Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24535
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭石通
dc.contributor.authorYi-Hsiang Chouen
dc.contributor.author周以祥zh_TW
dc.date.accessioned2021-06-08T05:29:54Z-
dc.date.copyright2005-07-26
dc.date.issued2005
dc.date.submitted2005-07-05
dc.identifier.citation張萌惠 (2001) 百日咳抗原於轉殖菸草之表現與老鼠口服免疫反應。國立台灣大學植物學研究所碩士論文。
紀姵如 (2003) Hydrogen Peroxide 與 Nitric oxide對甘藷防禦機制之功能探討。國立台灣大學植物學研究所碩士論文。
A-H-Mackerness, S., John, C.F., Jordan, B., and Thomas, B. (2001). Early signaling components in ultraviolet-B responses: distinct roles for different reactive oxygen species and nitric oxide. FEBS Lett 489, 237-242.
Alvarez, M.E., Penell, R.I., Meijer, P.J., Ishikawa, A., Dixon, R.A., and Lamb, C. (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92, 773-784
Apostol, I., Heinstein, P.F., and Low, P.S. (1989). Rapid stimulation of an oxidative burst during elicidation of cultured plant cells. Role in defense and signal transduction. Plant Physiol. 90, 106-16.
Bayer, P., Arndt, A., Metzger, S., Mahajan, R., Melchior, F., Jaenicke, R., and Becker, J. (1998). Structure determination of the small ubiquitinrelated modifier SUMO-1. J. Mol. Biol. 280, 275-286.
Beligni, M.V., and Lamattina, L. (1999). Nitric oxide counteracts cytotoxic processes mediated by reactive oxygen species in plant tissues. Planta 210, 215-221.
Beligni, M.V., and Lamattina, L. (2000). Nitric oxide induces seed germination and de-etiolation, and inhibits hypocotyl elongation, three light-inducible responses in plants. Planta 210, 215-221.
Beligni, M.V., and Lamattina, L. (2001). Nitric oxide in plants: the history in just beginning. Plant Cell Environ. 24, 267-278.
Bernier-Villamor, V., Sampson, D.A., Matunis, M.J., Lima, C.D. (2002). Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell 108, 345-356.
Bies, J., Markus, J., and Wolff, L. (2002). Covalent Attachment of the SUMO-1 Protein to the Negative Regulatory Domain of the c-Myb Transcription Factor Modifies Its Stability and Transactivation Capacity J. Biol. Chem. 277, 8999-9009
Bishop, P. D., Makus, D. J., Pearce, G., and Ryan. C. A. (1981). Proteinase inhibitor-inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proc. Natl. Acad. Sci. USA 78, 3536-3540.
Bolwell, G. P. (1999). Role of active oxygen species and NO in plant defence responses. Curr. Opin. Plant Biol. 2, 287-294.
Bredt, D.S., Hwang, P.M., Glatt, C.E., Lowenstein, C., Reed, R.R., Snyder, S.H. (1991). Cloned and expressed nitric oxide synthase structurally resembles cytochrome P-450 reductase. Nature 351, 714-717.
Brisson, L.F., Tenhaken, R., and Lamb, C. (1994). Function of Oxidative Cross-Linking of Cell Wall Structural Proteins in Plant Disease Resistance. Plant Cell 6, 1703-1712.
Cadenas, E. (1989). Biochemistry of oxygen toxicity. Annu. Rev. Biochem. 58, 79-110.
Campbell, W. H. (1999). Nitrate reductasestructure, function and regulation: bridging the gap between biochemistry and physiology. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 277-303.
Crawford, N. M. (1995). Nitrate: nutrient and signal for plant growth. Plant Cell 7, 859-68.
Chung, K. K., Thomas, B., Li, X., Pletnikova, O., Troncoso, J. C., Marsh, L., Dawson, V. L., and Dawson, T.M. (2004). S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science 304, 1328-1331.
Dat, J., Vandenabeele, S., Vranova, E., Montagu, M.V., Inze, D., and Breusegem, F.V. (2000). Dual action of the active oxygen species during plant stress responses. Cell Mol. Life Sci. 57, 779-795.
Delledonne, M., Xia, Y., Dixon, R.A., and Lamb, C. (1998). Nitric oxide functions as a signal in plant disease resistance. Nature 394, 585-588.
Desterro, J. M., Rodriguez, M. S., and Hay, R.T. (1998). SUMO-1 modification
of IκBα inhibits NF-κB activation. Mol. Cell. 2, 233-239.
Dicke, M., and Van Loon, J. J. A., (2000). Multitrophic effects of herbivore-induced plant volatiles in an evolutionary context. Entomol. Exp. Appl. 97, 237-49.
Doke, N., Miura, Y., Sanchez, L.M., Park, H.J., Noritake, T., Yoshioka, H., and Kawakita, K. (1996). The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence - a review. Gene 179, 45-51.
Eloranta, J.J., and Hurst, H.C. (2002).Transcription Factor AP-2 Interacts with the SUMO-conjugating Enzyme UBC9 and Is Sumolated in Vivo. J. Biol. Chem. 277, 30798-30804
Farmer, E. E., and Ryan, C. A. (1990). Interplant communication: airborne methyl jasmonate induces synthesis of preoteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87, 7713-7716.
Farmer, E.E., and Ryan, C.A. (1992). Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell. 4, 129-134
Foissner, I., Wendehenne, D., Langebartels, C., and Durner, J. (2000). In vivo imaging of an elicitor-induced nitric oxide burst in tobacco. Plant J. 23, 817-824.
García-Mata, C., and Lamattina, L. (2001). Nitric oxide Induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol. 126, 1196-1204.
Garcia-Mata, C., and Lamattina, L. (2003). Abscisic acid, nitric oxide and stomatal closure- is nitrate reducttase one of the missing links? Trends Plant Sci. 8, 20-26.
Gill, G. (2003). Post-translational modification by the small ubiquitin-related modifier SUMO has big effects on transcription factor activity. Curr. Opin. Genet. Dev. 13, 108-113.
Gouvéa, C. M. C. P., Souza, J. F., Magalhâes, A. C. N., and Martins, I. S. (1997). NO-releasing substances that induce growth elongation in maize root segments. Plant Growth Regul. 21, 183-187.
Hanania, U., Furman-Matarasso, N., Ron, M., Avni, A. (1999). Isolation of a novel SUMO protein from tomato that suppresses EIX-induced cell death. Plant J. 19, 533-541.
Huber, S. C., Bachmann, M., Huber, J. L. (1996). Post-translation regulation of nitrate reductase activity: a role for Ca2C and 14-3-3 proteins. Trends Plant Sci. 1, 432-38.
Jabs, T., Dietrich, R. A., and Dang, J. L. (1996). Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273, 1853-1856.
Jih, P.J., Chen, Y.C., and Jeng, S.T. (2003). Involvement of hydrogen peroxide and nitric oxide in expression of the Ipomoelin Gene from sweet potato. Plant Physiol. 132, 381-389.
Johnson, E.S., and Blobel, G. (1999). Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J. Cell Biol. 147, 981–994.
Kaiser, W. M., Weiner, H., Huber, S. C. (1999). Nitrate reductase in higher plants: a case study for transduction of environmental stimuli into control of catalytic activity. Physiol. Plant. 105, 385-90.
Kawasaki, T., Henmi, K., Ono, E., Hatakeyama, S., Iwano, M., (1999). The small GTP-binding protein Rac is a regulator of cell death in plants. Proc. Natl. Acad. Sci. USA 96, 10922-26.
Keeley, J. E., and Fotheringham, C. J. (1997). Trace gas emissions and smoke-induced seed germination. Science 276, 1248-1250.
Kurepa, J., Walker, J. M., Smalle, J., Gosink, M. M., Davis, S. J., Durham, T. L., Sung, D. Y., Vierstra, R. D. (2003). The small ubiquitin-like modifier (SUMO) protein modification system in Arabidopsis. J. Biol. Chem. 278, 6862-6872.
Lamattina, L., Garcia-Mata, C., Graziano, M., and Pagnussat, G. (2003). Nitric oxide: the versatility of an extensive signal molecule. Annu. Rev. Plant Physiol. Plant Mol. Biol. 54, 109-136
Lamb, C., and Dixon, R. A. (1997). The oxidative burst in plant disease resistance. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48, 251-275.
Lee, G.W., Melchior, F., Matunis, M.J., Mahajan, R., Tian, Q., and Anderson, P. (1998). Modification of Ran GTPase-activating protein by the small ubiquitin-related modifier SUMO-1 requires Ubc9, an E2- type ubiquitin-conjugating enzyme homologue. J. Biol. Chem. 273, 6503-6507.
Leshem, Y., Wills, R.B. H., and Ku, V.V. (1998). Evidence for the function of the free radical gas - nitric oxide (NO) - as an endogenous maturation and senescence regulating factor in higher plants. Plant Physiol. Bioch. 36, 825-833.
Levine, A., Tenhaken, R., Dixon, R., and Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance. Cell 79, 583-593
Li, S.J., and Hochstrasser, M. (1999). A new protease required for cellcycle progression in yeast. Nature 398, 246-251.
Lois, L.M., Lima, C.D., and Chua, N.H. (2003). Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis. Plant Cell 15, 1347-1359.
Lucas, K.A., Pitari, G.M., Kazerounian, S., Ruiz-Stewart, I., Park, J., et al. (2000). Guanylyl cyclases and signaling by cyclic GMP. Pharmacol. Rev. 52, 375-414
Martin, C.T., Morse, R.H., Kanne, R.M., Gray, H.B., Malmstrom, B.G., and Chan, S.I. (1981). Reaction of nitric oxide with tree and fungal lacasse. Biochemistry 20, 5147–55.
Muller, S., Berger, M., Lehembre, F., Seeler, J. S., Haupt, Y., and Dejean, A.(2000). c-Jun and p53 Activity Is Modulated by SUMO-1 Modification. J. Biol. Chem. 275, 13321-13329
Muller, S., Hoege, C., Pyrowolakis, G., and Jentsch, S. (2001). SUMO, ubiquitin’s mysterious cousin. Nat. Rev. Mol. Cell Biol. 2, 202-210.
Muller, S., Ledl, A., Schmidt, D. (2004). SUMO: a regulator of gene expression and genome integrity. Oncogene 23, 1998-2008.
Murtas, G., Reeves, P.H., Fu, Y.F., Bancroft, I., Dean, C., and Coupland, G. (2003). A nuclear protease required for flowering-time regulation in Arabidopsis reduces the abundance of small ubiquitinrelated modifier conjugates. Plant Cell 15, 2308-2319.
Novatchkova, M., Budhiraja, R., Coupland, G., Eisenhaber, F., and Bachmair, A. (2004). SUMO conjugation in plant. Planta 220, 1-8.
O’ Donell, P.J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O., and Bowles, D.J. (1996). Ethylene as a signal mediating the wound response of tomato plants. Science 274, 1914-1917.
Orozco-Cárdenas, M.L., and Ryan, C.A. (1999). Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96, 6553-6557
Orth, K., Xu, Z., Mudgett, M. B., Bao, Z.Q., Palmer, L.E., Bliska, J.B., Mangel, W.F., Staskawicz, B., and Dixon, J.E. (2000). Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science 290, 1594-1597
Pena-Cortes, H., Sanchez-Serrano, J.J., Mertens, R., and Willmitzer, L. (1988). Systemic induction of proteinase inhibitor Ⅱ gene expression in potato plants by wounding. Planta 174, 84-89.
Pena-Cortes, H., Sanchez-Serano, J.J., Mertens, R., and Willmitzer, L. (1989). Abscisic acid is involved in the wound-induced expression of the proteinase inhibitor Ⅱ gene in potato and tomato. Proc. Natl. Acad. Sci. USA 86, 9854-9855.
Pieterse, C.M.J., and Van Loon, L.C. (1999). Salicylic acid-independent plant defence pathways. Trends Plant Sci. 4, 52-58.
Reinbothe, S., Mollenhauer, B., and Reinbothere, C. (1994). JIPs and RIPs: the regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 6, 1197-1209.
Repka, V. (1999). Improved histochemical test for in situ detection of hydrogen peroxide in cells undergoing oxidative burst or lignification. Biol Plantarum 42, 599-607
Ryan, C.A. (2000). Thesystemin signaling pathway: differential activation of defensive genes. Biochem. Biophys. Acta. 1477, 112-122.
Sagi, M., and Fluhr, R. (2001). Superoxide production by plant homologues of the gp91phox NADPH oxidase. Modulation of activity by calcium and by tobacco mosaic virus infection. Plant Physiol. 126, 1281-90.
Saitoh, H., and Hinchey, J. (2000). Functional Heterogeneity of Small Ubiquitin-related Protein Modifiers SUMO-1 versus SUMO-2/3. J Biol. Chem. 275, 6252-6258
Scandalios, J.G. (1992). Molecular biology of free radical scanvenging systems. Cold Spring Harbor Laboratory Press, USA.
Stowe, K.A., Marquis, R.J., Hochwender, C.G., Simms, E.L. (2000). The evolutionary ecology of tolerance to consumer damage. Annu. Rev. Ecol. Syst. 31, 565-95.
Su, H., and Li, S. (2002). Molecular features of human ubiquitin-like SUMO genes and their encoded proteins. Gene 296, 65-73.
Vierstra, R.D. and Callis, J.(1999). Polypeptide tags, ubiquitous modifiers for plant protein regulation. Plant Mol. Biol. 41, 453-442.
Walling, L.L. (2000). The myriad plant responses to herbivores. J Plant Growth Regul 19, 195-216.
Yamasaki, H., and Sakihama, Y. (2000). Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett. 468, 89-92.
Zhang, H., Saitoh, H., and Matunis, M.J. (2002). Enzymes of the SUMO modification pathway localize to filaments of the nuclear pore complex. Mol. Cell. Biol. 22, 6498-6508.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24535-
dc.description.abstract真核生物中蛋白的功能會被一些小的polypeptide,像是ubiquitin(Ub)或是ubiquitin-like(Ubl)proteins等利用共價鍵結的方式所調控,這種調控方式稱做post-translation modification。這些小蛋白會以C端(Gly-Gly motif)並利用isopeptide bond的方式和其目標蛋白上的Lys進行鍵結,而本研究的主角則為此類蛋白中的其中一種,稱做SUMO(small ubiquitin-like modifiers)。此蛋白是我們以二維電泳系統分析經過NO處理的甘藷葉片(Ipomoea batatas cv. Tainong 57)所誘導出來蛋白的其中一個,將這蛋白分離回收後經過比對發現和阿拉伯芥的SUMO2具有較高的性似性,因此我們從其他物種已知序列中設計出Degenerate引子,分別以Inverse PCR (iPCR) 和RACE (Rapid amplification of cDNA ends) 兩種方法找到基因的3’端和5’端,並命名為IbSUMO2。首先從RNA的層次以北方墨點法分析IbSUMO2基因的表現量,發現在分別處理NO(Nitric oxide)、機械性傷害和H2O2的時候,IbSUMO2基因的表現量都會增加;另外在處理NO和H2O2的抑制劑之後再進行機械性傷害,則發現IbSUMO2的基因表現量有減少的現象發生,可以推測在機械性傷害之後IbSUMO2 mRNA的產生是經由NO和H2O2兩條路徑。從內生的IbSUMO2蛋白層次來看,在處理 NO後以西方墨點法對甘藷內生的IbSUMO2蛋白質含量進行分析,結果發現在第四天的時候IbSUMO2蛋白量會增加。另外在IbSUMO2蛋白功能探討方面,在進行傷害十分鐘後,即可發現甘藷內生SUMO的結合態明顯增加,這可以推測SUMO所負責的蛋白修飾作用在植物受到傷害的時候是很早期的一個防禦反應。從免疫沈澱反應中,以傷害24小時的甘藷葉片蛋白和SUMO1的抗體進行沈澱,在45 KDa的地方可以發現兩個明顯的條帶,推測此兩個條帶即為有和IbSUMO結合的蛋白。再來我們也利用洋蔥短暫表現系統來偵測帶有GFP的IbSUMO2在NO刺激下是否有位移的現象出現,不過利用此系統無法發現在NO的處理下,帶有GFP的IbSUMO2有任何的改變發生。從以上結果發現我們可以知道在不同刺激之下,IbSUMO2的確具有其特定的生理功能。zh_TW
dc.description.abstractSmall ubiquitin-like modifer (SUMO) is a member of the superfamily of ubiquitin-like polypeptides that play a role in post-translational modification, but its functions are different from those of ubiquitin. SUMOs attach target proteins by covalent bond, and alter their function and location. The regulation of SUMO2 expression in sweet potato (Ipomoea batatas) was studied here. We had isolated a nitric oxide (NO)-induced IbSUMO2 protein from two-dimensional electrophoresis system, and also observed a significant increasing of IbSUMO2 mRNA under the treatment of NO or H2O2 induced by mechanical wounding. The increasing of IbSUMO2 protein under NO treatment was also observed by western blotting analysis. On the contrary, the application of NO or H2O2 inhibitors can reduce the expression of IbSUMO2 mRNA induced by mechanical wounding, suggesting IbSUMO2 protein induced by mechanical wounding through NO and H2O2 signal pathway. We also detected the level of IbSUMO2 conjugation under mechanical wounding and NO treatment. The wound-induced conjugate accumulation could be detected within 10 minutes, suggesting that IbSUMO2 conjugation is one of the early events for plant to response to mechanical wounding. On the other hand, immunoprecipitation of IbSUMO2 conjugated proteins were performed with SUMO antibodies, and two major bands around 45 KDa were observed. Furthermore, in transient expression system, we confirm the localization of IbSUMO2 protein within cell under NO stimulations. Conclusively, IbSUMO2 protein conjugated to its target proteins has multiple physiological functions in plant cells.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:29:54Z (GMT). No. of bitstreams: 1
ntu-94-R92b42007-1.pdf: 2725981 bytes, checksum: fb3e21dc97b807bc1770212b1552d3a4 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要
英文摘要
第一章 前言
一、植物的防禦機制•••••••••••••••••••••••••••••••••••••• 1
二、SUMO的作用與機制••••••••••••••••••••••••••••••••••• 6
三、實驗方向與目的•••••••••••••••••••••••••••••••••••••• 9
第二章 材料與方法
一、材料••••••••••••••••••••••••••••••••••••••••••••• 10
二、甘藷葉片處理••••••••••••••••••••••••••••••••••••••• 10
三、質體的構築與製備•••••••••••••••••••••••••••••••••••• 12
四、甘藷葉片DNA的萃取•••••••••••••••••••••••••••••••••• 13
五、甘藷葉片RNA的萃取•••••••••••••••••••••••••••••••••• 14
六、甘藷葉片蛋白的萃取••••••••••••••••••••••••••••••••••• 16
七、蛋白質SDS膠體電泳分析•••••••••••••••••••••••••••••••• 17
八、Inverse PCR (iPCR) •••••••••••••••••••••••••••••••••••• 20
九、Rapid Amplification of cDNA Ends (RACE) ••••••••••••••••••••• 22
十、北方墨點分析••••••••••••••••••••••••••••••••••••••• 23
十一、西方墨點分析•••••••••••••••••••••••••••••••••••••• 25
十二、BL21(DE3)系列大腸桿菌蛋白之誘導測試與萃取純化••••••••••••• 27
十三、基因槍法(particle bombardment)••••••••••••••••••••••••• 29
十四、蛋白質共同免疫沈澱••••••••••••••••••••••••••••••••• 31
第三章 結果
一、甘藷SUMO2基因之調取及比對•••••••••••••••••••••••••••• 34
二、甘藷SUMO2基因訊息傳遞過程•••••••••••••••••••••••••••• 36
三、外加NO處理之下甘藷SUMO蛋白的表現••••••••••••••••••••• 40
四、甘藷SUMO蛋白與其目標蛋白結合情形•••••••••••••••••••••• 40
五、甘藷SUMO2在細胞中的表現位置•••••••••••••••••••••••••• 41
六、利用共同免疫沈澱法找出與SUMO2結合之蛋白••••••••••••••••• 42
七、大腸菌(BL21 (DE3))表現甘藷SUMO2蛋白••••••••••••••••••• 43
第四章 討論
一、甘藷SUMO2蛋白序列的分析••••••••••••••••••••••••••••• 44
二、甘藷SUMO2基因的訊息傳遞過程•••••••••••••••••••••••••• 45
三、甘藷SUMO2蛋白的功能探討••••••••••••••••••••••••••••• 51
四、結論••••••••••••••••••••••••••••••••••••••••••••• 56
第五章 參考文獻•••••••••••••••••••••••••••••••••••••••••••• 58
圖表••••••••••••••••••••••••••••••••••••••••••••••••••••••• 65
dc.language.isozh-TW
dc.title甘藷中SUMO基因表現及其訊息傳遞路徑zh_TW
dc.titleInvestigation of gene expression and signal transduction pathway of SUMO in sweet potatoen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張自忠,詹明才,盧虎生,常玉強
dc.subject.keyword一氧化氮,過氧化氫,訊息傳遞,zh_TW
dc.subject.keywordNitric oxide,hydrogen peroxide,SUMO,en
dc.relation.page82
dc.rights.note未授權
dc.date.accepted2005-07-05
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
2.66 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved