Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24522
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何國川
dc.contributor.authorTzung-Hua Linen
dc.contributor.author林宗樺zh_TW
dc.date.accessioned2021-06-08T05:29:23Z-
dc.date.copyright2005-07-15
dc.date.issued2005
dc.date.submitted2005-07-08
dc.identifier.citation[1] 何國川, “電化學與無窗簾時代,” 化工, 第37卷第3期, 38 (1990).
[2] 楊明長, “電致色變系統簡介,” 化工, 第40卷第2期, 64 (1993).
[3] 邱顯堂, “變色性材料,” 化工, 第38卷第2期, 74 (1991).
[4] C. G. Granqvist, E. Avendano, and A. Azens, “Electrochromic Coatings and Devices: Survey of Some Recent Advances,” Thin Solid Films, 442, 201 (2003).
[5] C. M. Lampert, “Chromogenic Smart Materials,” Materials Today, 7, 28 (2004).
[6] C. M. Lampert, “Smart Switchable Glazing for Solar Energy and Daylight Control,” Sol. Energy Mater. Sol. Cells, 52, 207 (1998).
[7] D. R. Rosseinsky, and R. J. Mortimer, “Electrochromic Systems and the Prospects for Devices,” Adv. Mater., 13, 783 (2001).
[8] J. R. Platt, “Electrochromism, a Possible Change of Color Producible in Dyes by an Electric Field,” J. Chem. Phys., 34, 862 (1961).
[9] S. K. Deb, Appl. Opt. Suppl., 3, 193 (1969).
[10] S. K. Deb, and R. F. Shaw, ”Electro-optical Device Having Variable Optical Density,” U. S. Pat., 3,521,941 (1970).
[11] F. T. Bauer and J. H. Bechtel, “Automatic Rearview Mirror for Automotive Vehicles,” U. S. Pat., 4,443,057 (1984).
[12] H. J. Byker, “Single-compartment, Self-erasing, Solution-phase Electrochromic Devices, Solutions for Use Therein, and Uses Thereof,” U.S. Pat., 4,902,108 (1990).
[13] J. H. Brechtel and H. J. Byker, “Automatic Rearview Mirror System for Automotive Vehicles,” U. S. Pat., 4,917,477 (1990).
[14] E. S. Lee and D. L. DiBartolomeo, “Application Issues for Large-area Electrochromic Windows in Commercial Buildings,” Sol. Energy Mater. Sol. Cells, 71, 465 (2002).
[15] M. Grätzel, “Ultrafast Colour Displays,” Nature, 409, 575 (2001).
[16] U. Bach, D. Corr, D. Lupo, F. Pichot, and M. Ryan, “Nanomaterials-Based Electrochromics for Paper-quility Displays,” Adv. Mater., 14, 845 (2002).
[17] D. Corr, U. Bach, D. Fay, M. Kinsella, C. McAtamney, F. O’Reilly, S.N. Rao, and N. Stobie, “Coloured Electrochromic “Paper-quality” Displays Based on Modified Mesoporous Electrodes,” Solid State Ionics, 165, 315 (2003).
[18] B. W. Faughnan, R. S. Crandall, and P. M. Heyman, “Electrochromism in WO3 Amorphous Films,” RCA Rev., 36, 177 (1975).
[19] W. C. Dautremont-Smith, Displays, 3, 67 (1982).
[20] S. F. Cogan, N. M. Nguyen, S. J. Perrotti, and R. D. Rauh, “Optical Properties of Electrochromic Vanadium Pentoxide,” J. Appl. Phys., 66, 1333 (1989).
[21] M. Kikao and S. Yamada, Proceedinds of the International Seminar on Solid State Ionic Devices, p. 359, (1988).
[22] C. K. Dyer and J. S. Leach, “Reversible Optical Changes within Anodic Oxide Films on Titanium and Niobium,” J. Electrochem. Soc., 125, 23 (1978).
[23] 黃玉仙, “含普魯士藍與六氰鐵化銦電致色變元件之性能與最適化研究,” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2002).
[24] L. M. Siperko and T. Kuwana, “Electrochemical and Spectroscopic Studies of Metal Hexacyanometalate Films,” J. Electrochem. Soc., 130, 396 (1983).
[25] J. Joseph, H. Gomathi, and G. P. Rao, “Electrodes Modified with Cobalt Hexacyanoferrate,” J. Electroanal. Chem., 304, 263 (1991).
[26] 林巧芬, “以紫精搭配普魯士藍電致色變元件之研究, ” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2003).
[27] 柯惠琪, “含聚苯胺之電致色變元件性質研究, ” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2000).
[28] M. Mastragostino, C. Arbizzani, P. Ferloni, and A. Marinangeli, “Polymer-based Electrochromic Devices,” Solid State Ionics, 53, 471 (1992).
[29] C. L. Gaupp, D. M. Welsh, R. D. Rauh, and J. R. Reynolds, “Composite Coloration Efficiency Measurements of Electrochromic Polymers Based on 3, 4-Alkylenedioxythiophenes,” Chem. Mater., 14, 3964 (2002).
[30] C. G. Granqvist, A. Azens, J. Isidorsson, M. Kharrazi, L. Kullman, T. Lindström, G. A. Niklasson, C. G. Ribbing, D. Rönnow, M. S. Mattsson, and M. Veszelei, “Towards the Smart Window: Progress in Electrochromics,” J. Non-crystal. Solids, 218, 273 (1997).
[31] R. D. Rauh, “Electrochromic Windows: an Overview,” Electrochim. Acta, 44, 3165 (1999).
[32] T. Ito, H. Shirakawa, and S. Ikeda, “Simultaneous Polymerization and Formation of Polyacetylene Film on the Surface of Concentrated Soluble Ziegler-Type Catalyst Solution,” J. Polym. Sci., Polym. Chem. Ed., 12, 11 (1974).
[33] H. Shirakawa, E. J. Lewis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, “Synthesis of Electrically Conducting Organic Polymers: Halogen Derivatives of Polyacetylene, (CH)x,” J. Chem. Soc., Chem. Commun., 578 (1977).
[34] T. A. Skotheim, R. L. Elsenbaumer, and J. R. Reynolds, Handbook of Conducing Polymers, 2nd ed., Marcel Dekker, New York (1998).
[35] H. S. Nalwa, Handbook of Organic Conductive Molecules and Polymers, vol. 1-4, Wiley, Chichester, England (1997).
[36] P. M. S. Monk, R. J. Mortimer, and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications, VSH, Weinheim, Germany (1995).
[37] A. G. MacDiarmid, J. C. Chiang, and A. F. Richter, “Polyaniline: A New Concept in Conducting Polymers,” Synth. Met., 18, 285 (1987).
[38] A. G. MacDiarmid, “Polyaniline and Polypyrrole: Where Are We Headed? ,” Synth. Met., 84, 27 (1997).
[39] A. Baba, S. Tian, F. Stefani, C. Xia, Z. Wang, R. C. Advincula, D. Johannsmann, and W. Knoll, “Electropolymerization and Doping/Dedoping Properties of Polyaniline Thin Films as Studied by Electrochemical-surface Plasmon Spectroscopy and by the Quartz Crystal Microbalance,” J. Electroanal. Chem., 562, 95 (2004).
[40] Y. Cao, G. M. Treacy, P. Smith, and A. J. Heeger, “Solution-cast Films of Polyaniline: Optical-quality Transparent Electrodes,” Appl. Phys. Lett., 60, 2711 (1992).
[41] F. Rourke, and J. A. Crayston, “Cyclic Voltammetry and Morphology of Polyaniline-coated Electrodes Containing [Fe(CN)6]3-/4- Ions,” J. Chem. Soc., Faraday Trans., 89, 295 (1993).
[42] P. Rannou, M. Nechtschein, J. P. Travers, D. Berner, A. Wolter, and D. Djurado, “Ageing of PANI: Chemical, Structural and Transport Consequences,” Synth. Met., 101, 734 (1999).
[43] M. Trchová, I. Šedĕnková, E. Tobolková, and J. Stejskal, “FTIR Spectroscopic and Conductivity Study of the Thermal Degradation of Polyaniline Films,” Polym. Degrad. Stabil., 86, 179 (2004).
[44] R. J. Mortimer, “Electrochromic Materials,” Chem. Soc. Rev., 26, 147 (1997).
[45] A. Bessière, C. Duhamel, J. C. Badot, V. Lucas, and M. C. Certiat, “Study and Optimization of a Flexible Electrochromic Device Based on Polyaniline,” Electrochim. Acta, 49, 2051 (2004).
[46] W. Lu, A. G. Fadeev, B. Qi, and B. R. Mattes, “Fabricating Conducting Polymer Electrochromic Devices Using Ionic Liquids,” J. Electrochem. Soc., 151, H33 (2004).
[47] C. L. Lin, C. C. Lee, and K. C. Ho, “Spectroelectrochemical Studies of Manganese Phthalocyanine Thin Films for Applications in Electrochromic Devices,” J. Electroanal. Chem., 524-525, 81 (2002).
[48] M. C. Bernard, A. H. L. Goff, and W. Zeng, “Elaboration and Study of a PANI/PAMPS/WO3 All Solid-state Electrochromic Device,” Electrochim. Acta, 44, 781 (1998).
[49] M. C. Bernard, A. H. L. Goff, and W. Zeng, “Characterization and Stability Tests of an All Solid State Electrochromic Cell Using Polyaniline,” Synth. Met., 85, 1347 (1997).
[50] S. A. Sapp, G. A. Sotzing, J. L. Reddinger, and J. R. Reynolds, “Rapid Switching Solid State Electrochromic Devices Based on Complementary Conducting Polymer Films,” Adv. Mater., 8, 808 (1996).
[51] J. Desilvestro, W. Scheifele, and O. Hass, “In Situ Determination of Gravimetric and Volumetric Charge Densities of Battery Electrodes,” J. Electrochem. Soc., 139, 2727 (1992).
[52] K. Kanamura, Y. Kawai, S. Yonezawa, and Z. I. Takehara, “Effect of Morphology of Polyaniline on Its Discharge Characteristics in Nonaqueous Electrolyte,” J. Electrochem. Soc., 142, 2894 (1995).
[53] Z. Cai, M. Geng, and Z. Tang, ”Novel Battery Using Conducting Polymers: Polyindole and Polyaniline as Active Materials,” J. Mater. Sci., 39, 4001 (2004).
[54] S. Mu, ”Rechargeable Batteries Based on Poly(aniline-co-o-amino phenol) and the Protonation of the Copolymer,” Synth. Met., 143, 269 (2004).
[55] Y. G. Wang, and X. G. Zhang, “All Solid-state Supercapacitor with Phosphotungstic Acid as the Proton-conducting Electrolyte,” Solid State Ionics, 166, 61 (2004).
[56] Y. K. Zhou, B. L. He, W. J. Zhou, J. Huang, X. H. Li, B. Wu, and H. L. Li, ”Electrochemical Capacitance of Well-coated Single-walled Carbon Nanotube with Polyaniline Composites,” Electrochim. Acta, 49, 257 (2004).
[57] K. S. Ryu, K. M. Kim, Y. J. Park, N. G. Park, M. G. Kang, and S. H. Chang, ”Redox Supercapacitor Using Polyaniline Doped with Li Salt as Electrode,” Solid State Ionics, 152-153, 861 (2002).
[58] T. Tatsuma, T. Ogawa, R. Sato, and N. Oyama, “Peroxidase-incorporated Sulfonated Polyaniline-polycation Complexes for Electrochemical Sensing of H2O2,” J. Electroanal. Chem., 501, 180 (2001).
[59] S. Koul, and R. Chandra, ”Mixed Dopant Conducting Polyaniline Reusable Blend for the Detection of Aqueous Ammonia,” Sensor. Actuat. B-Chem., 104, 57 (2005).
[60] S. Takeda, ”New Type of CO2 Sensor Built up with Plasma Polymerized Polyaniline Thin Film,” Thin Solid Films, 343-344, 313 (1999).
[61] W. Takashima, M. Kaneko, K. Kaneto, and A. G. MacDiarmid, “Electrochemical Actuator Using Electrochemically-deposited Poly-aniline Film,” Synth. Met., 71, 2265 (1995).
[62] B. Qi, W. Lu, and B. R. Mattes, “Strain and Energy Efficiency of Polyaniline Fiber Electrochemical Actuators in Aqueous Electrolytes,”J. Phys. Chem. B, 108, 6222 (2004).
[63] F. Jonas, G. Heywang, W. Schmidtberg, J. Heinze, and M. Dietrich, “Method of Imparting Antistatic Properties to a Substrate by Coating the Substrate with a Novel Polythiophene,” Eur. Pat., 339,340 (1988).
[64] F. Jonas, and W. Krafft, “New Polythiophene Dispersions, Their Preparation and Their Use,” Eur. Pat., 440,957 (1991).
[65] F. Jonas, G. Heywang, W. Schmidtberg, J. Heinze, and M. Dietrich, “Method of Imparting Antistatic Properties to a Substrate by Coating the Substrate with a Novel Polythiophene,” U. S. Pat., 5,035,926 (1991).
[66] M. Dietrich, J. Heinze, G. Heywang, and F. Jonas, “Electrochemical and Spectroscopic Characterization of Polyalkylenedioxy- thiophenes,” J. Electroanal. Chem., 369, 87 (1994).
[67] J. Roncali, “Conjugated Poly(thiophenes): Synthesis, Functionalization, and Applications,” Chem. Rev., 92, 711 (1992).
[68] Q. Pei, G. Zuccarello, M. Ahlskog, and O. Inganäs, “Electrochromic and Highly Stable Poly(3,4-ethylenedioxythiophene) Switches between Opaque Blue-black and Transparent Sky Blue,” Polymer, 35, 1347 (1994).
[69] X. Chen and O. Inganäs, “Three-Step Redox in Polythiophenes: Evidence from Electrochemistry at an Ultramicroelectrode,” J. Phys. Chem., 100, 15202 (1996).
[70] D. DeLongchamp, and P. T. Hammond, “Layer-by-Layer Assembly of PEDOT/Polyaniline Electrochromic Devices,” Adv. Mater., 13, 1455 (2001).
[71] M. A. De Paoli, A. F. Nogueira, D. A. Machado, and C. Longo, “All-polymeric Electrochromic and Photoelectrochemical Devices: New Advances,” Electrochim. Acta, 46, 4243 (2001).
[72] M. A. De Paoli, G. Casalbore-Miceli, E. M. Girotto, and W. A. Gazotti, “All Polymeric Solid State Electrochromic Devices,” Electrochim. Acta, 44, 2983 (1999).
[73] S. A. Sapp, G. A. Sotzing, and J. R. Reynolds, “High Contrast Ratio and Fast-Switching Dual Polymer Electrochromic Devices,” Chem. Mater., 10, 2101 (1998).
[74] J. C. Gustafsson, B. Liedberg, and O. Inganäs, “In Situ Spectroscopic Investigations of Electrochromism and Ion Transport in a Poly(3,4-ethylenedioxythiophene) Electrode in a Solid State Electrochemical Cell,” Solid State Ionics, 69, 145 (1994).
[75] H. W. Heuer, R. Wehrmann, and S. Kirchmeyer, “Electrochromic Window based on Conducting Poly(3,4-ethylenedioxythiophene)- Poly(styrene sulfonate),” Adv. Func. Mater., 12, 89 (2002).
[76] H. W. Heuer and R. Wehrmann, “Electrochromic Assembly based on Poly(3,4-ethylenedioxythiophene) Derivatives and a UV-Stabilized Gel Electrolyte,” U. S. Pat., 6,157,479 (2000).
[77] H. W. Heuer, R. Wehrmann, F. Jonas, and Osenberg, “Electrochromic Device based on Poly(3,4-dioxy-thiopene) Derivatives,” U. S. Pat., 6,175,441 (2001).
[78] H. W. Heuer and R. Wehrmann, “Electrochromic Assembly based on Poly(3,4-ethylene-dioxythiophene) Derivatives with a Counterelectrode Containing Metal Oxides from Transition Group VI or VIII,” U. S. Pat., 6,323,988 (2001).
[79] H. W. Heuer and R. Wehrmann, “Electrochromic Assembly based on Poly(3,4-ethylenedioxythiophene) Derivatives in Combination with a Lithium Niobate Counterelectrode,” U. S. Pat., 6,327,070 (2001).
[80] H. W. Heuer and R. Wehrmann, “UV-Stabilized Electrochromic Assembly based on Poly(3,4-ethylenedioxythiophene) Derivatives,” U. S. Pat., 6,403,741 (2002).
[81] H. W. Heuer and R. Wehrmann, “Electro Chromic Assembly based on Poly(3,4-ethylenedioxythiophene) Derivatives in the Electrochromic Layer and the Ion-Storage Layer,” U. S. Pat., 6,452,711 (2002).
[82] H. W. Heuer and R. Wehrmann, “Arrangement based on Poly(3,4-dioxythiophene) Derivatives Which are Electrochromically Switched with Protons,” U. S. Pat., 6,507,428 (2003).
[83] F. Jonas and L. Schrader, “Conductive Modifications of Polymers with Polypyrroles and Polythiophenes,” Synth. Met., 41-43, 831 (1991).
[84] M. Vazquez, P. Danielsson, J. Bobacka, A. Lewenstam, and A. Ivaska, “Solution-cast Films of Poly(3,4-ethylenedioxythiophene) as Ion-to-electron Transducers in All-solid-state Ion-selective Electrodes,” Sens. Actuators B, 97, 182 (2004).
[85] H. Yamato, M. Ohwa, and W. Wernet, “Stability of Polypyrrole and Poly(3,4-ethylenedioxythiophene) for Biosensor Application,” J. Electroanal. Chem., 397, 163 (1995).
[86] S. Fabiano, C. Tran-Minh, B. Piro, L. A. Dang, M. C. Pham, and O. Vittori, “Poly 3,4-ethylenedioxythiophene as an Entrapment Support for Amperometric Enzyme Sensor,” Mat. Sci. Eng. C-Bio. S., 21, 61 (2002).
[87] G. Heywang and F. Jonas, “Poly(alkylenedioxythiophene)s-New, Very Stable Conducting Polymers,” Adv. Mater., 4, 116 (1992).
[88] J. C. Carlberg and O. Inganäs, “Poly(3,4-ethylenedioxythiophene) as Electrode Material in Electrochemical Capacitors,” J Electrochem. Soc., 144, L61 (1997).
[89] M. Granström, M. Berggren, and O. Inganäs, “Micrometer- and Nanometer-sized Polymeric Light-Emitting Diodes,” Science, 267, 1479 (1995).
[90] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, and R. Wehrmann, “PEDT/PSS for Efficient Hole-injection in Hybrid Organic Light-emitting Diodes,” Syn. Met., 111, 139 (2000).
[91] Y. Saito, T. Kitamura, Y. Wada, and S. Yanagida, “Poly(3,4-ethylenedioxythiophene) as a Hole Conductor in Solid State Dye Sensitized Solr Cells,” Syn. Met., 131, 185 (2002).
[92] Y. Saito, N. Fukuri, R. Senadeera, T. Kitamura, Y. Wada, and S. Yanagida, “Solid State Dye Sensitized Solar Cells Using in situ Polymerized PEDOTs as Hole Conductor,” Electrom. Commun., 6, 71 (2004).
[93] G. Liang, and T. Cui, “Fabrication and Characterization of Poly(3,4-ethylenedioxythiophene) Field-effect Transistors,” Solid-State Electron, 48, 87 (2004).
[94] L. C. Chen, and K. C. Ho, “Design Equations for Complementary Electrochromic Devices: Application to the Tungsten Oxide–Prussian Blue System,” Electrochim. Acta, 46, 2151 (2001).
[95] S. A. Forsyth, J. M. Pringle, and D. R. MacFarlane, “Ionic Liquids-An Overview,” Aust. J. Chem., 57, 113 (2004).
[96] Z. Li, H. Liu, Y. Liu, P. He, and J. Li, “A Room-Temperature Ionic-Liquid-Templated Proton-Conducting Gelatinous Electrolyte,” J. Phys. Chem. B, 108, 17512 (2004).
[97] 方郁文, “二庚基-4,4’聯吡啶之光電性質與其元件應用之研究, ” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2001).
[98] 林正嵐, “普魯士藍薄膜電極電化學析鍍與氧化還原行為之研究, ” 國立台灣大學化學工程研究所博士論文, 台北, 台灣 (2002).
[99] E. M. Genies, M. Lapkowski, and J. F. Penneau, “Cyclic Voltammetry of Polyaniline - Interpretation of the Middle Peak,” J. Electroanal. Chem., 249, 97 (1988).
[100] W. Lu, and B. R. Mattes, “Electrochemical Behavior and Electromechanical Actuation of PANI in Nonaqueous Electrolytes,” J. Electrochem. Soc., 150, E416 (2003).
[101] B. Sankaran, and J. R. Reynolds, “High-contrast Electrochromic Polymers from Alkyl-derivatized Poly(3,4-ethylenedioxythio phenes),” Macromolecules, 30, 2582 (1997).
[102] 董才士, “以PEDOT導電高分子及其衍生物與普魯士藍搭配之電致色變元件性質最適化與長期穩定性研究, ” 國立台灣大學化學工程研究所碩士論文, 台北, 台灣 (2004).
[103] J. Cornil, D. Beljonne, and J. L. Brédas, “Nature of Optical Transitions in Conjugated Oligomers. I. Theoretical Characterization of Neutral and Doped Oligo(phenylen vinylene)s,“ J. Chem. Phys., 103, 834 (1995).
[104] J. J. Apperloo, J. A. E. H. Van Haare, and R. A. J. Janssen, “Transparent Highly-oxidized Conjugated Polymer Films from Solution,” Synth. Met., 101, 417 (1999).
[105] G. Sauerbrey, “Verwendung von Schwingquarzen zur Wagung dunner Schichten and zur Mikrowagung,” Z. Phys., 155, 206 (1959).
[106] T. Silk, and J. Tamm, “Voltammetric Study of the Influence of Cations on the Redox-Switching Process of Halogenide-Doped Polypyrrole,” Electrochim. Acta, 41, 1883 (1996).
[107] C. Weidlich, K. M. Mangold, and K. Jüttner, “EQCM Study of the Ion Exchange Behaviour of Polypyrrole with Different Counterions in Different Electrolytes,” Electrochim. Acta, 50, 1547 (2005).
[108] J. N. Butler, Reference Electrodes in Aprotic Organic Solvents, in Advanced in Electrochemical Science and Engineering, Volume 7, P. Delahay and C. W. Tobias eds., John Wiley & Sons, New York, NY (1970).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24522-
dc.description.abstract本研究論文採用氧化著色的導電高分子polyaniline (PANI)搭配還原著色的新型導電高分子poly(3,4-ethylenedioxythiophene) (PEDOT)組裝一互補式電致色變元件。研究首先針對電致色變薄膜進行基本性質量測與分析,在瞭解了兩變色材料的電化學及光學性質之後,再針對PANI-PEDOT電致色變元件做一系列的探討,包括元件之著、去色電壓對穿透度調幅及長期操作穩定性的影響,以及推導出當兩極電量比不同時,元件所應具有的穿透度調幅之理論設計方程式,最後並使用離子液體做為電解質,以尋求元件之最佳效能。
針對PANI薄膜,其操作電位窗調控在-0.5 V至0 V,並且由光譜分析中可得知,若於電解質中加入少量的質子酸將有助於提升薄膜的穩定性。另外,由著色效率分析可得知,PANI薄膜具有三個階段的著色效率值,本研究所選定的操作電位範圍(-0.5 ~ 0 V)之著色效率值為25 cm2/C (at 570 nm)。從EQCM的分析中顯示:PANI薄膜於氧化還原時並非只以ClO4-的遷入與遷出維持薄膜的電中性,反而有部分為利用陽離子來平衡薄膜的電中性。對於PEDOT薄膜而言,其操作電位窗選定在0.3 V至-1.0 V間,並且由著色效率的量測計算得知其著色效率值約為206 cm2/C (at 570 nm),且為此系統中主要貢獻顏色變化的材料。而從EQCM的分析中顯示其質量隨著操作圈數的增加而增加,其原因可能是由於PEDOT薄膜的表面結構較為多孔,溶劑分子(propylene carbonate)較有可能伴隨著陰離子進入薄膜使薄膜質量增加,或是溶液中移動速度較快的陽離子(H+ and Li+)進入薄膜以平衡電荷,而阻檔了陰離子的遷出。
PANI-PEDOT電致色變元件在以去色電壓為-0.6 V、著色操作電壓為1.0 V的操作電位連續操作之下,位於波長570 nm的去色態穿透度約為58~62%,而著色態穿透度約為15~20%,穿透度調幅約有40~45%。元件在操作11,400圈後之穿透度調幅為41.6%,為初始的96%,23,200圈時為33.8%,為初始的78%。元件之著色響應時間為1.1 s,而去色響應時間為0.4 s。而元件於波長570 nm時之著色效率為285 cm2/C (at 570 nm),此數值與PANI與PEDOT著色效率的加成近似,顯示互補式電致色變元件之著色效率約為兩電致色變薄膜著色效率的和。另外在固定PANI薄膜之電量,而改變PEDOT薄膜之電量的情形下,元件之反應電量約相等於PEDOT薄膜所具有的電量,並發現理論穿透度調幅與實驗值相當的吻合好。
將電解質由PC換為離子液體溶液後,元件操作至2萬圈時所殘存的穿透度變化百分比由上述PC系統中之78% (1.0 V著色,-0.6 V去色)變為離子液體系統中的85% (1.0 V著色,-0.7 V去色),顯示使用離子液體做為電致色變元件之導離電解質可些微提升元件之穩定性。
zh_TW
dc.description.abstractIn this thesis, two conducting polymers, polyaniline (PANI) and poly(3,4-ethylenedioxythiophene) (PEDOT) were used to construct a complementary electrochromic device (ECD), in which PANI served as the anodically coloring material and PEDOT as the cathodically coloring one. After knowing the electrochemical and optical properties of these two materials, the effect of the coloring and bleaching voltages on the optical attenuation performance and the cycling stability of the ECD were discussed. Moreover, the design equations for the ECD with different charge capacity ratios (CCRs), and the use of ionic liquid as an electrolyte were also discussed.
For PANI thin film, the operating potential window was controlled between -0.5 and 0 V. From the spectral analysis, the adding of proton into electrolyte enhanced the cycling stability. By the analysis of the coloration efficiency, PANI thin film has three values of the coloration efficiency. In the chosen operating potential (-0.5~0 V), the coloration efficiency was calculated to be 25 cm2/C. From the EQCM analysis, not only ClO4- dominated the neutrality of PANI but anion also played an important role. For PEDOT thin film, the operating potential window was controlled between 0.3 and -1.0 V and the coloration efficiency was calculated to be 206 cm2/C, so that it dominated the color change of the ECD. From the EQCM analysis, the mass of PEDOT thin film increased with cycling numbers. This may due to the porous morphology that the solvent (propylene carbonate) would accompany with cations being inserted into the PEDOT film or anions (H+ and Li+) with larger mobility being incorporated into the film first and then blocked the expulsion of anions.
The bleached and colored state transmittances at 570 nm of the PANI-PEDOT ECD were 58~62% at -0.6 V and 15~20% at 1.0 V, respectively, with delta T of about 40~45%. After 11,400 cycles, delta T of the ECD was 41.6%, which was 96% of its initial value; after 23,200 cycles, delta T of the ECD was 33.8%, and was 78% of the initial value. The response times for the coloring and bleaching processes were 1.1 s and 0.4 s, respectively. The coloration efficiency of the ECD was 285 cm2/C at 570 nm and this value was quite close to the sum of the coloration efficiency of each EC material. The optical attenuation performances of ECDs with different CCRs were also measured. The consumed charges of the ECDs were found to be equal to the charge capacity of PEDOT and the experimental data were fitted well by the design equations. By choosing ionic liquid as an electrolyte, ΔT remained 85% of the initial
value after 2 x 104 cycles. This shows that electrolyte is an important
issue for the cycling stability.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:29:23Z (GMT). No. of bitstreams: 1
ntu-94-R92524028-1.pdf: 2358965 bytes, checksum: d000efdc47b5aa3fbb95fc5efca03518 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要.....................................................................................................I
英文摘要..................................................................................................III
致謝...........................................................................................................V
目錄..........................................................................................................VI
表目錄......................................................................................................IX
圖目錄......................................................................................................XI
符號說明...............................................................................................XIX
縮寫說明...............................................................................................XXI

第一章 緒論..............................................................................................1
1-1 前言..............................................................................................1
1-2 電致色變技術簡介......................................................................3
1-2-1電致色變技術的發展.........................................................3
1-2-2電致色變材料.....................................................................5
1-2-3電致色變元件的結構與類型.............................................7
1-2-3-1溶液型(Solution type)...............................................8
1-2-3-2混合型(Hybrid type).................................................9
1-2-3-3薄膜型(Thin-film battery-like type)........................10

第二章 文獻回顧與研究目的................................................................15
2-1 導電高分子PANI.......................................................................17
2-1-1 PANI簡介.........................................................................17
2-1-2 PANI的光電行為.............................................................18
2-1-3 PANI在電致色變元件上的應用.....................................24
2-2 導電高分子PEDOT...................................................................26
2-2-1 PEDOT簡介.....................................................................26
2-2-2 PEDOT的光電行為.........................................................27
2-2-3 PEDOT在電致色變元件上的應用.................................29
2-3 研究動機與目的........................................................................32
2-4 研究架構....................................................................................34

第三章 實驗部分....................................................................................35
3-1 儀器設備....................................................................................35
3-2 實驗藥品....................................................................................36
3-3 實驗方法....................................................................................38
3-3-1 導電玻璃之前處理..........................................................38
3-3-2 定電流析鍍PANI薄膜....................................................38
3-3-3 定電位析鍍PEDOT薄膜................................................39
3-3-4 電解質之製備..................................................................39
3-3-4-1 LiClO4+HClO4+PC電解質....................................39
3-3-4-2 [BMIM][BF4]離子液體電解質.............................40
3-3-4-3 [BMIM][BF4]+PVDF+HFP膠態電解質...............40
3-3-5 元件之組裝......................................................................40
3-4 電化學特性分析........................................................................43
3-4-1 薄膜電化學特性分析-三極式.........................................43
3-4-2 元件電化學特性分析-二極式.........................................43
3-5 In-situ UV-VIS光譜分析.......................................................44
3-6 離子進出電致色變薄膜分析....................................................48
3-7 元件之長期穩定性測試............................................................50

第四章 電致色變薄膜特性分析............................................................51
4-1 薄膜循環伏安分析....................................................................51
4-1-1 PANI薄膜循環伏安分析.................................................51
4-1-2 PEDOT薄膜循環伏安分析.............................................58
4-2 光譜特性與階梯電位響應分析................................................63
4-2-1 PANI光譜、階梯電位響應與著色效率分析...................63
4-2-2 PEDOT光譜、階梯電位響應與著色效率分析...............72
4-3 離子進出薄膜質量特性分析....................................................81
4-3-1 EQCM分析離子進出PANI薄膜.....................................81
4-3-2 EQCM分析離子進出PEDOT薄膜.................................88

第五章 電致色變元件特性分析..........................................................101
5-1 元件電化學與光學特性分析..................................................101
5-2 元件操作電壓與長期穩定性..................................................106
5-3 兩極電量比對元件性質之影響...............................................116
5-3-1 元件設計方程式............................................................116
5-3-2 理論與實驗結果之搭配................................................121
5-3-3 兩極電位分佈量測........................................................134
5-4 離子液體應用於電致色變元件..............................................140
5-4-1 離子液體簡介................................................................140
5-4-2 電致色變薄膜於離子液體下之電化學性質................144
5-4-3 元件之長期穩定性........................................................148
5-4-4 膠態離子液體應用於電致色變元件之長期穩定性....152
5-4-5電致色變元件於高溫下之長期穩定性.........................156

第六章 結論與建議 ..............................................................................163
6-1 結論..........................................................................................163
6-1-1 PANI薄膜之電化學與光學性質...................................163
6-1-2 PEDOT薄膜之電化學與光學性質...............................164
6-1-3 PANI-PEDOT電致色變元件.........................................165
6-2 建議..........................................................................................170

第七章 參考文獻..................................................................................173

附錄A 參考電極Ag/Ag+之製備與校正 ............................................187
dc.language.isozh-TW
dc.title互補式電致色變元件PANI-PEDOT光譜電化學與最適化之研究zh_TW
dc.titleSpectroelectrochemical and Optimum Studies of the PANI-PEDOT Complementary Electrochromic Devicesen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周澤川,楊明長,顏溪成
dc.subject.keyword電致色變元件,聚苯胺,poly(3,4-ethylenedioxythiophene),著色效率,穩定性,離子液體,zh_TW
dc.subject.keywordelectrochromic device,polyaniline,poly(3,4-ethylenedioxyth iophene),coloration efficiency,stability,ionic liquid,en
dc.relation.page190
dc.rights.note未授權
dc.date.accepted2005-07-08
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  目前未授權公開取用
2.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved