Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24644
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李君男
dc.contributor.authorChien-Wen Suen
dc.contributor.author蘇建文zh_TW
dc.date.accessioned2021-06-08T05:34:45Z-
dc.date.copyright2005-02-03
dc.date.issued2005
dc.date.submitted2005-01-30
dc.identifier.citation1. Adams, W. R., and L. M. Kraft. 1963. Epizootic diarrhea of infant mice: indentification of the etiologic agent. Science 141:359-60.
2. Amalfitano, A. 2004. Utilization of adenovirus vectors for multiple gene transfer applications. Methods 33:173-8.
3. Arias, C. F., P. Romero, V. Alvarez, and S. Lopez. 1996. Trypsin activation pathway of rotavirus infectivity. J Virol 70:5832-9.
4. Arribillaga, L., A. L. de Cerio, P. Sarobe, N. Casares, M. Gorraiz, A. Vales, O. Bruna-Romero, F. Borras-Cuesta, G. Paranhos-Baccala, J. Prieto, J. Ruiz, and J. J. Lasarte. 2002. Vaccination with an adenoviral vector encoding hepatitis C virus (HCV) NS3 protein protects against infection with HCV-recombinant vaccinia virus. Vaccine 21:202-10.
5. Au, K. S., W. K. Chan, J. W. Burns, and M. K. Estes. 1989. Receptor activity of rotavirus nonstructural glycoprotein NS28. J Virol 63:4553-62.
6. Au, K. S., N. M. Mattion, and M. K. Estes. 1993. A subviral particle binding domain on the rotavirus nonstructural glycoprotein NS28. Virology 194:665-73.
7. AZ Kapikian, Y. H. a. R. C. 2001. Rotaviruses. In: DM Knipe and PM Howley. Fields virology (4th edn.), Lippincott Williams and Wilkins, Philadelphia:1787-1833.
8. Babiuk, L. A., and S. K. Tikoo. 2000. Adenoviruses as vectors for delivering vaccines to mucosal surfaces. J Biotechnol 83:105-13.
9. Ball, J. M., P. Tian, C. Q. Zeng, A. P. Morris, and M. K. Estes. 1996. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science 272:101-4.
10. Bergelson, J. M., J. A. Cunningham, G. Droguett, E. A. Kurt-Jones, A. Krithivas, J. S. Hong, M. S. Horwitz, R. L. Crowell, and R. W. Finberg. 1997. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320-3.
11. Bergmann, C. C., D. Maass, M. S. Poruchynsky, P. H. Atkinson, and A. R. Bellamy. 1989. Topology of the non-structural rotavirus receptor glycoprotein NS28 in the rough endoplasmic reticulum. Embo J 8:1695-703.
12. Bern, C., J. Martines, I. de Zoysa, and R. I. Glass. 1992. The magnitude of the global problem of diarrhoeal disease: a ten-year update. Bull World Health Organ 70:705-14.
13. Bernstein, D. I., D. A. Sack, K. Reisinger, E. Rothstein, and R. L. Ward. 2002. Second-year follow-up evaluation of live, attenuated human rotavirus vaccine 89-12 in healthy infants. J Infect Dis 186:1487-9.
14. Bernstein, D. I., V. E. Smith, J. R. Sherwood, G. M. Schiff, D. S. Sander, D. DeFeudis, D. R. Spriggs, and R. L. Ward. 1998. Safety and immunogenicity of live, attenuated human rotavirus vaccine 89-12. Vaccine 16:381-7.
15. Bett, A. J., W. Haddara, L. Prevec, and F. L. Graham. 1994. An efficient and flexible system for construction of adenovirus vectors with insertions or deletions in early regions 1 and 3. Proc Natl Acad Sci U S A 91:8802-6.
16. Bett, A. J., L. Prevec, and F. L. Graham. 1993. Packaging capacity and stability of human adenovirus type 5 vectors. J Virol 67:5911-21.
17. Bican, P., J. Cohen, A. Charpilienne, and R. Scherrer. 1982. Purification and characterization of bovine rotavirus cores. J Virol 43:1113-7.
18. Bishop, R. F., G. P. Davidson, I. H. Holmes, and B. J. Ruck. 1973. Virus particles in epithelial cells of duodenal mucosa from children with acute non-bacterial gastroenteritis. Lancet 2:1281-3.
19. Bon, F., C. Fromantin, S. Aho, P. Pothier, and E. Kohli. 2000. G and P genotyping of rotavirus strains circulating in france over a three-year period: detection of G9 and P[6] strains at low frequencies. The AZAY Group. J Clin Microbiol 38:1681-3.
20. Both, G. W., A. R. Bellamy, and D. B. Mitchell. 1994. Rotavirus protein structure and function. Curr Top Microbiol Immunol 185:67-105.
21. Burns, J. W., M. Siadat-Pajouh, A. A. Krishnaney, and H. B. Greenberg. 1996. Protective effect of rotavirus VP6-specific IgA monoclonal antibodies that lack neutralizing activity. Science 272:104-7.
22. Carlin, J. B., P. Chondros, P. Masendycz, H. Bugg, R. F. Bishop, and G. L. Barnes. 1998. Rotavirus infection and rates of hospitalisation for acute gastroenteritis in young children in Australia, 1993-1996. Med J Aust 169:252-6.
23. CENTERS, FOR, DISEASE, CONTROL, AND, and PREVENTION. 1999. Rotavirus vaccine for the prevention of rotavirus gastroenteritis among children. Recommendations of the Advisory Committee on Immunization Practices (ACIP). MMWR Recomm Rep 48:1-20.
24. CENTERS, FOR, DISEASE, CONTROL, AND, and PREVENTION. 1999. Withdrawal of rotavirus vaccine recommendation. MMWR Morb Mortal Wkly Rep 48:1007.
25. Charpilienne, A., M. Nejmeddine, M. Berois, N. Parez, E. Neumann, E. Hewat, G. Trugnan, and J. Cohen. 2001. Individual rotavirus-like particles containing 120 molecules of fluorescent protein are visible in living cells. J Biol Chem 276:29361-7.
26. Chen, D., C. L. Luongo, M. L. Nibert, and J. T. Patton. 1999. Rotavirus open cores catalyze 5'-capping and methylation of exogenous RNA: evidence that VP3 is a methyltransferase. Virology 265:120-30.
27. Chen, D., and R. F. Ramig. 1993. Rescue of infectivity by sequential in vitro transcapsidation of rotavirus core particles with inner capsid and outer capsid proteins. Virology 194:743-51.
28. Chengalvala, M., M. D. Lubeck, A. R. Davis, S. Mizutani, K. Molnar-Kimber, J. Morin, and P. P. Hung. 1991. Evaluation of adenovirus type 4 and type 7 recombinant hepatitis B vaccines in dogs. Vaccine 9:485-90.
29. Choi, A. H., M. Basu, M. M. McNeal, J. Flint, J. L. VanCott, J. D. Clements, and R. L. Ward. 2000. Functional mapping of protective domains and epitopes in the rotavirus VP6 protein. J Virol 74:11574-80.
30. Choi, A. H., M. M. McNeal, M. Basu, J. A. Flint, S. C. Stone, J. D. Clements, J. A. Bean, S. A. Poe, J. L. VanCott, and R. L. Ward. 2002. Intranasal or oral immunization of inbred and outbred mice with murine or human rotavirus VP6 proteins protects against viral shedding after challenge with murine rotaviruses. Vaccine 20:3310-21.
31. Clark, H. F., P. A. Offit, R. W. Ellis, J. J. Eiden, D. Krah, A. R. Shaw, M. Pichichero, J. J. Treanor, F. E. Borian, L. M. Bell, and S. A. Plotkin. 1996. The development of multivalent bovine rotavirus (strain WC3) reassortant vaccine for infants. J Infect Dis 174 Suppl 1:S73-80.
32. Croyle, M. A., B. J. Roessler, C. P. Hsu, R. Sun, and G. L. Amidon. 1998. Beta cyclodextrins enhance adenoviral-mediated gene delivery to the intestine. Pharm Res 15:1348-55.
33. Croyle, M. A., M. Stone, G. L. Amidon, and B. J. Roessler. 1998. In vitro and in vivo assessment of adenovirus 41 as a vector for gene delivery to the intestine. Gene Ther 5:645-54.
34. Croyle, M. A., E. Walter, S. Janich, B. J. Roessler, and G. L. Amidon. 1998. Role of integrin expression in adenovirus-mediated gene delivery to the intestinal epithelium. Hum Gene Ther 9:561-73.
35. Cunliffe, N. A., J. S. Bresee, and C. A. Hart. 2002. Rotavirus vaccines: development, current issues and future prospects. J Infect 45:1-9.
36. Estes, M. K. 2001. Rotaviruses and their replication.In: DM Knipe and PM Howley, Editors,(4th edn.). Fields virology, Lippincott Williams and Wilkins, Philadelphia:1747-1785.
37. Estes, M. K., S. E. Crawford, M. E. Penaranda, B. L. Petrie, J. W. Burns, W. K. Chan, B. Ericson, G. E. Smith, and M. D. Summers. 1987. Synthesis and immunogenicity of the rotavirus major capsid antigen using a baculovirus expression system. J Virol 61:1488-94.
38. Fallaux, F. J., A. Bout, I. van der Velde, D. J. van den Wollenberg, K. M. Hehir, J. Keegan, C. Auger, S. J. Cramer, H. van Ormondt, A. J. van der Eb, D. Valerio, and R. C. Hoeben. 1998. New helper cells and matched early region 1-deleted adenovirus vectors prevent generation of replication-competent adenoviruses. Hum Gene Ther 9:1909-17.
39. Feng, N., J. A. Lawton, J. Gilbert, N. Kuklin, P. Vo, B. V. Prasad, and H. B. Greenberg. 2002. Inhibition of rotavirus replication by a non-neutralizing, rotavirus VP6-specific IgA mAb. J Clin Invest 109:1203-13.
40. Fields, B. N. 1996. Reoviridae. In Fields,B.N., Knipe,D.M., Howley,P.M., Chanock,R.M., Melnick,J.L., Monath,T.P., Roizman,B. and Straus,S.E. (eds). Fields Virology Lippincott-Raven, Philadelphia, PA, 2:1553-1555.
41. Flewett, T. H., A. S. Bryden, H. Davies, G. N. Woode, J. C. Bridger, and J. M. Derrick. 1974. Relation between viruses from acute gastroenteritis of children and newborn calves. Lancet 2:61-3.
42. Gary, G. W., Jr., D. R. Black, and E. Palmer. 1982. Monoclonal IgG to the inner capsid of human rotavirus. Arch Virol 72:223-7.
43. Gentsch, J. R., P. A. Woods, M. Ramachandran, B. K. Das, J. P. Leite, A. Alfieri, R. Kumar, M. K. Bhan, and R. I. Glass. 1996. Review of G and P typing results from a global collection of rotavirus strains: implications for vaccine development. J Infect Dis 174 Suppl 1:S30-6.
44. Graham, F. L., J. Smiley, W. C. Russell, and R. Nairn. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59-74.
45. Haas, J., E. C. Park, and B. Seed. 1996. Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr Biol 6:315-24.
46. He, J., J. Wang, X. Jiang, D. Wang, L. Wen, J. Dong, J. Qu, and T. Hong. 2002. [Expression of the main structural antigen VP6 of human rotavirus by recombinant adenovirus and immune responses induced in vivo]. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 16:109-13.
47. Herrmann, J. E., S. C. Chen, E. F. Fynan, J. C. Santoro, H. B. Greenberg, S. Wang, and H. L. Robinson. 1996. Protection against rotavirus infections by DNA vaccination. J Infect Dis 174 Suppl 1:S93-7.
48. Holmes, I. H., B. J. Ruck, R. F. Bishop, and G. P. Davidson. 1975. Infantile enteritis viruses: morphogenesis and morphology. J Virol 16:937-43.
49. Horie, Y., O. Nakagomi, Y. Koshimura, T. Nakagomi, Y. Suzuki, T. Oka, S. Sasaki, Y. Matsuda, and S. Watanabe. 1999. Diarrhea induction by rotavirus NSP4 in the homologous mouse model system. Virology 262:398-407.
50. Hoshino, Y., and A. Z. Kapikian. 1996. Classification of rotavirus VP4 and VP7 serotypes. Arch Virol Suppl 12:99-111.
51. Iosef, C., K. O. Chang, M. S. Azevedo, and L. J. Saif. 2002. Systemic and intestinal antibody responses to NSP4 enterotoxin of Wa human rotavirus in a gnotobiotic pig model of human rotavirus disease. J Med Virol 68:119-28.
52. Jaiswal, S., N. Khanna, and S. Swaminathan. 2003. Replication-defective adenoviral vaccine vector for the induction of immune responses to dengue virus type 2. J Virol 77:12907-13.
53. Johansen, K., J. Hinkula, F. Espinoza, M. Levi, C. Zeng, U. Ruden, T. Vesikari, M. Estes, and L. Svensson. 1999. Humoral and cell-mediated immune responses in humans to the NSP4 enterotoxin of rotavirus. J Med Virol 59:369-77.
54. Kalica, A. R., M. M. Sereno, R. G. Wyatt, C. A. Mebus, R. M. Chanock, and A. Z. Kapikian. 1978. Comparison of human and animal rotavirus strains by gel electrophoresis of viral RNA. Virology 87:247-55.
55. Kim, B., T. Bowersock, P. Griebel, A. Kidane, L. A. Babiuk, M. Sanchez, S. Attah-Poku, R. S. Kaushik, and G. K. Mutwiri. 2002. Mucosal immune responses following oral immunization with rotavirus antigens encapsulated in alginate microspheres. J Control Release 85:191-202.
56. Landschulz, W. H., P. F. Johnson, and S. L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759-64.
57. Lawton, J. A., M. K. Estes, and B. V. Prasad. 2001. Identification and characterization of a transcription pause site in rotavirus. J Virol 75:1632-42.
58. Lopez, S., R. Espinosa, H. B. Greenberg, and C. F. Arias. 1994. Mapping the subgroup epitopes of rotavirus protein VP6. Virology 204:153-62.
59. Ludert, J. E., N. Feng, J. H. Yu, R. L. Broome, Y. Hoshino, and H. B. Greenberg. 1996. Genetic mapping indicates that VP4 is the rotavirus cell attachment protein in vitro and in vivo. J Virol 70:487-93.
60. Lundgren, O., A. T. Peregrin, K. Persson, S. Kordasti, I. Uhnoo, and L. Svensson. 2000. Role of the enteric nervous system in the fluid and electrolyte secretion of rotavirus diarrhea. Science 287:491-5.
61. Lundgren, O., and L. Svensson. 2001. Pathogenesis of rotavirus diarrhea. Microbes Infect 3:1145-56.
62. Madore, H. P., M. K. Estes, C. D. Zarley, B. Hu, S. Parsons, D. Digravio, S. Greiner, R. Smith, B. Jiang, B. Corsaro, V. Barniak, S. Crawford, and M. E. Conner. 1999. Biochemical and immunologic comparison of virus-like particles for a rotavirus subunit vaccine. Vaccine 17:2461-71.
63. Massie, B., F. Couture, L. Lamoureux, D. D. Mosser, C. Guilbault, P. Jolicoeur, F. Belanger, and Y. Langelier. 1998. Inducible overexpression of a toxic protein by an adenovirus vector with a tetracycline-regulatable expression cassette. J Virol 72:2289-96.
64. Mizuguchi, H., M. A. Kay, and T. Hayakawa. 2001. Approaches for generating recombinant adenovirus vectors. Adv Drug Deliv Rev 52:165-76.
65. O'Brien, J. A., J. A. Taylor, and A. R. Bellamy. 2000. Probing the structure of rotavirus NSP4: a short sequence at the extreme C terminus mediates binding to the inner capsid particle. J Virol 74:5388-94.
66. O'Neal, C. M., J. D. Clements, M. K. Estes, and M. E. Conner. 1998. Rotavirus 2/6 viruslike particles administered intranasally with cholera toxin, Escherichia coli heat-labile toxin (LT), and LT-R192G induce protection from rotavirus challenge. J Virol 72:3390-3.
67. O'Neal, C. M., S. E. Crawford, M. K. Estes, and M. E. Conner. 1997. Rotavirus virus-like particles administered mucosally induce protective immunity. J Virol 71:8707-17.
68. Palombo, E. A. 2002. Genetic analysis of Group A rotaviruses: evidence for interspecies transmission of rotavirus genes. Virus Genes 24:11-20.
69. Palombo, E. A. 1999. Genetic and antigenic diversity of human rotaviruses: potential impact on the success of candidate vaccines. FEMS Microbiol Lett 181:1-8.
70. Palombo, E. A., P. J. Masendycz, H. C. Bugg, N. Bogdanovic-Sakran, G. L. Barnes, and R. F. Bishop. 2000. Emergence of serotype G9 human rotaviruses in Australia. J Clin Microbiol 38:1305-6.
71. Parashar, U. D., R. C. Holman, J. S. Bresee, M. J. Clarke, P. H. Rhodes, R. L. Davis, R. S. Thompson, J. P. Mullooly, S. B. Black, H. R. Shinefield, S. M. Marcy, C. M. Vadheim, J. I. Ward, R. T. Chen, and R. I. Glass. 1998. Epidemiology of diarrheal disease among children enrolled in four West Coast health maintenance organizations. Vaccine Safety Datalink Team. Pediatr Infect Dis J 17:605-11.
72. Poncet, D., S. Laurent, and J. Cohen. 1994. Four nucleotides are the minimal requirement for RNA recognition by rotavirus non-structural protein NSP3. Embo J 13:4165-73.
73. Rao, C. D., K. Gowda, and B. S. Reddy. 2000. Sequence analysis of VP4 and VP7 genes of nontypeable strains identifies a new pair of outer capsid proteins representing novel P and G genotypes in bovine rotaviruses. Virology 276:104-13.
74. Ray, P., J. Malik, R. K. Singh, S. Bhatnagar, R. Bahl, R. Kumar, and M. K. Bhan. 2003. Rotavirus nonstructural protein NSP4 induces heterotypic antibody responses during natural infection in children. J Infect Dis 187:1786-93.
75. Sandino, A. M., M. Jashes, G. Faundez, and E. Spencer. 1986. Role of the inner protein capsid on in vitro human rotavirus transcription. J Virol 60:797-802.
76. Schwartz-Cornil, I., Y. Benureau, H. Greenberg, B. A. Hendrickson, and J. Cohen. 2002. Heterologous protection induced by the inner capsid proteins of rotavirus requires transcytosis of mucosal immunoglobulins. J Virol 76:8110-7.
77. Scott, G., L. Cassidy, and Z. Abdel-Malek. 1997. Alpha-melanocyte-stimulating hormone and endothelin-1 have opposing effects on melanocyte adhesion, migration, and pp125FAK phosphorylation. Exp Cell Res 237:19-28.
78. Shenk, T. 1996. Adenoviridae. In: B.N. Fields, D.M. Knipe and P.M. Howley, Editors. Fields Virology Lippincott-Raven Publishing, Philadelphia, PA, 2:2111-2148.
79. Shiver, J. W., T. M. Fu, L. Chen, D. R. Casimiro, M. E. Davies, R. K. Evans, Z. Q. Zhang, A. J. Simon, W. L. Trigona, S. A. Dubey, L. Huang, V. A. Harris, R. S. Long, X. Liang, L. Handt, W. A. Schleif, L. Zhu, D. C. Freed, N. V. Persaud, L. Guan, K. S. Punt, A. Tang, M. Chen, K. A. Wilson, K. B. Collins, G. J. Heidecker, V. R. Fernandez, H. C. Perry, J. G. Joyce, K. M. Grimm, J. C. Cook, P. M. Keller, D. S. Kresock, H. Mach, R. D. Troutman, L. A. Isopi, D. M. Williams, Z. Xu, K. E. Bohannon, D. B. Volkin, D. C. Montefiori, A. Miura, G. R. Krivulka, M. A. Lifton, M. J. Kuroda, J. E. Schmitz, N. L. Letvin, M. J. Caulfield, A. J. Bett, R. Youil, D. C. Kaslow, and E. A. Emini. 2002. Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity. Nature 415:331-5.
80. Singh, N., M. M. Sereno, J. Flores, and A. Z. Kapikian. 1983. Monoclonal antibodies to subgroup 1 rotavirus. Infect Immun 42:835-7.
81. Sullivan, N. J., T. W. Geisbert, J. B. Geisbert, L. Xu, Z. Y. Yang, M. Roederer, R. A. Koup, P. B. Jahrling, and G. J. Nabel. 2003. Accelerated vaccination for Ebola virus haemorrhagic fever in non-human primates. Nature 424:681-4.
82. Tang, M., J. A. Harp, and R. D. Wesley. 2002. Recombinant adenovirus encoding the HA gene from swine H3N2 influenza virus partially protects mice from challenge with heterologous virus: A/HK/1/68 (H3N2). Arch Virol 147:2125-41.
83. Tatsis, N., and H. C. Ertl. 2004. Adenoviruses as vaccine vectors. Mol Ther 10:616-29.
84. Tian, P., M. K. Estes, Y. Hu, J. M. Ball, C. Q. Zeng, and W. P. Schilling. 1995. The rotavirus nonstructural glycoprotein NSP4 mobilizes Ca2+ from the endoplasmic reticulum. J Virol 69:5763-72.
85. Tian, P., Y. Hu, W. P. Schilling, D. A. Lindsay, J. Eiden, and M. K. Estes. 1994. The nonstructural glycoprotein of rotavirus affects intracellular calcium levels. J Virol 68:251-7.
86. Tobery, T. W., J. F. Smith, N. Kuklin, D. Skulsky, C. Ackerson, L. Huang, L. Chen, J. C. Cook, W. L. McClements, and K. U. Jansen. 2003. Effect of vaccine delivery system on the induction of HPV16L1-specific humoral and cell-mediated immune responses in immunized rhesus macaques. Vaccine 21:1539-47.
87. Unicomb, L. E., G. Podder, J. R. Gentsch, P. A. Woods, K. Z. Hasan, A. S. Faruque, M. J. Albert, and R. I. Glass. 1999. Evidence of high-frequency genomic reassortment of group A rotavirus strains in Bangladesh: emergence of type G9 in 1995. J Clin Microbiol 37:1885-91.
88. Vogels, R., D. Zuijdgeest, R. van Rijnsoever, E. Hartkoorn, I. Damen, M. P. de Bethune, S. Kostense, G. Penders, N. Helmus, W. Koudstaal, M. Cecchini, A. Wetterwald, M. Sprangers, A. Lemckert, O. Ophorst, B. Koel, M. van Meerendonk, P. Quax, L. Panitti, J. Grimbergen, A. Bout, J. Goudsmit, and M. Havenga. 2003. Replication-deficient human adenovirus type 35 vectors for gene transfer and vaccination: efficient human cell infection and bypass of preexisting adenovirus immunity. J Virol 77:8263-71.
89. Vollet, J. J., 3rd, H. L. DuPont, and L. K. Pickering. 1981. Nonenteric sources of rotavirus in acute diarrhea. J Infect Dis 144:495.
90. Vorburger, S. A., and K. K. Hunt. 2002. Adenoviral gene therapy. Oncologist 7:46-59.
91. Woods, P. A., J. Gentsch, V. Gouvea, L. Mata, M. Santosham, Z. S. Bai, S. Urasawa, and R. I. Glass. 1992. Distribution of serotypes of human rotavirus in different populations. J Clin Microbiol 30:781-5.
92. Xiang, Z., Y. Li, G. Gao, J. M. Wilson, and H. C. Ertl. 2003. Mucosally delivered E1-deleted adenoviral vaccine carriers induce transgene product-specific antibody responses in neonatal mice. J Immunol 171:4287-93.
93. Xiang, Z. Q., G. P. Gao, A. Reyes-Sandoval, Y. Li, J. M. Wilson, and H. C. Ertl. 2003. Oral vaccination of mice with adenoviral vectors is not impaired by preexisting immunity to the vaccine carrier. J Virol 77:10780-9.
94. Xu, A., A. R. Bellamy, and J. A. Taylor. 2000. Immobilization of the early secretory pathway by a virus glycoprotein that binds to microtubules. Embo J 19:6465-74.
95. Yee, A. S., R. Reichel, I. Kovesdi, and J. R. Nevins. 1987. Promoter interaction of the E1A-inducible factor E2F and its potential role in the formation of a multi-component complex. Embo J 6:2061-8.
96. Zhang, M., C. Q. Zeng, A. P. Morris, and M. K. Estes. 2000. A functional NSP4 enterotoxin peptide secreted from rotavirus-infected cells. J Virol 74:11663-70.
97. Zheng, B. J., R. X. Chang, G. Z. Ma, J. M. Xie, Q. Liu, X. R. Liang, and M. H. Ng. 1991. Rotavirus infection of the oropharynx and respiratory tract in young children. J Med Virol 34:29-37.
98. Zhou, Y., J. Supawadee, C. Khamwan, S. Tonusin, S. Peerakome, B. Kim, K. Kaneshi, Y. Ueda, S. Nakaya, K. Akatani, N. Maneekarn, and H. Ushijima. 2001. Characterization of human rotavirus serotype G9 isolated in Japan and Thailand from 1995 to 1997. J Med Virol 65:619-28.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24644-
dc.description.abstract輪狀病毒(rotavirus)感染會造成嬰幼兒產生腹瀉的症狀,嚴重者甚至會死亡,因此極需要發展有效的疫苗,來對抗此病毒的感染。
輪狀病毒顆粒由內、中、外三層蛋白質殼(capsid)所組成。VP6為構成中層蛋白質殼的主要成份,具有高抗原性及高免疫生成性,保守性較外層蛋白質高,過去的文獻指出,不論是其全長或是C端的部分(第197~397個胺基酸),皆可引發出具有保護性的抗體。另外,NSP4是一種穿膜的非結構性蛋白質,與病毒在細胞內的組裝有關,並被認為是會引發腹瀉的一種腸毒素,其C端的部分(第86∼175個胺基酸)包含了會引發腹瀉的片段,因此NSP4的抗體可能會有效減輕腹瀉的症狀。由於VP6及NSP4在輪狀病毒的結構及功能上極重要,且具有較高的保守性,因此本研究的主要目的,即是發展出針對VP6或是NSP4為目標的疫苗。
腺病毒載體是一種目前被廣泛用於表現外來基因的系統。目前,已有許多病毒疫苗的研發是利用腺病毒當載體,且被認為是有效的。因此,本研究選用腺病毒載體系統,首先分別將輪狀病毒的VP6、VP6197-397、NSP4及NSP486-175基因片段增幅出,擇殖入pShuttle-CMV 載體上,再將其送入已帶有腺病毒基因體的大腸桿菌株BJ5183 ,經由同源重組反應產生重組腺病毒DNA,將其轉染至293A細胞中,產生出帶有不同基因片段的重組腺病毒。完成了帶有VP6、VP6197-397、NSP4及NSP486-175共四個重組腺病毒株,及一個對照腺病毒。之後利用間接免疫螢光染色法,確定了各個重組腺病毒株,其目標蛋白質在293A細胞中的表現情形。再經過三次溶菌斑純化試驗,以得到正確的純種子代病毒株。大量增殖重組腺病毒後,以兩次CsCl密度梯度之超高速離心及透析法純化病毒顆粒,測定病毒力價後,以每一劑1×109 pfu之病毒口服或鼻腔內滴入的方式免疫小鼠兩次,並在最後給予輪狀病毒,觀察其抗體反應。
為了要製備偵測抗體所需之抗原蛋白質,使用重組桿狀病毒感染Sf-9昆蟲細胞,表現VP6蛋白質,以供偵測VP6的抗體。另一方面,使用大腸桿菌系統表現NSP486-175的片段,使用Ni2+ 樹脂管柱純化後,以供偵測NSP486-175的抗體。使用酵素連結免疫吸附試驗,偵測抗體的結果顯示,使用帶有VP6基因的重組腺病毒免疫小鼠後,不論是以口服或鼻腔內滴入的方式,皆能使小鼠血清中產生針對VP6的IgG抗體反應,亦可偵測到力價較低的IgA抗體反應。本研究初步證實,使用腺病毒載體系統表現輪狀病毒蛋白質VP6,可以引發小鼠的抗體免疫反應,具有發展成疫苗的潛力。
zh_TW
dc.description.abstractRotavirus infections are the most important cause of severe, even life-threatening dehydrating diarrhea in infants and children. Because of the significant disease burden, vaccines against rotavirus are urgently needed.
The viral particle is composed of three layers: inner, middle, and outer capsids. V6 protein is the major component of the middle-layer capsid and is highly antigenic and immunogenic. It is also more conserved than outer capsid proteins. Either full-length or the cytoplasmic domain of VP6 can elicit protective antibody response. In addition, NSP4 protein is a nonstructural transmembrane protein important for viral assembly and is suggested as an enterotoxin. The cytoplasmic domain (amino acid 86-175) include the region that cause diarrhea. Therefore, antibody against NSP4 may effectively reduce the diarrhea symptom. Because of the higher conservation and the importance for viral structure and function, vaccines against VP6 and NSP4 were developed in this research.
Adenoviral vector systems were utilized for a variety of animal virus vaccine, and considered to be effective. In this study, we used the adenoviral vector to develop rotavirus vaccine. VP6, VP6197-397, NSP4, and NSP486-175 gene fragments were recovered from rotavirus, then cloned into pShuttle-CMV vector. The vector was used to transform bacteria BJ5183 which carried adenoviral genome to generate recombinant adenoviral DNA through homologous recombination. The recombinant adenoviral DNA was then transfected into 293A cell to generate recombinant adenoviruses carrying each gene fragment. Four recombinant adenoviruses carrying VP6, VP6197-397, NSP4, and NSP486-175 gene were established. Target protein expression in 293A cells could be detected by indirect immunofluorescence assay. In order to get pure viral progeny, three serial plaque purification procedures were carried out. After large scale amplification of recombinant adenoviruses, double CsCl gradient banding and dialysis were performed to purify viral particles. The virus titer was determined, and the mice were immunized with 1×109 pfu viral particles twice via oral or intranasal administration routes. The mice were challenged with rotavirus and the antibody responses were analyzed.
In order to prepare antigens to detect specific antibody, the Sf-9 cell were infected with recombinant baculovirus to express VP6 protein. On the other hand, the NSP486-175 were expressed by E.coli system and purified by Ni2+ column, for detection of the anti-NSP486-175 antibody. The ELISA results showed that immunization of mouse with VP6 recombinant adenoviruses via either oral or intranasal route could induce anti-VP6 IgG antibody response. Low level IgA antibody could also be detected in mouse serum. This study showed that using adenoviral vector carrying VP6 gene could induce antibody response in mice. There is potential for the development of rotavirus vaccine.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:34:45Z (GMT). No. of bitstreams: 1
ntu-94-R91424003-1.pdf: 4774442 bytes, checksum: c02de45aca6ddf9d869b02420a2858a8 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要------------------------------------------------1
英文摘要------------------------------------------------3
緒論
第一節 輪狀病毒-----------------------------------------5
第二節 輪狀病毒疫苗之發展-------------------------------7
第三節 腺病毒載體---------------------------------------10
第四節 研究目的-----------------------------------------13
材料與方法
第一節 質體的構築---------------------------------------15
第二節 勝任細胞與質體之製備-----------------------------20
第三節 重組腺病毒的製備---------------------------------24
第四節 蛋白質的表現-------------------------------------30
第五節 輪狀病毒株之培養與定量---------------------------36
第六節 小鼠活體免疫試驗---------------------------------38
第七節 免疫反應分析-------------------------------------40
結果
第一節 重組腺病毒質體的構築-----------------------------44
第二節 重組腺病毒之製備---------------------------------46
第三節 重組腺病毒在細胞株中之目標基因表現---------------47
第四節 製備偵測抗體所用之抗原蛋白質---------------------48
第五節 小鼠免疫反應-------------------------------------50
討論----------------------------------------------------52
圖------------------------------------------------------60
表------------------------------------------------------87
參考文獻------------------------------------------------93
dc.language.isozh-TW
dc.subjectVP6zh_TW
dc.subject腺病毒載體zh_TW
dc.subjectNSP4zh_TW
dc.subject輪狀病毒zh_TW
dc.subject疫苗zh_TW
dc.subjectNSP4en
dc.subjectVaccineen
dc.subjectVP6en
dc.subjectAdenoviral Vectoren
dc.subjectRotavirusen
dc.title利用腺病毒載體研發輪狀病毒之疫苗zh_TW
dc.titleDevelopment of Rotavirus Vaccine Using Adenoviral Vectoren
dc.typeThesis
dc.date.schoolyear93-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張淑媛,高全良,陶秘華,王維恭
dc.subject.keyword腺病毒載體,輪狀病毒,VP6,NSP4,疫苗,zh_TW
dc.subject.keywordAdenoviral Vector,VP6,Vaccine,NSP4,Rotavirus,en
dc.relation.page101
dc.rights.note未授權
dc.date.accepted2005-01-31
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫事技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
4.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved