Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24591
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳昭瑩
dc.contributor.authorYin-Hsun Luen
dc.contributor.author盧音秀zh_TW
dc.date.accessioned2021-06-08T05:32:20Z-
dc.date.issued2005
dc.date.submitted2005-06-22
dc.identifier.citation黃祥恩。1997。水楊酸誘導百合系統性灰黴病之研究。國立台灣大學植物病蟲害學系碩士論文。
鍾瑞洲。1999。百合系統性誘導抗病反應之研究。國立台灣大學植物病蟲害學系碩士論文。
路幼妍。2003。葵百合誘導抗病之研究。國立台灣大學植物病蟲害學系博士論文。
Alba, M. N., culianez-Macia, F. A., Goday, A., Freire, M. A., Nadal, B., and Pages, M. 1994 The maize RNA-binding protein, MA16, is a nucleolar protein located in the dense fibrillar component Plant J. 6:825-834.
Allen, R. D. 1995 Dissection of oxidative stress tolerance using transgenic plants. Plant Phsiol. 107:1049-1054.
Alvarez, M. E., Pennell, R. I., Meijer. P. J., Ishikawa, A., Dixon, R. A., and Lamb, C. 1998 Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92:773-784.
Apostol, I., Heinstein, P. F., and Low, P. S. 1990 Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol. 90:109-116.
Auh, C. K., and Murphy, T. M. 1995 Plasma membrame redox enzyme is involved in the synthesis of O2 and H2O2 by Phytophthora elicitor-stimulated rose cells. Plant Physiol. 107:1241-1247.
Baker, C. J., and Orlandi, E. W. 1995 Active oxygen in plant pathogenesis. Annu. Rev. Phytopathol. 33:299-321.
Benhamou, N., Kloepper, J. W., Quadt-Hallman, A., and Tuzun, S. 1996 Induction of defense-related unltranstructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol. 112:919-929.
Berglund, G. I., Carlsson, G. H., Smith, A. T., Szóke, H., Henriksen, A., and Hajdu, J. 2002 The catalytic pathway of horseradish peroxidase at high resolution. Nature 417:463-468.
Birnboim, H. C. and Doly, J. 1979 A rapid alkaline extraction procedure for screening recombinant plamid DNA. Nucleic Acid Res, 7:1513.
Board, P., Russell, R. J., Marano, R. J., and Oakeshott, J. G. 1994 Purification, molecular cloning and heterologous expression of a glutathione S-transferase from the Australian sheep blowfly (Lucilia cuprina). Biochem J. 299:425-430.
Bol, J. F., Linthorst, H. J. M., and Cornelissen, B. J. C. 1990 Plant pathogenesis-related proteins induced by virs infection. Annu. Rev. Phytopathol. 28:113-138.
Bolwell, G. p., Butt, V. S., Davies, D. R., and Zimmerlin, A. 1995 The origin of the oxidative burst in plants. Free Radic. Res. 23:517-532.
Bolwell, G. P. 1999 Role of active oxygen species and NO in plant defense responses. Curr. Opin. Biol. 2:287-294.
Borden S. and Higgins, V. J. 2002 Hydrogen peroxide plays a critical role in the defense response of tomato to Cladosporium fulvum. Physiol. Mol. Plant Pathol. 61:227-236.
Bowles, D. J. 1990 Defense-related proteins in higher plants. Annu. Rev. Biochem. 59:873-907.
Bowler, C., van Montagu, M., and Inzé, D. 1992 Superoxide dismutase and stress tolerance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:83-116.
Bowler, C., van Camp, W., van Montagu, M., and Inzé, D. 1994 Superoxide dismutase in plants. Crit. Rev. Plant Sci. 13:199-218.
Bradford, M. M. 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Bradley, D. J., Kjellbom, P., and Lamb, C. J. 1992 Elicitor- and wound-induced oxidative cross-linking of a proling-rich plant cell wall protein: a novel, rapid defense. Cell 70:21-30.
Brisson, L. F., Tenhaken, R. and Lamb C. 1994 Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:1703-1712.
Camp, W. V., Van Montagu, M., and Inzé, D. 1998 H2O2 and NO: redox signals in disease resistance. Trends Plant Sci. 3:330-334.
Carpenter, C. D., Kreps, J. K. and Simon, A. E. 1994 Genes encoding glycine-rich Arabidopsis thaliana proteins with RNA-binding motifs are influenced by cold treatment and an endogenous circadian rhythm. Plant Physiol. 104:1015-1025.
Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H. Jr., Van Montagu, M., Inzé, Dirk, I., and Van Camp, W. 1998 Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic plants. Proc. Natl. Acad. Sci. U.S.A. 95:5818-5823.
Chen, Z., Silva, H., and Klessig, D. F. 1993 Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883-1886.
Colonna, S., Gaggero, N., Richelmi, C., and Pasta, P. 1999 Recent biotechnological developments in the use of peroxidases. Trends Biotech. 17:163-168.
Condit, C. M. and Meagher, R. B. 1986 A gene encoding a novel glycine-rich structure protein of petunia. Nature 323:178-181.
Dat, J., Vandenabeele, S., Vranova, E., Van Montagu, M., and Van Breusegem, F. 2000 Dual action of the active oxygen species during plant stress responses. Cell. Mol. Life Sci. 57:779-795.
De Oliveira, D. E., Seurinck, J., Inzé, D., Van Montagu, M., and Bottermana, J. 1990 Differential expression of five Arabidopsis genes encoding glycine-rich proteins. Plant Cell 2:427-436
Delledonne, M., Polverari, A., and Murgia, I. 2003 The function of nitric oxide-mediated signaling and changes in gene expression during the hypersensitive response. Antioxid. Redox Signal 5:33-41.
Dixon, R. A. 1986 The phytoalexin reponse: Elicitation, signaling, and control of host gene expression. Biol. Rev. Camb. Philos. Soc. 61:239-292.
Doke, N. 1983 Involvement of superoxide anion generation in hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophothora infestans. Physiol. Plant Pathol. 23:345-347.
Doke, N., and Ohashi, Y., 1988 Involvement of a superoxide anion genetating system in the induction of necrotic lesions on tobacco leaves infected with tobacco mosaic virus. Physiol. Mol. Plant Payhol. 32:163-175.
Fauth, M., Merten, A., Hahn, M. G., Jeblick, W., and Kauss, H. 1996 Competence for elicitation of hydrogen peroxide in hypocotyls of cucumber is induced by branching the cuticle and is enhanced by salicylic acid. Plant Physiol. 110:347-354.
Figueroa-Espinoza, M. C. and Rouau, X. 1998 Oxidative cross-linking of pentosans by a fungal laccase and horseradish peroxidase: mechanism of linkinge between feruloylated arabinoxylans. Cereal Chem. 75:259-265.
Franco, L. O., Manes, C. O., Hamdi, S., Sachetto-Martins, G., and de Oliveira, D. E. 2002 Distal regulatory regions restrict the expression of cis-linked genes to the tapetal cells. FEBS Lett. 517:13-18.
Glazener, J. A., Orlandi, E. W., and Baker, J. C. 1996 The active oxygen response of cell suspensions to incompatible bacteria is not sufficient to cause hypersensitive cell death. Plant Physiol. 110:759-763.
Goddemeier, M. L., Wulff, D., and Feix, G. 1998 Root-specific expression of a Zea mays gene encoding a novel glycine-rich protein, zmGRP3. Plant Mol. Boil. 36:799-802.
Gomez, J., Sanchez-Martinez, D., Stiefel, V., Rigau, J., Puigdomenech, P., and Pages, M. 1988 A gene induced by the plant hormone abscisic acid in response to water stress encodes a glycine-rich protein. Nature 334:262-264.
Greenberg, J. T. 1997 Programmed cell death in plant-pathgen interactions. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:525-545.
Harrak, H., Chamberland, H., Plante, M., Bellemare, G., Lafontaine, J. G., and Tabaeizadeh, Z. 1999 A proline-, threonine-, and glycine-regulated by drought is localized in the cell wall of xylem elements. Plant Physiol. 121:557-564.
Heintzen, C. S., Melzer, S., Fisher, R., Kappeler, S., Apel, K., and Staiger, D. 1994 A light- and temperature-entrained circadian clock controls expression of transcripts encoding nuclear proteins with homology to RNA-binding proteins in meristematic tissue. Plant J. 5:799-813.
Ish-Horowicz, D. and Burke, J. F. 1981 Rapid and efficient cosmid cloning. Nucleic Acids Res. 9:2989.
Jabs, T., Dietrich, R. A., and Dangl, J. L. 1996 Intiation of runaway cell death in Arabidopsis mutant by extracellular superoxide. Science 273:1853-1856.
Jana, S. and Choudhuri, M. A. 1982 Glycolate metabolism of three submerged aquatic angiosperms during aging. Aquat. Bot. 12:345-354.
Jih, P. J., Chen, Y. C., and Jeng, S. T. 2003 Involvement of hydrogen peroxide and nitric oxide in expression of the Ipomoelin gene from sweet potato. Plant Physiol. 132:381-389.
Kaldenhoff, R. and Richter, G. 1989 Sequence of cDNA for a novel light-induced glycine-rich protein. Nucleic. Acids Res. 17:2853.
Kauss, H. 1987 Some aspects of calcium-dependent regulation in plant metabolism. Annu. Rev. Plant Physiol. 38:47-72.
Keller, B., Sauer, N., and Lamb C. J. 1988 Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO J. 7:3625-3633.
Keller, B., Schmid, J., and Lamb, C. J. 1989 Vascular expression of a bean cell wall glycine-rich protein-β-glucuronidase gene fusions in transgenic tobacco. EMBO J. 8:1309-1314.
Kohorn, B. D. 2001 Waks; cell wall associated kinases. Curr. Opin. Cell Biol. 13:529-533.
Lamb, C. J. Lawton, M. A., Dron, M., and Dixon, R. A. 1989 Signals and transduction mechanisms for activation of plant defense against microbial attack. Cell 56:215-224.
Lamb, C., and Dixion, R. A. 1997 The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:251-275.
Larson, R. A. 1988 The antioxidants of higher plants. Phytochemistry 27:969-978.
León, J., Lawton, W., and Raskin, I. 1995 Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol. 108:1673-1678.
Levine, A., Tenhaken, R., Dixon, R, and Lamb, C. 1994 H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583-593.
Linthorst, H. J. M. 1991 Pathogenesis-related proteins of plants. Crit. Rev. Plant Sci. 10:123-150.
Linthorst, H. J. M., van Loon, L. V., Memelink, J., and Bol, J. F. 1990 Characterization of cDNA clones for virus-inducible glycine-rich proteins from petunia. Plant Mol. Biol. 15:521-523.
Liu, Z., Z., Wang, J., L., Huang, X., Xu, W., H., Liu, Z., M., and Fang, R., X. 2003 The promoter of a rice glycine-rich protein gene, Osgrp-2, confers vascular-specific expression in transgenic plants. Planta 216:824-833.
Low, P. S. and Merida, J. R. 1996 The oxidative burst in plant defense: Function and signal transduction. Physiol. Plant 96:533-542.
Lu, Y. Y. and Chen, C. Y. 1998 Probenazole-induced resistance of lily leaves against Botrytis elliptica. Plant Pathol. Bull. 7:134-140.
Luo, M., Lin, L., Hill, R. D., and Mohapatra, S. S. 1991 Primary structure of an environmental stress and abscisic acid-inducible alfalfa protein. Plant Mol. Biol. 17:1267-1269.
Luvine, A., Tenhaken, R., Dixon, R., and Lamb, C. 1994 H2O2 from the oxidative burst orchestrate the plant hypersensitive disease resistance repose. Cell 79:583-593.
Matsuyama, S., Kawano, S., Takano, H., Uchida, H., Sakai, A., and Kuroiwa, T. 1996 Isolation and developmental expression of male reproductive organ-specific genes in a dioecious campion, Melandrium album (Silene latifolia). Plant J. 10:679-685.
Medhy, M. C. 1994 Active oxygen sepecies in plant defense against pathogens. Plant Physiol. 105:467-472.
Memelink, J., Linthorst, H. J. M., Schilperoort, R. A., and Hoge, H. C. 1990 Tobacco genes encoding acid and basic isoforms of pathogenesis-related proteins display different expression patterns. Plant Mol. Biol. 14:119-126.
Molina, A., Mena, M., Carbonero, P., and Garcia-Olmedo, F. 1997 Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Plant Mol. Biol. 33:803-810.
Mundy, J. and Chua, N-H. 1988 Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J. 7:2279-2286.
Orozco-Cárdenas, M. L. and Ryan, C. A. 1999 Hydrogen peroxide is generated systematically in plant leaves by wounding and system via the octadecanoid pathway. Proc. Natl. Acad. Sci. U.S.A. 96:6553-6557.
Park, A. R., Somi, K. C., Yun, U. J. , Lee, S. H., Sachetto-Martins, G., and Park, O. K. 2001 Interaction of the Arabidopsis receptor protein kinase Wak1 with a glycine-rich Protein, AtGRP-3. J. Bol. Chem. 276:26688-26693.
Peng, M. and Kuc, J. 1992 peroxidase-generated hydrogen peroxidase as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82:696-699.
Piedras, P., Hammond-Kosack, K. E., Harrison, K., and Jones, J. D. G. 1998 Rapid Cf-9 and Avr9-dependent production of active oxygen species in tobacco suspension cultures. Mol. Plant-Microb Interact. 11:1155-1166.
Rao, M. V., Paliyath, G., Ormrod, D. P., and Murr, D. P. 1997 Influence of salicylic acid on H2O2 production, oxidative stress, and H2O2-metabolizing enzyme. Plant Physiol. 115:137-149.
Rasmussen, J. B., Smith, J. A., Williams, S., Burkhart, W., Ward, E., Somerville, S. C., Ryals, J., and Hammerschmidt, R. 1995 cDNA cloning and systemic expression of acidic peroxidases associated with systemic acquired resistance to disease in cucumber. Physiol. Mol. Plant Pathol. 46:389-400.
Raupach, G, S., Liu, L., Murphy, J. F., Tuzun, S., and Kloeper, J. W. 1996 Induction of systemic resistance in cucumber and tomato against cucumber mosaic virus using plant growth-promoting rhizobacteria (PGPR). Plant Dis. 80:891-894.
Richter, C., and Schweizer, M. 1997 Oxidative stress in mitochondria. In: oxidative stress and the molecular biology of antioxidant defenses. Scandalios, J. G. (ed.), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY pp.169-200.
Ringli, C., Keller, B., and Hauf, G. 2001a Hydrophobic interactions of the structural protein GRP1.8 in the cell wall of protoxylem elements. Plant Physiol. 125:673-682.
Ringli, C., Keller, B., and Ryser, U. 2001b Glycine-rich proteins as structural components of plant cell wall. Cell. Mol. Life Sci. 58:1430-1441.
Rohde, W., Rosch, K., and Kroger, K. 1990 Nucleotide sequence of a Hordeum vulgare gene encoding a glycine-rich protein with homology to vertebrate cytokeratins. Plant Mol. Biol. 14:1057-1059.
Ryals, J. A., Neuenschwander, U. H., Willits, M. G., Molina, A., Stelner, H.-Y., and Hunt, M. D. 1996 Systemic acquired resistance. Plant Cell 8:1809-1819.
Ryser, U. and Keller, B. 1992 Ultrastructural localization of a bean glycine-rich protein in unlignified primary walls of protoxylem cells. Plant Cell 4:773-783.
Ryser, U., Schorderet, M., Zhao, G.-F., Studer, D., Ruel, K., Hauf G., and Keller, B. 1997 Structural cell-wall proteins in protoxylem development: evidence for a repair process mediated by a glycine-rich protein. Plant J. 12:97-111.
Sachetto-Martins, G., Fernandes, L. D., Felix, D. B., and de Oliveira, D. 1995 Preferential transcriptional activity of a glycine-rich protein gene from Arabidopsis thaliana in protoderm-derived cells. Int. J. Plant Sci. 460-470.
Sachetto-Martins, G., Franco, L. O., and de Oliveira, D. E. 2000 Plant glycine-rich proteins: a family or just proteins with a common motif? Biochim. Biophy. Acta 1492:1-14.
Sakuta, C., Oda, A., Yamakawa, S., and Satoh, S. 1998 Root-specific expression of genes for novel glycine-rich proteins cloned by use of an antiserum against xylem sap proteins of cucumber. Plant Cell Physiol. 39:1330-1336
Salin, M. L. 1987 Toxic oxygen species and protective systems of the chloroplast. Physiol. Plant 72:681-689.
Sánchez-Casas, P. and Klessig, D. F. 1994 A salicylic acid-binding activity and a salicylic acid-inhibitable catalase activity are present in a variety of plant species. Plant Physiol. 106:1675-1779.
Santino, C. G., Stanford, G. L., and Conner, T. W. 1997 Developmental and transgenic analysis of two tomato fruit enhanced genes. Plant Mol. Biol. 33:405-416.
Schopfer, P. 1994 Histochemical demonstration and localization of H2O2 in organs of higher plants by tissue printing on nitrocellulose paper. Plant Physiol. 104:1269-1275.
Showalter, A. M. 1993 Structure and function of plant cell wall proteins. Plant Cell 5:9-23.
Smith, J. A., Hammerschmidt, R., and Fulbright, D. W. 1991 Rapid induction of systemic resistance in cucumber by Pseudomonas syringae pv. Syringae. Physiol. Mol. Plant Pathol. 38:232-235.
Steinert, P. M., Mack, J. W., Korge, B. P., Gan, S. Q., Haynes, A. C., and Steven, J. 1991 Glycine loops in proteins their occurrence in certain intermediate filament chains loricrins and single-stranded RNA binding proteins. Int. J. Biol. Macromol. 13:13-139.
Sturm, A. 1992 A wound-inducible glycine-rich protein from Daucus carota with homology to single stranded nucleic acid binding proteins. Plant Physiol. 99:1689-1692.
Taylor, A. M., Nakano, Y., Mohler, J., and Ingham, P. W. 1993 Contrasting distributions of patched and hedgehog proteins in the Drosophila embryo. Mech. Dev. 42:89-96.
Thibault, J. F., Garreau, C., and Durand, D. 1987 Kinetics and mechanism of reaction of ammonium persulfate with ferulic acid and sugar-beet pectins. Carbohydr. Res. 163:15-27.
Thordal-Christensen, H., Ahang, Z., Wei, Y., and Collinge, D. B. 1997 Subcellular localization of H2O2 in plants: H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J. 11:1187-1194.
Ueki, S. and Citovsky, V. 2002 The systemic movement of a tobamovirus is inhibited by a cadmiumion-induced glycine-rich protein. Nature Cell Biol. 4:478-485.
Van Kan, J. A. L., Cornelissen, B. J. C., and Bol, J. F. 1988 A virus-inducible tobacco gene encoding a glycine-rich-protein shares putative regulatory element eith the ribulose bisphosphate carboxylase small unit gene. Mol. Plant-Microbe Interact. 1:107-112.
Van Nocker, S. and Vierstra, R. D. 1993 Two cDNAs from Arabidopsis thaliana encode putative RNA binding proteins containing glycine-rich domains. Plant Mol. Biol. 21:695-699.
Vance, C. P., Kirk, T. K., and Sherwood, R. T. 1980 Lignification as a mechanism of disease resistance. Annu. Rev. Phytopathol. 18:259-288.
Vranová, E., Inzé, D., and van Breusegem, F. 2002 Signal transdution during oxidative stress. J. Exp. Bot. 53:1227-1236.
Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., van Montagu, M., Inzé, D., and van Camp, W. 1997 Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J. 16:4806-4816.
Willekens, H., Inzé, D., van Montagu, M., and van Camp, W. 1995 Catalase in plants. Mol. Breed. 1:207-228.
Xing, T., Higgins, V. J., and Blumwald, E. 1997 Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to plasma membrane of tomato cells. Plant Cell 9:249-259.
Yang, E. J., Oh, Y. A., Lee, E. S., Park, A. R., Cho, S. K.,Yoo, Y. J., and Park, O. K. 2003 Oxygen-evolving enhancer protein 2 is phosphorylated by glycine-rich protein 3/wall-associated kinase 1 in Arabidopsis. Biochem. Biophys. Res. Commun. 305: 62–868.
Ye, Z.-H. and Varner, J. E. 1991 Tissue-specific expression of cell wall proteins in developing soybean tissues. Plant Cell 3:23-37.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24591-
dc.description.abstract植物對病原之入侵具有多重防禦機制,包括先天及誘導性抗病。依抗病特性不同,可將植物誘導抗性分為 systemic acquired resistance (SAR)、induced systemic resistance (ISR) 及過敏性反應。本實驗室研究葵百合誘導抗病性時,施以水楊酸可有效地降低灰黴病的發病程度,並選殖葵百合受水楊酸誘導表現的基因,獲得一個全長度 cDNA,編碼一含138個胺基酸的蛋白質(LsGRP1),富含甘胺酸,N端具有訊息序列,C 端富含半胱胺酸。本研究純化 LsGRP1 重組蛋白,並製備 anti-LsGRP1 抗體,利用此抗體偵測 LsGRP1 及其類似 GRPs 於葵百合上受到水楊酸誘導表現之情形,結果顯示 LsGRP1 相關蛋白質主要分布於表皮及維管束周鞘。LsGRP1 除了富含甘胺酸外,也含有許多酪胺酸,酪胺酸為極性分子,易與其他極性分子產生氫鍵結合;生體外試驗即指出 LsGRP1 可能具有蛋白質間交互鍵結的能力。分析水楊酸誘導葵百合累積過氧化氫情形,發現過氧化氫大量表現的部位與 LsGRP1 相關蛋白質類似;且在水楊酸誘導24 小時,過氧化氫及 LsGRP1 均大量表現。此等結果暗示 LsGRP1及其類似 GRPs於葵百合中可能具有蛋白質間交互鍵結的能力,扮演強化植物細胞壁的角色。zh_TW
dc.description.abstractPlant defense mechanism induced by pathogen attack includes systemic acquired resistance (SAR), induced systemic resistance (ISR) and hypersensitive response (HR). In the study of SA-induced disease resistance, a cDNA named LsGRP1 (Lilium ‘Star Gazer’ glycine-rich protein 1) was cloned from Lilium hybrid ‘Star Gazer’. In this study, His-LsGRP1 protein was purified from a Escherichia coli strain harboring recombinant plasmid and used to prepare anti-LsGRP1 antiserum which was used to examine the location of SA-induced LsGRP1 and its homologues in ‘Star Gazer’ leaves. The LsGRP1 and its homologues were mainly localized in the leaf epidermis and vascular bundle sheath cells. The glycine-rich domain of LsGRP1 contains several tyrosine-residues which might cross-link to other Tyr-residues in vivo. In vitro experiments indicated that LsGRP1 might have oxidative cross-linking capability. As shown, SA-induced hydrogen peroxide (H2O2) was accumulated in a similar spatial pattern as LsGRP1 and/or its homologues. Moreover, accumulation of H2O2 and LsGRP1-related mRNA transcript simultaneously increased 24 hr after SA treatment. These results indicated that LsGRP1 and/or its homologues might exhibit cross-linking capability and facilitate the fortification of plant cell walls.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:32:20Z (GMT). No. of bitstreams: 1
ntu-94-R91633012-1.pdf: 758538 bytes, checksum: 638b99bed0c73c8e37fb0a0c605ed51f (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents壹、 中文摘要…………………………………………………………………………1
貳、 前言………………………………………………………………………………2
參、 前人研究…………………………………………………………………………4
一、百合灰黴病…………………………………………………………………4
二、氧化作用與植物之誘導抗病性…………………………………………….5
2-1 植物之誘導抗病性………………………………………………….…5
2-2 植物活性氧物質…………………………………………………….…6
2-3 植物活性氧物質之氧化作用……………………………………...…..6
2-4 植物氧化作用與細胞壁蛋白質之氧化鍵結……………………….…7
2-5 植物氧化逆境防禦機制…………………………………………….…7
三、植物 GRPs 之特性…………………………………………………………8
3-1 植物細胞壁蛋白質………………………………………………….…8
3-2 GRPs 之結構特性……………………………..……………………...9
3-3 GRPs 於植物上之表現………………………...…………………….10
3-4 GRPs 之誘導反應...…………………………………………………..11
3-5 GRPs 之可能角色……………………………………………………12
3-6葵百合之 LsGRP1……………………………………………………14
肆、 材料與方法……………………………………………………………………..16
一、材料與藥品………………………………………………………………...16
1-1 菌種……………………………………………………….…………..16
1-2 植物材料………………………………………………….…………..16
1-3 化學藥品………………………………………………….…………..16
1-4 酵素……………………………………………………….…………..16
1-5 抗體……………………………………………………….……...…..16
二、LsGRP1 之基因構築……………………………………………...…..….17
2-1 質體 DNA 之小量製備法……………………………………….….17
2-2 引子的設計……………………………………………………….…..17
2-3 LsGRP1 之擴增…………………………………………...…………17
2-4 DNA 膠體電泳法……………………………………………………18
2-5 限制酵素切割………………………………………………………..18
2-6 DNA片段之回收與純化…………………………………………….18
2-7 DNA 黏接反應………………………………………………………19
2-8 大腸桿菌勝任細胞製備……………………………………………..19
2-9 大腸桿菌細胞轉形…………………………………………………..19
2-10 轉形大腸桿菌的篩選………………………………………………20
三、LsGRP1 蛋白質之純化……………………………….………………….20
3-1 細菌產生蛋白質之抽取……………………………………………...20
3-2 親和層析法…………………………………………………………...21
3-3 透析復性蛋白質……………………………………………………...21
3-4 蛋白質濃縮…………………………………………………………...22
3-5 蛋白質含量測定……………………………………………….……..22
3-6 SDS-聚丙烯醯胺膠體電泳分析…………………………...................23
四、LsGRP1 抗體製備………………………………………………………..23
五、西方墨點法………………………………………………………………..24
六、抗體酵素連結免疫反應…………………………………………………...25
七、植物藥劑處理……………………………………………………………..26
八、植物組織免疫轉印偵測…………………………………………………..27
九、過氧化氫之植物組織轉印偵測…………………………………………...27
十、植物過氧化氫定量分析………………………………………..………….27
十一、過氧化氫染色偵測法………………………………………………….27
十二、LsGRP1 蛋白質間交互鍵結作用測試……………………………….28
伍、 結果..……………………………………………………………………………29
一、LsGRP1 預測胺基酸序列分析……………………………….…………..29
二、表現 His-LsGRP1 重組蛋白載體…………....………………………..…30
三、表現 His-LsGRP1 重組蛋白之培養條件測試………………….....…..…30
四、His-LsGRP1 重組蛋白質的純化………………………………...…….…31
五、LsGRP1 抗體之製備…………………………………………….…….….32
六、葵百合 LsGRP1 之組織免疫轉印偵測………………………………..…32
七、葵百合之過氧化氫偵測…………………………………………….….….33
7-1過氧化氫之植物組織轉印偵測………………………………………33
7-2水楊酸誘導葵百合累積過氧化氫……………………………....……33
7-3葵百合受到水楊酸誘導及抑制處理後累積過氧化氫量之檢測……33
7-4利用過氧化氫染劑觀察葵百合葉片受水楊酸誘導之過氧化氫生成累 積情形…................................................................................................34
八、 LsGRP1 蛋白質間交互鍵結作用……………………………………….35
九、 LsGRP1 刪除突變之重組蛋白……………………………..……………36
陸、 討論……………………………………………………………………………..37
柒、 參考文獻………………………………………………………………………..42
捌、 圖表集…………………………………………………………………………..54
表一、供試菌株及質體…………………………………………….………….55
表二、引子對序列…………………………………………….………………..56
表三、自 E. coli JM109(pQGRP1Δ23) 純化 LsGRP1………….................…57
圖一、E. coli JM109(pQGRP1Δ23) 生長量與粗抽蛋白質之關係 (28℃) …58
圖二、E. coli JM109(pQGRP1Δ23) 粗抽蛋白質西方墨點法分析………….59
圖三、IPTG 誘導培養 E. coli JM109(pQGRP1Δ23) 之西方墨點法分析…60
圖四、LsGRP1Δ23 之表現及其表現載體圖譜……………………………….61
圖五、LsGRP1 抗體敏感度分析………………………………………………62
圖六、水楊酸誘導葵百合 LsGRP1 之組織免疫轉印偵測…………………..63
圖七、葵百合之過氧化氫偵測…………………………………………………64
圖八、水楊酸誘導葵百合累積過氧化氫量之檢測…………………………...65
圖九、葵百合受到水楊酸誘導及抑制處理後累積過氧化氫量之檢測………66
圖十、以過氧化氫染劑觀察葵百合葉片受水楊酸誘導後過氧化氫累積情 形………………………………………………………………………..67
圖十一、LsGRP1 蛋白質間交互鍵結作用……………………………………68
圖十二、His-LsGRP1重組蛋白功能區組成……………………………....….69
圖十三、GST-LsGRP1重組蛋白功能區組成………………….....…………...70
圖十四、pGEXGRP1 之質體圖譜及 E. coli JM109(pGEXGRP1)、E. coli JM109(pGEXGRP1Δ23) 及 E. coli JM109(pGEXGRP1Δ23/38) 蛋 白質表現…..........................................................................................71
玖、 英文摘要………………………………………………………………………..72
拾、附錄……………………………………………………………………………...73 圖一、LsGRP1預測胺基酸序列與其他植物 GRPs 之排並分析……………74
圖二、LsGRP1 之 Hydropathic index分析…………………………………..75
圖三、LsGRP1 互補 DNA 序列及其預測胺基酸序列...................................76
dc.language.isozh-TW
dc.subject葵百合zh_TW
dc.subject蛋白質間交互鍵結zh_TW
dc.subject過氧化氫zh_TW
dc.subjectLsGRP1zh_TW
dc.subject水楊酸zh_TW
dc.subject系統性誘導抗病zh_TW
dc.subjecthydrogen peroxideen
dc.subjectprotein oxidative cross-linkingen
dc.subjectsalicylic aciden
dc.subjectLsGRP1en
dc.subjectsystemic acquired resistanceen
dc.subjectLilium ‘Star Gazer’en
dc.title水楊酸誘導葵百合表現 LsGRP1 及累積過氧化氫之分析zh_TW
dc.titleExpression of LsGRP1 and accumulation of hydrogen peroxide in Lilium cv. Star Gazer induced by salicylic aciden
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee葉瑩,鄭秋萍,葉開溫
dc.subject.keyword蛋白質間交互鍵結,過氧化氫,LsGRP1,水楊酸,系統性誘導抗病,葵百合,zh_TW
dc.subject.keywordhydrogen peroxide,systemic acquired resistance,LsGRP1,salicylic acid,protein oxidative cross-linking,Lilium ‘Star Gazer’,en
dc.relation.page76
dc.rights.note未授權
dc.date.accepted2005-06-22
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
Appears in Collections:植物病理與微生物學系

Files in This Item:
File SizeFormat 
ntu-94-1.pdf
  Restricted Access
740.76 kBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved