Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2460
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周俊廷(Chun-Ting Chou)
dc.contributor.authorZAMBONI MATHISen
dc.contributor.author尚馬提zh_TW
dc.date.accessioned2021-05-13T06:40:30Z-
dc.date.available2017-08-25
dc.date.available2021-05-13T06:40:30Z-
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-07-21
dc.identifier.citation[1] I. Tinnirello and S. Choi, “Temporal fairness provisioning in multi-rate contentionbased 802.11e wlans,” in Sixth IEEE International Symposium on a World of Wireless Mobile and Multimedia Networks, 2005.
[2] L. M. Y. Le, W. Cheng, X. Cheng, , and B. Chen, “A time fairness-based mac algorithm for throughput maximization in 802.11 networks,” in IEEE TRANS- ACTIONS ON COMPUTERS, pp. VOL. 64, NO. 1, JANUARY 2013.
[3] Y. Weibo, M. Zhichao, N. Dawei, , and D. Chao, “Pcap: Proportional channel access probability fairness in multi-rate ieee 802.11 dcf,” in International Conference on Intelligent System Design and Engineering Application, 2012.
[4] M. Heusse, F. Rousseau, R. Guillier, , and A. Duda, “Idle sense: An optimal access method for high throughput and fairness in rate diverse wireless lans,” in ISIGCOMM, 2005.
[5] X. Tian, X. Chen, T. Ideguchi, and Y. Fang, “Improving throughput and fairness in wlans through dynamically optimizing backoff,” in IEICE Transactions, pp. pp. 121–132, 2005.
[6] Q. Yu, Y. Zhuang, , and L. Ma, “Dynamic contention window adjustment scheme for improving throughput and fairness in ieee 802.11 wireless lans,” in Globecom 2012 -Wireless Communications Symposium, pp. pp. 5074–5080, 20012.
[7] X. Zhou, C. Zheng, , and X. He, “Adaptive contention window tuning for ieee 802.11,” in 22nd International Conference on Telecommunications, pp. pp. 74–79, 2015.
[8] L. Luo, M. Gruteser, and H. Liu, “Achieving temporal fairness in multi-rate 802.11 wlans with capture effect,” in IEEE International Conference on Communications, pp. pp. 2496–2501, 2008.
[9] Y. Bejerano, H.-G. Choi, and S.-J. Han, “Fairness analysis of physical layer capture effects in ieee 802.11 networks,” in 13th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks (WiOpt), 2015.
[10] A.Kochut, A.Vasan, A. U. Shankar, and A. Agrawala, “Sniffing out the correct physical layer capture model in 802.11b,” in 12th IEEE International Conference on Network Protocols, Berlin, Germany, pp. 5074 – 5080, OCTOBER 2004.
[11] J. Lee, W.Kim, S.-J. Lee, and D. Jo, “An experimental study on the capture effect in 802.11a networksadaptive contention window tuning for ieee 802.11,” in WiNTECH07, SEPTEMBER 2007.
[12] F. Daneshgaran, M. Laddomada, F. Mesiti, M. Mondin, and M. Zanolo, “Saturation throughput analysis of ieee 802.11 in the presence of non ideal transmission channel and capture effects,” in IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO. 7, JULY 2008.
[13] J. H. Kim and J. K. Lee, “Ieee capture effects of wireless csma/ca protocols in rayleigh and shadow fading channels,” in IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 48, NO. 4, JULY 1999.
[14] L. Luo, M. Gruteser, and H. Liu, “Achieving temporal fairness in multi-rate 802.11 wlans with capture effect,” in EEE International Conference on Communications, pp. 2496 – 2501, 2008.
[15] P.Karn, “Maca : A new channel access method for packet radio,” in IARRL/CRRL Amateur Radio 9th Computer Networking Conference Septembe, SEPTEMBER 1990.
[16] K. Biba, “A hybrid wireless mac protocol supporting asynchronous and synchronous msdu delivery services,” in IEEE Working Group paper 802.11, pp. 91 – 92, SEPTEMBER 1992.
[17] V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, “Macaw a media access protocol for wireless lans,” in SIGCOMM ’94 Proceedings of the conference on Communications architectures, protocols and applications, pp. 212–225, OCOTBER 1994.
[18] S. H. E. M. Najafabadi and C. C. Constantinou, “A game theoretic model for wireless medium access control in the presence of hidden terminals,” in IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), pp. 1731–1736, 2013.
[19] W. Y. Choi, “Clustering algorithm for hidden node problem in infrastructure mode ieee 802.11 wireless lans,” in Advanced Communication Technology, pp. 1335–1338, 2008.
[20] S.-H. Hsiao, “A fair channel access protocol for ieee 802.11af networks,” 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2460-
dc.description.abstractThe IEEE 802.11af, also called White-Fi, employs unused TV spectrum at frequencies between 470 MHz and 790 MHz, which provides bandwidth for sensors and monitors. The IoT technology revolution pushes IEEE 802.11af networks to handle a big number of stations and a wide transmission range. These constraints endanger one of the most important concerns of the protocol which rules these networks : providing fairness among stations. The most known causes to the fairness issue are the Capture Effect and the Hidden Terminal problem. The first one occurs when two stations of the same network, including the Access Point (AP), attempt a transmission at the same time and then instead of both failing, one of the two transmissions is successful. In the second one, two stations do not hear each other. Then a station can attempt a transmission while another one is already transmitting, inducing a collision and the failure of both transmissions. The original DCF has already been improved with the adding of RTS/CTS frames to prevent hidden nodes collisions but this mechanism just reduces the time of collision and does not completely treat the unfairness problem caused by this issue. In this thesis, we first design a fully distributed mechanism to detect capture effect relationships in mixed uplink and downlink transmissions. When the transmission of a station is captured, our new protocol forces this station to transmit again, directly after the reception of the Acknowledgement (ACK) addressed to the station which has just captured it. Then both stations are aware of the capture effect relationship and can adjust their Contention Window (CW) in order to have the same probability of successful transmission as the other stations of the network. In addition, we deal with the hidden node problem and establish a distributed way to inform the whole iii iv network about the hidden node relationships. As a result, every station of the same network has the same knowledge of its network topology and optimizes its contention window to have the same Successfull Count Transmission (STC) as each other . Our detection protocol uses the fact that when two hidden stations collide, there is a probability that one succeeds according to the arrival time of the frames. Then, the station which is the second to attempt a transmission will transmit again two times directly after receiving the ACK addressed to the first one. This double transmission will inform the whole network of a hidden node relationship. We compare through differents simulations our new mechanism with the original DCF of IEEE 802.11 af. In terms of fairness, our mechanism provides, for example to a network touched by only capture effect, a min-max fairness index of 96% and a Jains index value of 100%. In comparison, for the same network ruled by the original DCF, these indexes are respectively 35% and 86%. The STC fairness is achieved, instead of having twenty stations with a STC two times greater than twenty others, and every station has around the same STC. Moreover, for a network composed by twenty stations with six hidden nodes relationships, all these relationships are detected in less than 4 seconds by the whole network with our mechanism.en
dc.description.provenanceMade available in DSpace on 2021-05-13T06:40:30Z (GMT). No. of bitstreams: 1
ntu-106-R05942126-1.pdf: 1870989 bytes, checksum: 25d1605564eacab88894880b08dff8fe (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . .
1 1.1 Introduction to TV White Space . . . . . . . . . . . . . . . . . . . .
1 1.2 Main issues and objectives . . . . . . . . . . . . . . . . . . . . . . .5
1.2.1 The capture effect . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 The hidden node problem . . . . . . . . . . . . . . . . . . . . 8
1.2.3 The combination of capture effect and hidden node problem. 10
CHAPTER 2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . 13
2.1 Different fairness approaches . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 Air-Time fairness . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Throughput fairness . . . . . . . . . . . . . . . . . . . . . . 15
2.1.3 Min-max fairness and proportional fairness . . . . . . . . . . 15
2.2 The Capture Effect and the Hidden Node problem . . . . . . . . . . 16
2.2.1 The capture effect . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.2 The hidden terminal problem . . . . . . . . . . . . . . . . . . 17
2.3 Paper [20] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.1 Main features . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
CHAPTER 3 GSR WITH CAPTURE EFFECT ONLY . . . . . . . 24
3.1 Different level of capture effect . . . . . . . . . . . . . . . . . . . . . 24
3.2 Our capture effect detection mechanism . . . . . . . . . . . . . . . . 25
3.3 Computation of the contention window . . . . . . . . . . . . . . . . 26
3.3.1 Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 STC Fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.3 Throughput optimization . . . . . . . . . . . . . . . . . . . . 31
CHAPTER 4 GSR WITH BOTH CAPTURE EFFECT AND HIDDEN NODES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1 Detection mechanism of the capture effect relationships in IEEE 802.11af networks with hidden nodes. . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Detection mechanism of the hidden node relationships in IEEE 802.11af networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.1 Detection of hidden nodes of a station by itself . . . . . . . . 35
4.2.2 Detection of hidden nodes of a station by the whole network 35
4.2.3 Special scenario : station A and B are hidden and station A captures station B . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2.4 Record of the capture effect and hidden nodes infromations . 40
4.3 Computation of the contention window . . . . . . . . . . . . . . . . 41
4.3.1 Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 STC fairness . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
CHAPTER 5 SIMULATION RESULTS . . . . . . . . . . . . . . . . . 52
5.1 Only the capture effect . . . . . . . . . . . . . . . . . . . . . . . . . 52
5.1.1 STC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.1.3 Conclusions for capture effect only . . . . . . . . . . . . . . . 55
5.2 Only the hidden terminal problem . . . . . . . . . . . . . . . . . . . 55 5.2.1 STC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.3 Conclusions for hidden nodes only . . . . . . . . . . . . . . . 57
5.3 Both capture effect and hidden terminal problem . . . . . . . . . . . 57
5.3.1 STC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.3 Conclusions for both capture effect and hidden nodes . . . . 59
CHAPTER 6 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . 60
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
dc.language.isoen
dc.subject隱藏節點效應zh_TW
dc.subjectIEEE 802.11afzh_TW
dc.subject公平性zh_TW
dc.subject捕獲效應zh_TW
dc.subjectcapture effecten
dc.subjecthidden nodeen
dc.subjectIEEE 802.11afen
dc.subjectfairnessen
dc.titleIEEE 802.11af 網路之增強版公平性zh_TW
dc.titleEnhanced Fairness for 802.11af networksen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee逄愛君(Ai-Chun Pang),魏宏宇(Hung-Yu Wei),謝宏昀(Hung-Yun Hsieh)
dc.subject.keywordIEEE 802.11af,公平性,捕獲效應,隱藏節點效應,zh_TW
dc.subject.keywordIEEE 802.11af,fairness,capture effect,hidden node,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201701832
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-07-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf1.83 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved