Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2457Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳丕燊(Pisin Chen) | |
| dc.contributor.author | Yu-Hsiang Lin | en |
| dc.contributor.author | 林裕翔 | zh_TW |
| dc.date.accessioned | 2021-05-13T06:40:27Z | - |
| dc.date.available | 2017-07-27 | |
| dc.date.available | 2021-05-13T06:40:27Z | - |
| dc.date.copyright | 2017-07-27 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-23 | |
| dc.identifier.citation | [1] G. F. Smoot et al., Structure in the COBE differential microwave radiometer first-year maps, Astrophys. J. 396 (Sep, 1992) L1–L5.
[2] M. Tegmark, The angular power spectrum of the four-year COBE data, Astrophys. J. 464 (1996) L35. [3] C. L. Bennett, D. Larson, J. L. Weiland, N. Jarosik, G. Hinshaw, N. Odegard, K. M. Smith, R. S. Hill, B. Gold, M. Halpern, E. Komatsu, M. R. Nolta, L. Page, D. N. Spergel, E. Wollack, J. Dunkley, A. Kogut, M. Limon, S. S. Meyer, G. S. Tucker, and E. L. Wright, Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Final maps and results, Astrophys. J. Suppl. Ser. 208 (2013), no. 2 20. [4] Planck Collaboration, Planck 2013 results. XV. CMB power spectra and likelihood, Astron. Astrophys. 571 (2014) A15. [5] Planck Collaboration, Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters, Astron. Astrophys. 594 (2016) A11. [6] C. R. Contaldi, M. Peloso, L. Kofman, and A. Linde, Suppressing the lower multipoles in the CMB anisotropies, J. Cosmol. Astropart. Phys. 07 (2003) 002. [7] I.-C. Wang and K.-W. Ng, Effects of a preinflation radiation-dominated epoch to CMB anisotropy, Phys. Rev. D 77 (Apr, 2008) 083501. [8] F. Scardigli, C. Gruber, and P. Chen, Black hole remnants in the early universe, Phys. Rev. D 83 (Mar, 2011) 063507. [9] M. Bouhmadi-Lo ́pez, P. Chen, Y.-C. Huang, and Y.-H. Lin, Slow-roll inflation preceded by a topological defect phase `a la Chaplygin gas, Phys. Rev. D 87 (May, 2013) 103513. [10] S. Kouwn, O.-K. Kwon, and P. Oh, Large scale suppression of scalar power on a spatial condensation, Phys. Rev. D 91 (Mar, 2015) 063521. [11] R. K. Jain, P. Chingangbam, J.-O. Gong, L. Sriramkumar, and T. Souradeep, Punctuated inflation and the low CMB multipoles, J. Cosmol. Astropart. Phys. 01 (2009) 009. [12] E. Dudas, N. Kitazawa, S. Patil, and A. Sagnotti, CMB imprints of a pre-inflationary climbing phase, J. Cosmol. Astropart. Phys. 05 (2012) 012. [13] M. H. Namjoo, H. Firouzjahi, and M. Sasaki, Multiple inflationary stages with varying equation of state, J. Cosmol. Astropart. Phys. 2012 (2012), no. 12 018. arXiv:1207.3638. [14] J. White, Y.-l. Zhang, and M. Sasaki, Scalar suppression on large scales in open inflation, Phys. Rev. D 90 (Oct, 2014) 083517. [15] T. Biswas and A. Mazumdar, Super-inflation, non-singular bounce, and low multipoles, Class. Quant. Grav. 31 (2014), no. 2 025019. [16] S. Endlich, A. Nicolis, and J. Wang, Solid inflation, J. Cosmol. Astropart. Phys. 10 (2013) 011. [17] D. Polarski and A. Starobinsky, Spectra of perturbations produced by double inflation with an intermediate matter-dominated stage, Nucl. Phys. B 385 (1992) 623. [18] A. Ashoorioon and A. Krause, Power spectrum and signatures for cascade inflation, arXiv:hep-th/0607001. [19] A. Ashoorioon, A. Krause, and K. Turzynski, Energy transfer in multi field inflation and cosmological perturbations, J. Cosmol. Astropart. Phys. 02 (2009) 014. [20] D. Yamauchi, A. Linde, A. Naruko, M. Sasaki, and T. Tanaka, Open inflation in the landscape, Phys. Rev. D 84 (Aug, 2011) 043513. [21] A. Linde, Hybrid inflation, Phys. Rev. D 49 (Jan, 1994) 748–754. [22] M. Bucher and D. Spergel, Is the dark matter a solid?, Phys. Rev. D 60 (Jul, 1999) 043505. [23] R. A. Battye, M. Bucher, and D. Spergel, Domain wall dominated universes, arXiv:astro-ph/9908047. [24] D. Spergel and U.-L. Pen, Cosmology in a string-dominated universe, Astrophys. J. Lett. 491 (1997), no. 2 L67. [25] M. Bouhmadi-Lo ́pez, P. F. Gonza ́lez-D ́ıaz, and A. Zhuk, On new gravitational instantons describing creation of brane worlds, Class. Quant. Grav. 19 (2002) 4863. [26] M. Bouhmadi-Lo ́pez, P. F. Gonza ́lez-D ́ıaz, and A. Zhuk, Topological defect brane world models, Grav. Cosmol. 8 (2002) 285. [27] A. Vilenkin and E. Shellard, Cosmic Strings and Other Topological Defects. Cambridge University Press, 2000. [28] H. Kubotani, The domain wall network of explicitly broken O(N) model, Prog. Theor. Phys. 87 (1992), no. 2 387. [29] Y. Nambu, H. Ishihara, H. Gouda, and H. Sugiyama, Anisotropies of the cosmic background radiation by domain wall networks, Astrophys. J. Lett. 373 (1991) L35. [30] P. Chen and Y.-H. Lin, What initial condition of inflation would suppress the large-scale CMB spectrum?, Phys. Rev. D 93 (Jan, 2016) 023503. [31] L. Sriramkumar and T. Padmanabhan, Initial state of matter fields and trans-Planckian physics: Can CMB observations disentangle the two?, Phys. Rev. D 71 (May, 2005) 103512. [32] D. Boyanovsky, H. J. de Vega, and N. G. Sanchez, CMB quadrupole suppression. I. initial conditions of inflationary perturbations, Phys. Rev. D 74 (Dec, 2006) 123006. [33] R. Holman and A. J. Tolley, Enhanced non-gaussianity from excited initial states, J. Cosmol. Astropart. Phys. 05 (2008) 001. [34] I. Agullo and L. Parker, Non-gaussianities and the stimulated creation of quanta in the inflationary universe, Phys. Rev. D 83 (Mar, 2011) 063526. [35] V. Mukhanov and M. Zelnihov, What kinds of perturbation spectra can be produced by inflation?, Phys. Lett. B 263 (1991), no. 2 169 – 175. [36] S. Tsujikawa, P. Singh, and R. Maartens, Loop quantum gravity effects on inflation and the CMB, Class. Quant. Grav. 21 (2004), no. 24 5767. [37] A. Ashtekar and D. Sloan, Loop quantum cosmology and slow roll inflation, Phys. Lett. B 694 (2010), no. 2 108 – 112. [38] G. Dom`enech and M. Sasaki, Conformal frame dependence of inflation, J. Cosmol. Astropart. Phys. 04 (2015) 022. [39] Y.-S. Piao and Y.-Z. Zhang, Phantom inflation and primordial perturbation spectrum, Phys. Rev. D 70 (Sep, 2004) 063513. [40] M. Baldi, F. Finelli, and S. Matarrese, Inflation with violation of the null energy condition, Phys. Rev. D 72 (Oct, 2005) 083504. [41] S. M. Carroll, M. Hoffman, and M. Trodden, Can the dark energy equation-of-state parameter w be less than −1?, Phys. Rev. D 68 (Jul, 2003) 023509. [42] J. M. Cline, S. Jeon, and G. D. Moore, The phantom menaced: Constraints on low-energy effective ghosts, Phys. Rev. D 70 (Aug, 2004) 043543. [43] A. Lewis, A. Challinor, and A. Lasenby, Efficient computation of CMB anisotropies in closed frw models, Astrophys. J. 538 (2000) 473–476. [44] A. Lewis and A. Challinor, Code for anisotropies in the microwave background, http://camb.info/ Oct. [45] T. S. Bunch and P. C. W. Davies, Quantum field theory in de Sitter space: Renormalization by point-splitting, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 360 (1978), no. 1700 117–134. [46] A. Ashtekar and A. Barrau, Loop quantum cosmology: From pre-inflationary dynamics to observations, Class. Quant. Grav. 32 (2015), no. 23 234001. arXiv:1504.07559 [gr-qc]. [47] J. B. Hartle and S. W. Hawking, Wave function of the universe, Phys. Rev. D 28 (1983) 2960. [48] B. S. DeWitt, Quantum theory of gravity. I. the canonical theory, Phys. Rev. 160 (Aug, 1967) 1113–1148. [49] J. B. Hartle, S. W. Hawking, and T. Hertog, The no-boundary measure of the universe, Phys. Rev. Lett. 100 (2008) 201301. [50] J. B. Hartle, S. W. Hawking, and T. Hertog, Classical universes of the no-boundary quantum state, Phys. Rev. D 77 (Jun, 2008) 123537. [51] D. Hwang, H. Sahlmann, and D. Yeom, The no-boundary measure in scalar-tensor gravity, Class. Quant. Grav. 29 (2012) 095005. arXiv:1107.4653 [gr-qc]. [52] D. Hwang, B. H. Lee, H. Sahlmann, and D. Yeom, The no-boundary measure in string theory: Applications to moduli stabilization, flux compactification, and cosmic landscape, Class. Quant. Grav. 29 (2012) 175001. arXiv:1203.0112 [gr-qc]. [53] D. Hwang and D. Yeom, Toward inflation models compatible with the no-boundary proposal, J. Cosmol. Astropart. Phys. 1406 (2014) 007. arXiv:1311.6872 [gr-qc]. [54] D. Hwang, S. A. Kim, and D. Yeom, No-boundary wave function for two-field inflation, Class. Quant. Grav. 32 (2015) 115006. arXiv:1404.2800 [gr-qc]. [55] P. Chen, T. Qiu, and D. Yeom, Phantom of the Hartle-Hawking instanton: connecting inflation with dark energy, Eur. Phys. J. C 76 (2016), no. 2 91. arXiv:1503.08709 [gr-qc]. [56] J. J. Halliwell and S. W. Hawking, Origin of structure in the universe, Phys. Rev. D 31 (Apr, 1985) 1777–1791. [57] R. Laflamme, The euclidean vacuum: Justification from quantum cosmology, Phys. Lett. B 198 (1987), no. 2 156 – 160. [58] A. A. Starobinsky, Spectrum of initial perturbations in open and closed inflationary models, arXiv:astro-ph/9603075. [59] J. J. Halliwell, Introductory lectures on quantum cosmology, in Proceedings: Quantum cosmology and baby universes, 1990. arXiv:0909.2566 [gr-qc]. [60] P. Chen, Y.-H. Lin, and D. Yeom, Suppression of long-wavelength CMB spectrum from the no-boundary initial condition, arXiv:1707.01471. [61] A. Y. Kamenshchik, U. Moschella, and V. Pasquier, An alternative to quintessence, Phys. Lett. B 511 (2001) 265. [62] N. Bili ́c, G. B. Tupper, and R. D. Viollier, Unification of dark matter and dark energy: The inhomogeneous Chaplygin gas, Phys. Lett. B 535 (2002) 17. [63] M. C. Bento, O. Bertolami, and A. A. Sen, Generalized Chaplygin gas, accelerated expansion and dark energy matter unification, Phys. Rev. D 66 (2002) 043507. [64] M. Bouhmadi-Lo ́pez and J. A. J. Madrid, Escaping the big rip?, J. Cosmol. Astropart. Phys. 2005 (2005) 005. [65] L. P. Chimento and R. Lazkoz, Duality extended Chaplygin cosmologies with a big rip, Class. Quant. Grav. 23 (2006) 3195. [66] M. Bouhmadi-Lo ́pez and P. V. Moniz, Frw quantum cosmology with a generalized Chaplygin gas, Phys. Rev. D 71 (2005) 063521. [67] M. Bouhmadi-Lo ́pez and P. V. Moniz, Brane world states from a generalized Chaplygin gas, AIP Conf. Proc. 736 (2005) 188. [68] O. Bertolami and V. Duvvuri, Chaplygflation, Phys. Lett. B 640 (2006) 121. [69] M. Bouhmadi-Lo ́pez, C. Kiefer, B. Sandh ̈ofer, and P. V. Moniz, On the quantum fate of singularities in a dark-energy dominated universe, Phys. Rev. D 79 (2009) 124035. [70] M. Bouhmadi-Lo ́pez, P. F. ao, and A. B. Henriques, Stochastic gravitational waves from a new type of modified Chaplygin gas, Phys. Rev. D 81 (2010) 063504. [71] M. Bouhmadi-Lo ́pez, P. F. ao, and A. B. Henriques, Gravitons production in a new type of GCG, arXiv:1002.4785. [72] M. Bouhmadi-Lo ́pez, P. Chen, and Y. W. Liu, Cosmological imprints of a generalized Chaplygin gas model for the early universe, Phys. Rev. D 84 (2011) 023505. [73] M. Bouhmadi-Lo ́pez, P. Chen, and Y. W. Liu, Constraints on single entity driven inflationary and radiation eras, AIP Conf. Proc. 1458 (2011) 327. [74] M. Bouhmadi-Lo ́pez, J. a. Morais, and A. B. Henriques, Smoking guns of a bounce in modified theories of gravity through the spectrum of gravitational waves, Phys. Rev. D 87 (May, 2013) 103528. [75] M. Bouhmadi-Lo ́pez, J. Morais, and A. B. Henriques, The spectrum of gravitational waves in an f(R) model with a bounce, arXiv:1302.2038. [76] I. S. Gradshteyn and I. Rhyzik, Tables of Integrals, Series and Products. Academic Press, 1994. [77] E. Komatsu, K. M. Smith, J. Dunkley, C. L. Bennett, B. Gold, G. Hinshaw, N. Jarosik, D. Larson, M. R. Nolta, L. Page, D. N. Spergel, M. Halpern, R. S. Hill, A. Kogut, M. Limon, S. S. Meyer, N. Odegard, G. S. Tucker, J. L. Weiland, E. Wollack, and E. L. Wright, Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Cosmological interpretation, Astrophys. J. Suppl. Ser. 192 (2011) 18. [78] D. Langlois, Lectures on inflation and cosmological perturbations, Lect. Notes Phys. 800 (2010) 1. [79] V. Mukhanov, H. Feldman, and R. Brandenberger, Theory of cosmological perturbations, Physics Reports 215 (1992), no. 5–6 203 – 333. [80] A. R. Liddle and D. H. Lyth, Cosmological Inflation and Large-Scale Structure. Cambridge University Press, 2000. [81] D. Wands, K. A. Malik, D. H. Lyth, and A. R. Liddle, A new approach to the evolution of cosmological perturbations on large scales, Phys. Rev. D 62 (2000) 043527. [82] D. H. Lyth and D. Wands, Conserved cosmological perturbations, Phys. Rev. D 68 (2003) 103515. [83] B. A. Bassett, S. Tsujikawa, and D. Wands, Inflation dynamics and reheating, Rev. Mod. Phys. 78 (May, 2006) 537–589. [84] J. E. Lidsey, A. R. Liddle, E. W. Kolb, E. J. Copeland, T. Barreiro, and M. Abney, Reconstructing the inflaton potential: an overview, Rev. Mod. Phys. 69 (Apr, 1997) 373–410. [85] P. M. Sa ́ and A. B. Henriques, Gravitational wave generation in power-law inflationary models, Gen. Rel. Grav. 41 (2009) 2345. [86] D. Boyanovsky, H. J. de Vega, and N. G. Sanchez, CMB quadrupole suppression. II. the early fast roll stage, Phys. Rev. D 74 (Dec, 2006) 123007. [87] B. A. Powell and W. H. Kinney, Pre-inflationary vacuum in the cosmic microwave background, Phys. Rev. D 76 (Sep, 2007) 063512. [88] Y.-S. Piao, Possible explanation to a low CMB quadrupole, Phys. Rev. D 71 (Apr, 2005) 087301. [89] U. Seljak and M. Zaldarriaga, A line-of-sight integration approach to cosmic microwave background anisotropies, Astrophys. J. 469 (1996) 437. [90] M. Zaldarriaga, U. Seljak, and E. Bertschinger, Integral solution for the microwave background anisotropies in nonflat universes, Astrophys. J. 494 (1998) 491. [91] M. Zaldarriaga and U. Seljak, CMBFAST for spatially closed universes, Astrophys. J. Suppl. Ser. 129 (2000) 431. [92] P. J. Steinhardt and N. Turok, Cosmic evolution in a cyclic universe, Phys. Rev. D 65 (May, 2002) 126003. [93] D. Battefeld and P. Peter, A critical review of classical bouncing cosmologies, Physics Reports 571 (2015) 1 – 66. [94] V. Mukhanov, Gravitational instability of the universe filled with a scalar field, JETP Lett. 41 (1985) 493. [95] M. Sasaki, Large scale quantum fluctuations in the inflationary universe, Progress of Theoretical Physics 76 (1986), no. 5 1036–1046. [96] F. Olver, D. Lozier, R. Boisvert, and C. Clark, NIST Handbook of Mathematical Functions. National Institute of Standards and Technology and Cambridge University Press, Cambridge, England, 2010. [97] Y. Cai, Y.-T. Wang, and Y.-S. Piao, Preinflationary primordial perturbations, Phys. Rev. D 92 (Jul, 2015) 023518. [98] R. Arnowitt, S. Deser, and C. Misner, Republication of: The dynamics of general relativity, General Relativity and Gravitation 40 (2008) 1997–2027. [99] D.-i. Hwang, B.-H. Lee, E. D. Stewart, D. Yeom, and H. Zoe, Euclidean quantum gravity and stochastic inflation, Phys. Rev. D 87 (Mar, 2013) 063502. [100] A. Starobinsky, A new type of isotropic cosmological models without singularity, Phys. Lett. B 91 (1980), no. 1 99 – 102. [101] S. Coleman and F. De Luccia, Gravitational effects on and of vacuum decay, Phys. Rev. D 21 (Jun, 1980) 3305–3315. [102] P. Chen, Y. C. Hu, and D. Yeom, Fuzzy Euclidean wormholes in de Sitter space, arXiv:1611.08468. [103] S. Kang and D. Yeom, Fuzzy Euclidean wormholes in anti-de Sitter space, arXiv:1703.07746. [104] P. Chen and D. Yeom, Why concave rather than convex?, arXiv:1706.07784. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2457 | - |
| dc.description.abstract | 從WMAP到Planck人造衛星的觀測結果中,我們持續看到宇宙微波背景輻射在長波長波段的頻譜振幅低於Lambda-CDM標準宇宙模型的預測。儘管統計上這項差異還不構成違反標準宇宙模型的決定性證據,我們仍然有強烈的動機去考慮暴漲前宇宙對頻譜抑制的效應。觀測顯示在暴漲使宇宙尺度膨脹最後的e的60次方倍左右的期間裡,暴漲場的能量尺度為10的16次方個十億電子伏特。如果在更高的能量尺度裡,物質處於不同的相,或者重力遭到修正,則暴漲前宇宙的幾何演化可能不同於暴漲時期的近似平時空內的de Sitter宇宙。在「恰好足夠」的暴漲宇宙中,我們今日所觀測到的大尺度微擾早期是在即將要進入暴漲時期的過渡期附近離開哈伯膨脹的視界地平線,因此這些大尺度微擾事實上攜帶著暴漲前宇宙的資訊,而我們也可能可以從大尺度的頻譜中一窺暴漲前宇宙的真相。
我們首先考慮一個簡單的理論模型。在這個模型中,暴漲前宇宙充滿了由疇壁或宇宙弦這兩種受挫拓撲缺陷所構成的網絡。在疇壁的情況下,暴漲前宇宙仍然是加速膨脹,但是膨脹的加速度比暴漲時期小。在宇宙弦的情況下,暴漲前宇宙則是等速膨脹。我們引入Chaplygin氣體作為現象學的模型,以連接暴漲前的受挫拓撲缺陷網絡時期和暴漲時期。利用近似的長波長微擾初始條件,我們發現這樣的暴漲前宇宙模型有助於解釋大尺度頻譜的抑制。之後透過對於初始真空態更完整和系統性的分析,我們又發現暴漲前的疇壁網絡其實擁有和這裡所使用的近似初始條件不同的真空態,因此並不能造成大尺度頻譜抑制。 我們接著進一步證明,暴漲結束時的大尺度頻譜,事實上是直接由暴漲場初始量子態在哈伯膨脹世界地平線外的頻譜來決定。透過研究在FLRW宇宙中一個由狀態方程式參數w所描述的純量場的曲率微擾頻譜,我們得出在宇宙暴漲結束時,曲率微擾的長波長頻譜直接反映出暴漲場初始量子態在波長大於哈伯半徑的波段的頻譜。如果宇宙起始於超暴漲(w < -1)或正壓力(w > 0)時期底下的絕熱真空態,暴漲結束時,長波長頻譜的振幅將會被抑制。然而在正壓力時期的條件下,並沒有合乎物理因果律的機制來形成這樣的絕熱真空態。另一方面,只要宇宙是起始於-1 < w < 0的絕熱真空態,即使在暴漲結束之前宇宙曾經經歷過一段正壓力的時期,暴漲結束時的長波長頻譜振幅也將會被增強,而非抑制。我們進一步考慮由一個雙場模型所產生的二階段宇宙暴漲,並計算出其頻譜,證明其結果與透過前述較為簡單的單場分析所獲得的結論一致。 我們在上面所發現的兩種能解釋頻譜抑制的可能性——暴漲前的超暴漲或正壓力時期——在作為宇宙的初始條件上都不是完全令人滿意。這個困難也許暗示了頻譜抑制並非由半古典物理所造成,而是一種量子重力的效應。我們考慮採用量子重力中的Wheeler-DeWitt方程的解:Hartle-Hawking的無邊界波函數,來作為宇宙的初始條件。在這樣的條件底下,我們發現大尺度頻譜的抑制可能來自於有質量的暴漲場,而暴漲場的初始真空態是在緊緻流形中的歐氏瞬子。我們計算微擾的初始能量頻譜,發現對於任何中等質量的暴漲場來說,長波長的頻譜都會受到壓抑。 | zh_TW |
| dc.description.abstract | There is an apparent power deficit relative to the Lambda-CDM prediction of the cosmic microwave background spectrum at large scales, which, though not yet statistically significant, persists from WMAP to Planck data. It is well-motivated to consider such power suppression as the imprint of the preinflationary era. The observations show that about the last 60 e-folds of inflation operates at the energy scale of 10 to the 16th power GeV. If at the higher energy scales the matter content is in a different phase, or that the gravity is modified, the evolution of the geometry in the preinflationary universe may not be the de Sitter expansion in a spatially flat universe, as it is deep in the inflationary era. In the scenario of 'just-enough' inflation, the perturbations at the largest scales we observe today exit the horizon around the transition time from preinflation to inflation era, hence carrying the characteristics of the preinflationary universe. The large-scale spectrum may therefore serve as the window to peek into the preinflationary universe.
We first present a simple toy model corresponding to a network of frustrated topological defects of domain walls or cosmic strings that exist previous to the standard slow-roll inflationary era of the universe. If such a network corresponds to a network of frustrated domain walls, it produces an earlier inflationary era that expands more slowly than the standard one does. On the other hand, if the network corresponds to a network of frustrated cosmic strings, the preinflationary universe would expand at a constant speed. Those features are phenomenologically modeled by a Chaplygin gas that can interpolate between a network of frustrated topological defects and a de Sitter-like or a power-law inflationary era. We show that these scenarios can alleviate the quadrupole anomaly of the cosmic microwave background spectrum, based on the approximate initial conditions for the long-wavelength perturbations. A more thorough and systematic analysis on the initial vacuum carried out later will show that the preinflationary domain wall dominated era has a different vacuum state from the approximate one and does not suppress the long-wavelength spectrum. We then go further to show that the large-scale spectrum at the end of inflation reflects the super-horizon spectrum of the initial state of the inflaton field. By studying the curvature perturbations of a scalar field in the Friedmann-Lemaitre-Robertson-Walker universe parameterized by the equation of state parameter w, we find that the large-scale spectrum at the end of inflation reflects the superhorizon spectrum of the initial state. The large-scale spectrum is suppressed if the universe begins with the adiabatic vacuum in a superinflation (w < -1) or positive-pressure (w > 0) era. In the latter case, there is however no causal mechanism to establish the initial adiabatic vacuum. On the other hand, as long as the universe begins with the adiabatic vacuum in an era with -1 < w < 0, even if there exists an intermediate positive-pressure era, the large-scale spectrum would be enhanced rather than suppressed. We further calculate the spectrum of a two-stage inflation model with a two-field potential and show that the result agrees with that obtained from the ad hoc single-field analysis. Neither of the two possibilities discovered earlier--the preinflationary superinflation and positive-pressure eras--that attempt to account for the power suppression is completely satisfactory as a realistic initial condition of the inflationary universe. This difficulty may be a hint that the origin of the power suppression does not lie in the semi-classical physics, but in the quantum theory of gravity. We consider the Hartle-Hawking no-boundary wave function, which is a solution to the Wheeler-DeWitt equation, as the initial condition of the universe. We find that the power suppression can be the consequence of a massive inflaton, whose initial vacuum is the Euclidean instanton in a compact manifold. We calculate the primordial power spectrum of the perturbations and show that, as long as the scalar field is moderately massive, the power spectrum is suppressed at the long-wavelength scales. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T06:40:27Z (GMT). No. of bitstreams: 1 ntu-106-D00222001-1.pdf: 4877604 bytes, checksum: 15e0d21345c7fe0141dc66dc7584c753 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Acknowledgments .............................. i
摘要....................................... iii Abstract.................................... v ListofFigures ................................ x List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii 1 Introduction ................................ 1 1.1 TopologicalDefects............................ 3 1.2 Relation between initial state and power spectrum . . . . . . . . . . . 5 1.3 InitialConditionfromQuantumCosmology . . . . . . . . . . . . . . 7 2 Preinflationary Network of Frustrated Topological Defects ......... 11 2.1 ModelBuildingandParametersFixing ................. 13 2.2 ScalarPerturbations ........................... 22 3 Power Spectrum in the Universe with Constant Equation of State ......... 31 3.1 PerturbationswithConstantEquationofState . . . . . . . . . . . . 32 3.2 Assumption and Character of the Small-Scale Solution . . . . . . . . 36 3.3 ScalingRelation.............................. 37 4 Evolution of the Power Spectrum ......... 43 4.1 Slow-Roll ................................. 44 4.2 Kinetic—Slow-Roll ............................ 45 4.3 Slow-Roll—Kinetic—Slow-Roll...................... 50 4.4 Superinflation—Slow-Roll ........................ 55 5 Two-field cascade inflation ......... 61 5.1 Background Evolution and the Attractor Solution . . . . . . . . . . . 61 5.2 PerturbationsandInitialConditions .................. 64 5.3 NumericalSolutionandtheCMBSpectrum . . . . . . . . . . . . . . 67 5.4 Spectrum Evolution Involving a Zero-Pressure Era . . . . . . . . . . . 72 6 No-Boundary Wave Function as the Initial Condition of Inflation ......... 77 6.1 Minisuperspacemodel .......................... 78 6.2 Basisfunctionsonthecloseduniverse.................. 81 6.3 Perturbationspectrumfromthewavefunction . . . . . . . . . . . . . 82 6.4 Effectofmassonthepowerspectrum.................. 86 7 Conclusions and Discussions ......... 97 Bibliography ......... 101 | |
| dc.language.iso | en | |
| dc.subject | 最小超空間模型 | zh_TW |
| dc.subject | 宇宙微波背景輻射 | zh_TW |
| dc.subject | 大尺度頻譜振幅壓抑 | zh_TW |
| dc.subject | 拓撲缺陷 | zh_TW |
| dc.subject | 疇壁 | zh_TW |
| dc.subject | 宇宙弦 | zh_TW |
| dc.subject | Chaplygin氣體 | zh_TW |
| dc.subject | 宇宙學微擾理論 | zh_TW |
| dc.subject | 絕熱真空態 | zh_TW |
| dc.subject | 宇宙暴漲 | zh_TW |
| dc.subject | 初始條件 | zh_TW |
| dc.subject | 頻譜演化 | zh_TW |
| dc.subject | 超暴漲 | zh_TW |
| dc.subject | 雙場暴漲 | zh_TW |
| dc.subject | Hartle-Hawking無邊界波函數 | zh_TW |
| dc.subject | Wheeler-DeWitt方程式 | zh_TW |
| dc.subject | minisuperspace model | en |
| dc.subject | two-field inflation | en |
| dc.subject | Hartle-Hawking no-boundary wave function | en |
| dc.subject | Wheeler-DeWitt equation | en |
| dc.subject | Cosmic microwave background | en |
| dc.subject | large-scale power suppression | en |
| dc.subject | topological defect | en |
| dc.subject | domain wall | en |
| dc.subject | cosmic string | en |
| dc.subject | Chaplygin gas | en |
| dc.subject | cosmological perturbation theory | en |
| dc.subject | adiabatic vacuum | en |
| dc.subject | inflation | en |
| dc.subject | initial condition | en |
| dc.subject | spectrum evolution | en |
| dc.subject | superinflation | en |
| dc.title | 暴漲宇宙的初始條件及其在宇宙背景輻射上所形成之特徵 | zh_TW |
| dc.title | Initial Condition of the Inflationary Universe and Its Imprint on the Cosmic Microwave Background | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 陳俊瑋(Jiunn-Wei Chen),黃宇廷(Yu-tin Huang),廉東翰(Dong-han Yeom),艾若哲(Frederico Arroja) | |
| dc.subject.keyword | 宇宙微波背景輻射,大尺度頻譜振幅壓抑,拓撲缺陷,疇壁,宇宙弦,Chaplygin氣體,宇宙學微擾理論,絕熱真空態,宇宙暴漲,初始條件,頻譜演化,超暴漲,雙場暴漲,Hartle-Hawking無邊界波函數,Wheeler-DeWitt方程式,最小超空間模型, | zh_TW |
| dc.subject.keyword | Cosmic microwave background,large-scale power suppression,topological defect,domain wall,cosmic string,Chaplygin gas,cosmological perturbation theory,adiabatic vacuum,inflation,initial condition,spectrum evolution,superinflation,two-field inflation,Hartle-Hawking no-boundary wave function,Wheeler-DeWitt equation,minisuperspace model, | en |
| dc.relation.page | 111 | |
| dc.identifier.doi | 10.6342/NTU201701823 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-07-24 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| Appears in Collections: | 物理學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-106-1.pdf | 4.76 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
