Vrieze, and M. Hutton. 1998. Determination of the gene structure of human GFAP and absence of coding region mutations associated with frontotemporal dementia with parkinsonism linked to chromosome 17. Genomics. 51:152-154.
Ishigaki, K., Y. Ito, Y. Sawaishi, K. Kodaira, M. Funatsuka, N. Hattori, K. Nakano, K. Saito, and M. Osawa. 2006. TRH therapy in a patient with juvenile Alexander disease. Brain Dev. 28:663-667.
Iwaki, T., A. Kume-Iwaki, R. Liem, and J. Goldman. 1989. αB-crystallin is expressed in non-lenticular tissues and accumulates in Alexander's disease brain. CEll. 57:71-78.
Johnson, G.D. 1986. Scombroid phylogeny: an alternative hypothesis. Bulletin of marine science 39:1-41.
Kálmán, M. 1998. Astroglial architecture of the carp (Cyprinus carpio) brain as revealed by immunohistochemical staining against glial fibrillary acidic protein (GFAP). Anatomy and embryology 198:409-433.
Kálmán, M., and R.M. Gould. 2001. GFAP-immunopositive structures in spiny dogfish, Squalus acanthias, and little skate, Raia erinacea, brains: differences have evolutionary implications. Anatomy and embryology. 204:59-80.
Kálmán, M., and M.B. Pritz. 2001. Glial fibrillary acidic protein-immunopositive structures in the brain of a crocodilian, Caiman crocodilus, and its bearing on the evolution of astroglia. journal of comparative neurology. 431:460-480.
Kálmán, M., A.D. Sze′kely, and A. Csillag. 1993. Distribution of glial fibrillary acidic protein-immunopositive structures in the brain of the domestic chicken (Gallus domesticus). Journal of comparative neurology 330:221-237.
Kawajiri, A. 2002. Functional Significance of the Specific Sites Phosphorylated in Desmin at Cleavage Furrow: Aurora-B May Phosphorylate and Regulate Type III Intermediate Filaments during Cytokinesis Coordinatedly with Rho-kinase. Molecular Biology of the Cell. 14:1489-1500.
Lanave, C., G. Preparata, C. Saccone, and G. Serio. 1984. A new method for calculating evolutionary substitution rate. Journal of Molecular Evolution. 20:86-93.
Lane, E.B., and W.H. McLean. 2004. Keratins and skin disorders. J Pathol. 204:355-366.
Larkin, M.A., G. Blackshields, N.P. Brown, R. Chenna, T.A. McGettigan, H. McWilliam, F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T.J. Gibson, and D.G. Higgins. 2007. Clustal W and Clustal X version 2.0. . Bioinformatics. 23:2947-2948.
Lee, C.Y., G.D. Pappas, V. Kriho, B.M. Huang, and H.Y. Yang. 2003. Proliferation of a subpopulation of reactive astrocytes following needle-insertion lesion in rat. Neurol Res. 25:767-776.
Lessa, E.P. 1992. Rapid surveying of DNA sequence variation in natural populations. Mol Biol Evol. 9:323-330.
Li, C., G. Ortí, G. Zhang, and G. Lu. 2007. A practical approach to phylogenomics: the phylogeny of ray-finned fish (Actinopterygii) as a case study. BMC Evolutionary Biology. 7:44.
Litt, M., and J. Luty. 1989. A hypervariable microsatellite revelead by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. American journal of human genetics 44:397-401.
Liu, Z., and J. Cordes. 2004. DNA marker technologies and their applications in aquaculture genetics. Aquaculture. 238:1-37.
Marcus, R.C., and S.S.J. Easter. 1995. Expression of glial fibrillary acidic protein and its relation to tract formation in embryonic zebrafish (Danio rerio). Journal of comparative neurology 359:365-381.
Messing, A., M.W. Head, K. Galles, E.J. Galbreath, J.E. Goldman, and M. Brenner. 1998. Fatal encephalopathy with astrocyte inclusions in GFAP transgenic mice. Am J Pathol. 152:391-398.
Mindell, D.P., C.W. Dick, and R. Baker, J. 1991. Phylogenetic relationships among megabats, microbats, and primates. Proc. Natl Acad. Sci. USA 88:10322-10326.
Moritz, C., and W.M. Brown. 1987. Tandem duplications in animal mitochondrial DNAs : variation in incidence and gene content among lizards. Proceedings of the National Academy of Sciences:7183-7187.
Morrow, J.E. 1964. Marlins, sailfish, and spearfish of the Indian Ocean. Marine biology 1:429-440.
Mouchatty, S.K., A. Gullberg, A. Janke, and U. Arnason. 2000. The phylogenetic position of the Talpidae within Eutheria based on analysis of complete mitochondrial sequences. Molecular biology and evolution 17:60-67.
Myers, M.W., R.A. Lazzarini, V.M. Lee, W.W. Schlaepfer, and D.L. Nelson. 1987. The human mid-size neurofilament subunit: a repeated protein sequence and the relationship of its gene to the intermediate filament gene family. EMBO J. 6:1617-1626.
Nakamura, I. 1965. Relationships of fishes referable to the subfamily Thunninae on the basis of the axial skeleton. Bull Misaki Mar Biol Inst Kyoto Univ. 8:7-38.
Nakamura, I. 1983. Systematics of the billfishes (Xiphiidae and Istiophoridae). Seto Marine Biological Laboratory. 28:255-396.
Nikolaev, S., J.I. Montoya-Burgos, E.H. Margulies, N.C.S. Program, J. Rougemon, B. Nyffeler, and S.E. Antonarakis. 2007. Early history of mammals is elucidated with the encode multiple species sequencing data. PLOS Genetics. 3:3-8.
Nylander, J.A.A. 2004. MrModeltest 2.3. Program Distributed by the Author, Evol. Biol. Centre, Uppsala Univ. http://www.abc.se/~nylander/mrmodeltest2/mrmodeltest2.html.
Palumbi, S.R., and C.S. Baker. 1994. Contrasting population structure from nuclear intron sequences and mtDNA of humpback whales. Mol Biol Evol. 11:426-435.
Peng, Z., N. Elango, D.E. Wildman, and S.V. Yi. 2009. Primate phylogenomics: developing numerous nuclear non-coding, non-repetitive markers for ecological and phylogenetic applications and analysis of evolutionary rate variation. BMC Genomics. 10:247.
Potthoff, T., W.J. Richards, and S. Ueyanagi. 1980. Development of Scombrolabrax heterolepsis (Pisces, Scombolabracidae) and comments on familial relationships. Bulletin of marine science 30:329-357.
Ranwez, V., F. Delsuc, S. Ranwez, K. Belkhir, M.K. Tilak, and E.J. Douzery. 2007. OrthoMaM: a database of orthologous genomic markers for placental mammal phylogenetics. BMC Evol Biol. 7:241.
Rasmussen, R., and M. Morrissey. 2008. DNA-based methods for the identification of commercial fish and seafood species. Compr Rev Food Sci Food Saf. 7:280-295.
Reeves, S.A., L.J. Helman, A. Allison, and M.A. Israel. 1989. Molecular cloning and primary structure of human glial fibrillary acidic protein. Proceedings of the National Academy of Sciences. 86:5178-5182.
Rob, O. 2008. Fisheries forensics: the use of DNA tools for improving compliance, traceability and enforcement in the fishing industry. Fish and fisheries 9.
Robins, C.R., and D.P.d. Sylva. 1960. Description and relationships of the longbill spearfish,Tetrapturus belone, based on western North Atlantic specimens. Bulletin of marine science 10:383-413.
Rodova, M., M. Islam, K. Peterson, and J. Calvet. 2005. Remarkable sequence conservation of the last intron in the PKD1 gene. molecular biology and evolution. 20:1669-1674.
Ronquist, F., and J.P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics. 19:1572-1574.
RW, S., M. C, H. A, and H. PT. 1993. Rapid assessment of singlecopy nuclear DNA variation in diverse species. Molecular Ecology. 2:359-373.
Sang, T.K., H.Y. Chang, C.T. Chen, and C.F. Hui. 1994. Population structure of the Japanese eel, Anguilla japonica. . Molecular biology and evolution 11:250-260.
Schweitzer, S.C., M.W. Klymkowsky, R.M. Bellin, R.M. Robson, Y. Capetanaki, and R.M. Evans. 2001. Paranemin and the organization of desmin filament networks. J Cell Sci. 114:1079-1089.
Smith, T. 2002. Sequence Comparisons of Intermediate Filament Chains: Evidence of a Unique Functional/Structural Role for Coiled-Coil Segment 1A and Linker L1. Journal of Structural Biology. 137:128-145.
South, J.F. 1845. Encyclopedia Metropolitana; or, Universal Dictionary of knowledge. Edition for 1845. 25: 620-622.
Southern, S., J.S. Peter, and E.D. Andrew. 1988. Molecular characterization of a cloned dolphin mitochondrial genome. Journal of Molecular Evolution. 28:32-42.
Steinert, P.M., and D.R. Roop. 1988. Molecular and cellular biology of intermediate filament. Annual review of biochemistry 57:593-625.
Swofford, D.L. 2000. PAUP*. phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Massachusetts.USA.
Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 24:1596-1599.
Tang, G., Z. Xu, and J.E. Goldman. 2006. Synergistic effects of the SAPK/JNK and the proteasome pathway on glial fibrillary acidic protein (GFAP) accumulation in Alexander disease. J Biol Chem. 281:38634-38643.
Tautz, D. 1989. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic acids research 17:6463-6471.
Teletchea, F. 2009. Molecular identification methods of fish species: reassessment and possible applications. . Reviews in Fish Biology and Fisheries 19:265-293.
Thomson, R.C., A.M. Shedlock, S.V. Edwards, and H.B. Shaffer. 2008. Developing markers for multilocus phylogenetics in non-model organisms: A test case with turtles. Mol Phylogenet Evol. 49:514-525.
Townsend, T., R. Alegre, S. Kelley, J. Wiens, and T. Reeder. 2008. Rapid development of multiple nuclear loci for phylogenetic analysis using genomic resources: an example from squamate reptiles. Molecular phylogenetics and evolution 47:129-142.
van der Straten, K.M., B.B. Collette, L.K.-P. Leung, and S.T. Johnston. 2006. Sperm morphology of the black marlin (Makaira indica) differs from scombroid sperm. Bulletin of marine science 79:839-845.
Vinas, J., and S. Tudela. 2009. A validated methodology for genetic identification of tuna species (genus Thunnus). PLoS One. 4:e7606.
Waddell, P.J., N. Okada, and M. Hasegawa. 1999. Towards resolving the interordinal relationships of placental mammals. Syst Biol. 48:1-5.
Ward, R., T. Zemlak, B. Innes, P. Last, and P. Hebert. 2005. DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci. . B360:1847-1857.
Waterman, M.S., M. Eggert, and E. Lander. 1992. Parametric sequence comparisons. Proceedings of the National Academy of Sciences. 89:6090-6093.
Waterston, R.H., K. Lindblad-Toh, E. Birney, J. Rogers, J.F. Abril, P. Agarwal, R. Agarwala, R. Ainscough, M. Alexandersson, P. An, S.E. Antonarakis, J. Attwood, R. Baertsch, J. Bailey, K. Barlow, S. Beck, E. Berry, B. Birren, T. Bloom, P. Bork, M. Botcherby, N. Bray, M.R. Brent, D.G. Brown, S.D. Brown, C. Bult, J. Burton, J. Butler, R.D. Campbell, P. Carninci, S. Cawley, F. Chiaromonte, A.T. Chinwalla, D.M. Church, M. Clamp, C. Clee, F.S. Collins, L.L. Cook, R.R. Copley, A. Coulson, O. Couronne, J. Cuff, V. Curwen, T. Cutts, M. Daly, R. David, J. Davies, K.D. Delehaunty, J. Deri, E.T. Dermitzakis, C. Dewey, N.J. Dickens, M. Diekhans, S. Dodge, I. Dubchak, D.M. Dunn, S.R. Eddy, L. Elnitski, R.D. Emes, P. Eswara, E. Eyras, A. Felsenfeld, G.A. Fewell, P. Flicek, K. Foley, W.N. Frankel, L.A. Fulton, R.S. Fulton, T.S. Furey, D. Gage, R.A. Gibbs, G. Glusman, S. Gnerre, N. Goldman, L. Goodstadt, D. Grafham, T.A. Graves, E.D. Green, S. Gregory, R. Guigo, M. Guyer, R.C. Hardison, D. Haussler, Y. Hayashizaki, L.W. Hillier, A. Hinrichs, W. Hlavina, T. Holzer, F. Hsu, A. Hua, T. Hubbard, A. Hunt, I. Jackson, D.B. Jaffe, L.S. Johnson, M. Jones, T.A. Jones, A. Joy, M. Kamal, E.K. Karlsson, et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature. 420:520-562.
William, J.M., E. Eduardo, E.J. Warren, P.Z. Ya, A.R. Oliver, and J.O.B. Stephen. 2001. Molecular phylogenetics and the origins of placental mammals. nature. 409:614-618.
Yang, H.Y., N. Lieska, and R.D. Goldman. 1990. Intermediate filament associated protein.In cellular and molecular biology of intermediate filaments, R.D. Goldman and P.M Steinert eds. . Plenum Press, New York.:371-391.
Yasunami, M., C.S. Chen, and A. Yoshida. 1990. Multiplication of the class I alcohol dehydrogenase locus in mammalian evolution. Biochem. Genet. 28:591-599.
Yu, Q., Y. Bai, and J. Lin. 2010. Effect of astragalus injection combined with mesenchymal stem cells transplantation for repairing the Spinal cord injury in rats. Zhongguo Zhong Xi Yi Jie He Za Zhi. . 30:393-397.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24664-
dc.description.abstract近年來常以粒線體 DNA 和微衛星體序列作為研究物種演化與族群結構等課題之分子標記,但適合用於區分相近物種的分子標記卻還沒有被提出。本實驗室先前研究發現,利用細胞骨架之一的中間絲蛋白質(intermediate filaments, IFs)之基因序列建構無脊椎動物與脊椎動物之親緣關係圖時,無脊椎動物可與脊椎動物分開,且脊椎動物內部可依不同類型的 IF 各自分群,在此分群中又可看出不同物種間的演化關係,顯示 IF基因演化與物種演化具有相關性。本篇研究選擇第三型中間絲蛋白質 GFAP (glial fibrillary acidic protein),因其專一表現在中樞神經系統,認為受於外界環境干擾也較小,其演化速度較能維持中性 (neutrality)。為了證實 GFAP 適合作為分子標記,我們從 Ensembl 資料庫中搜集 19 個物種的GFAP 序列,利用貝葉氏導出式 (Bayesian inference, BI) 分析親緣關係,結果顯示物種分群符合現今所接受分類,也確定了 GFAP 作為分子標記的可用性。由於 introns 具有大量核苷酸變化,以及可利用前後端 exons 保守序列設置引子,利於序列增幅等特性。近年來,許多利用 introns 進行物種分類的研究也日益增加。2010 年,Igea 等人將哺乳動物:人類、黑猩猩、獼猴、狗與牛基因體introns 序列,經由一連串篩選程序,找出隨機分散於基因體的 224 個 nuclear introns,成功利用此序列將五種相近物種區分。因此,本篇研究也期望能在GFAP 中,找出具有此特性的introns 片段。我們將人類、黑猩猩、大猩猩、長臂猿與獼猴五種靈長目物種的 8 個 GFAP introns 進行比對,發現 GFAP 的 intron 2 片段在五種靈長目物種中,長度皆等長。此外,利用該序列進行UPGMA 法親緣關係圖建構,亦能顯示出與其他研究結果一致的親緣遠近關係。於是我們選用了 intron 2 片段作為分子標記。由於傳統哺乳動物的分類是以化石證據為標準,相反地,魚類的分類卻是根據現生物種形態上的異同為主。為了統整兩個不同分類標準,我們以 GFAP 的 intron 2 片段,進行相近魚種的親緣關係研究。本篇研究選擇 4 科 9 屬 13 種的鯖亞目魚類,以PCR 技術將其 GFAP 的 intron 2 片段放大,定序完成後,進行序列長度與變異度比較。結果顯示不同科的魚種,其 intron 2 的長度皆不相同。但鯖科的鮪屬 (金槍魚屬) 和土魠魚 (馬鮫屬),其 intron 2 長度卻與同是鯖科的花腹鯖 (鯖屬) 和圓花鰹(舵鰹屬)不一樣。隨後我們利用鯖亞目的 intron 2 序列,以 MP (最大簡約法) 與BI 譜系分析,結果顯示四
種鯖科魚類與帶魚科魚類為同一群組。此外,鯖科中的花腹鯖、圓花鰹彼此關係較近,並與另外同是鯖科的鮪屬、馬鮫屬分開。綜上所述,我們除了得知鯖科與帶魚科的親緣關係較近外,也建議鮪屬和馬鮫屬,應與花腹鯖、圓花鰹兩群組,重新分類為不同科物種較為適當。另外,我們加入 GFAP 基因中,可編錄蛋白質的片段 exon 1 進
行比對,結果顯示 exon 1 演化速率較 intron 2 快,可用於細究相近魚類物種間親緣關係的演變歷程。總結來說,本研究成功驗證了 GFAP intron 2 與 exon 1 片段作為分子標記的可用性,並以此重新檢視哺乳類與魚類的分類系統,也顯示GFAP 基因可作為區分相近物種的分子標記。
zh_TW
dc.description.abstractIn recent years, mitochondrial DNA and microsatellite sequences are often used as the molecular markers for studying species evolution and population structure. However, to date, appropriate molecular markers for distinguishing closely related species have not been well-established. Our previous study demonstrated that the gene sequences of intermediate filaments (IFs) proteins, one of the major types of cytoskeleton, could separate vertebrates and invertebrates into two different groups in phylogenetic
reconstruction. In addition, each of the vertebrate IF genes was separated into different subgroups corresponding to their IF types. Furthermore, within each subgroup, the
evolutionary relationship of different species is parallel to that of species. These results suggested that the evolution of IF genes is closely related to the evolution of vertebrate species. In this study, the gene of type III intermediate filament protein GFAP (glial fibrillary acidic protein) was selected as the molecular marker. Due to its specific expression in the central nervous system, it is postulated that its selective pressure from the external environment is minimum, thus it is more likely to maintain neutral. To prove that the GFAP gene is an appropriate molecular marker, we collected the GFAP sequences of each species from the Ensembl database. Subsequently, we generated the phylogenetic tree of the GFAP gene sequences of 19 animal species by Bayesian inference (BI). The results was in agree with the currently accepted classification. Therefore, the validity of GFAP gene as a molecular marker is confirmed. Recently, it has been shown that introns have relatively large nucleotide variability, and can be easily amplified with primers placed in the adjacent exons. Thus, there are increasing number of studies using intronic sequence to investigate the phylogenetic relationship of species. In 2010, Igea et al., by applying several reasonable filters, selected 224 intronic sequences that belongs to several mammalian species, including human, chimpanzee, macaque, dog and cattle, and successfully distinguish the phylogenetic relationship of these species. Therefore, in this study, it is anticipated to characterize the appropriate introns of GFAP gene for distinguishing the closely related species. By aligning the 8 intronic sequence of GFAP gene of five primate species, including human, chimpanzee, gorilla, gibbon and macaque, it was revealed that the length of the intron 2 fragment are the same among five primate species. In addition, the phylogenetic tree of these five primate species reconstructed with GFAP intron 2 by UPGMA method was also in consensus with currently established phylogenetic relationship. Thus, the intron 2 sequence was selected as the molecular marker for the current study. The traditional classification for mammals is based on fossil
evidence. On the other hand, classification of fishes is mainly based on morphology of the extant species. Thus, the aim of this study is to examine the phylogenetic relationship of species under a unified standard by examining GFAP intron 2 sequences of primates and fishes. In our study, fishes of several different families and genera in the suborder Scombroidei were selected, and their GFAP genes sequences were amplified by PCR. After sequencing, their lengths and variation were compared. The results revealed the length of GFAP intron 2 is different in each of the five fish families. Surprisingly, although from the same family of Scombridae, the length of GFAP intron 2 of the yellowfin tuna, bigeye tuna, albacore tuna,, Pacific bluefin tuna (Thunnus) and the seer fish (Scomberomorus) is distinct from that of spotted mackerel (Scomber) and frigate mackerel (Auxis). Then, we reconstructed the phylogenetic tree by intron 2 sequence from each of the fishes, the results revealed one single group among the four fishes of Scombridae and fishes of Trichiuridae. Moreover, among the Scombridae, spotted
mackerel and frigate mackerel are closer to each other, but are distinct from the Thunns and seer fish. Taken together, the results suggest that the evolutionary relationship of
Scombridae and Trichiuridae are closer than the currently accepted phylogenetic classification. Furthermore, it is also proposed that spotted mackerel, frigate mackerel
should be separated from Thunns, seer fish, and regrouped into a new family. Besides, the protein coding region of GFAP exon 1 was also included in our analysis. The results
showed that the evolutionary rate of exon 1 is higher than intron 2, thus it can be used to clarify the phylogenetic relationship of closely related fish species. In summary, the current study confirmed the validity of GFAP intron 2 and exon 1 as the molecular marker for closely related species. We have also re-examined the phylogenetic relationship of mammals and fishes, and the results shows that GFAP may have the potential to serve as
one of the species barcode genes.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:35:39Z (GMT). No. of bitstreams: 1
ntu-100-R98b43001-1.pdf: 4657912 bytes, checksum: cd51af0073efc7eb7edd7801c295850f (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents目錄
謝辭 …………………………………………………………………… I
目錄 ……………………………………………………………………II
圖目錄 ……………………………………………………………………V
表目錄 ……………………………………………………………………VI
中文摘要 ………………………………………………………………VII
英文摘要 ………………………………………………………………IX
緒論
一、DNA 序列在生物演化與分類的應用………………………………1
二、中間絲蛋白質簡介…………………………………………………6
1. 中間絲蛋白質的種類…………………………………………………6
2. 中間絲蛋白質的功能…………………………………………………7
3. 中間絲蛋白質的結構…………………………………………………8
4. 中間絲蛋白質的演化…………………………………………………9
三、GFAP 中間絲蛋白質介紹…………………………………………11
1. GFAP 簡介……………………………………………………………11
2. GFAP 功能……………………………………………………………12
3. GFAP 於不同物種結構比較…………………………………………12
4. GFAP 引起的相關疾病………………………………………………13
四、哺乳動物的分類與演化……………………………………………14
五、本研究所使用的魚類介紹…………………………………………17
1. 鮪屬介紹……………………………………………………………17
2. 鮪屬的親緣關係研究………………………………………………18
3. 旗魚科與劍旗魚科介紹……………………………………………19
4. 旗魚科與劍旗魚科的親緣關係研究………………………………20
六、實驗架構……………………………………………………………22
材料與方法
一、從資料庫蒐集 GFAP 序列…………………………………………23
二、樣本採集……………………………………………………………24
三、DNA 萃取……………………………………………………………24
四、聚合酶連鎖反應……………………………………………………25
1. 引子設計……………………………………………………………25
2. PCR 進行……………………………………………………………26
五、巢狀聚合酶連鎖反應 ((semi) nested PCR)……………………26
六、PCR 產物膠體電泳及定序…………………………………………27
七、資料分析軟體………………………………………………………27
八、親緣關係分析方法
1. 最大簡約法…………………………………………………………28
2. 最大似然性分析……………………………………………………29
3. 貝葉氏導出式分析…………………………………………………29
4. 距離建構法…………………………………………………………31
(1) 不加權平均重法……………………………………………………31
(2) 鄰位連接法…………………………………………………………32
結果
一、利用已知物種親緣關係對照 GFAP 中間絲蛋白質所建構的親緣關
係樹………………………………………………………………………33
二、靈長目 GFAP 中間絲蛋白質 intron 2 片段分析………………34
三、靈長目 GFAP 中間絲蛋白質 exon 1 片段分析…………………36
四、鯖亞目 GFAP 中間絲蛋白質 intron 2 片段分析………………37
五、鯖亞目 GFAP 中間絲蛋白質 exon 1 片段分析…………………40
討論
一、GFAP 中間絲蛋白質 exon 1 與 intron 2 片段於親緣關係研究分析………………………………………………………………………42
二、鯖亞目 GFAP 中間絲蛋白質親緣關係分析………………………43
三、鯖亞目與靈長目於 GFAP 中間絲蛋白質親緣關係研究之探討…45
四、鯖亞目 GFAP 中間絲蛋白質其他片段─ intron 1 之探討……46
五、用 intron 2 核苷酸替換速率計算物種分歧年代………………47
結語 ……………………………………………………………………47
參考文獻…………………………………………………………………49
圖…………………………………………………………………………61
表…………………………………………………………………………80
附錄………………………………………………………………………89
dc.language.isozh-TW
dc.subject鯖亞目zh_TW
dc.subject親緣關係zh_TW
dc.subjectGFAPzh_TW
dc.subject靈長目zh_TW
dc.subject分子標記zh_TW
dc.subjectphylogenetic relationshipen
dc.subjectmolecular markersen
dc.subjectprimatesen
dc.subjectsuborder Scombroideien
dc.subjectGFAPen
dc.title以 GFAP (glial fibrillary acidic protein) intron 2 與 exon 1 序列當作研究靈長目與鯖亞目相近物種親緣關係的核標記zh_TW
dc.titleUsing intron 2 and exon 1 sequences of GFAP (glial fibrilary acidic protein) gene as novel nuclear markers to study the phylogeny of closely related primate and suborder Scombroidei speciesen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許建宗,江欣潔
dc.subject.keywordGFAP,親緣關係,鯖亞目,靈長目,分子標記,zh_TW
dc.subject.keywordGFAP,phylogenetic relationship,suborder Scombroidei,primates,molecular markers,en
dc.relation.page91
dc.rights.note未授權
dc.date.accepted2011-07-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
4.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved