Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24506
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何國川
dc.contributor.authorShih-Wen Huangen
dc.contributor.author黃詩雯zh_TW
dc.date.accessioned2021-06-08T05:28:43Z-
dc.date.copyright2005-07-14
dc.date.issued2005
dc.date.submitted2005-07-11
dc.identifier.citation1. 何國川, 電化學與無窗簾時代. 化工, 1990. 37(3): p. 32-42.
2. 邱顯堂, 變色性材料. 化工, 1991. 38(2): p. 74-89.
3. 楊明長, 電致色變系統簡介. 化工, 1993. 40(2): p. 64-68.
4. Brimm, E.O., J.C. Brantley, J.H. Lorenz, and M.H. Jellinek, Sodium and potassium tungsten bronzes. 1951: p. 5427-5432.
5. Deb, S.K., Optical absorption and photoconductivity in unstable azides-2. Trans. Faraday Soc., 1969. 65(564): p. 3187-3194.
6. Byker, H.J., Single-compartment, self-erasing, solution-phase electrochromic devices, Solutions for use therein, and uses thereof. 1990: USA.
7. Lee, E.S. and D.L. Dibartolomeo, Application issues for large-area electrochromic windows in commercial buildings. Sol. Energy Mater. Sol. Cells, 2002. 71: p. 465-491.
8. Gratzel, M., Ultrafast colour displays. Nature, 2001. 409(6820): p. 575-576.
9. Bach, U., D. Corr, D. Lupo, F. Pichot, and M. Ryan, Nanomaterials-based electrochromics for paper-quality displays. Adv. Mater., 2002. 14: p. 845-848.
10. Corr, D., U. Bach, D. Fay, M. Kinsella, C. McAtamney, F. O'Reilly, S.N. Rao, and N. Stobie, Coloured electrochromic 'paper-quality' displays based on modified mesoporous electrodes. Solid State Ion., 2003. 165: p. 315-321.
11. Monk, P.M.S., R.J. Mortimer, and D.R. Rosseinsky, Electrochromism: Fundamentals and Applications. 1995, New York: VCH Publishers, Inc.
12. Rauh, R.D., Electrochromic windows: an overview. Electrochim. Acta, 1999. 44: p. 3165-3176.
13. Rosseinsky, D.R. and R.J. Mortimer, Electrochromic systems and the prospects for devices. Adv. Mater., 2001. 13(11): p. 783-793.
14. Brechtel, J.H. and H.J. Byker, Automatic rearview mirror system for automotive vehicles. 1990: USA.
15. Byker, H.J., Single-compartment, self-erasing, solution-phase electrochromic devices, solution for use therein, and uses thereof. 1990: USA.
16. 林巧芬, 以紫精搭配普魯士藍電致色變元件之研究, in 化學工程學研究所. 2003, 國立台灣大學: 台北.
17. Granqvist, C.G., E. Avendano, and A. Azens, Electrochromic coatings and devices: survey of some recent advances. Thin Solid Films, 2003. 442: p. 201-211.
18. Ashrit, P.V., F.E. Girouard, and V.-V. Truong, Fabrication and testing of an all-solid state system for smart window application. Solid State Ion., 1996. 89: p. 65-73.
19. Granqvist, C.G., A. Azens, A. Hjelm, L. Kullman, and G.A. Niklasson, Recent Advances in electrochromics for smart windows applications. Sol. Energy, 1998. 63(4): p. 199-216.
20. Granqvist, C.G., A. Azens, J. Isidorsson, M. Kharrazi, L. Kullman, T. Lindstrom, G.A. Niklasson, C.-G. Ribbing, D. Ronnow, M.S. Mattsson, and M. Veszelei, Towards the smart window: progress in electrochromics. J. Non-Cryst. Solids, 1997. 218: p. 273-279.
21. MacDiarmid, A.G. and A.J. Heeger, Semiconducting and metallic covelent polymer em dash (CH)x and its derivatives. American chemical society, Division of Organic Coatings and Plastics Chemistry, 1980. 43: p. 853-859.
22. Heeger, A.J. and A.G. MacDiarmid, Conducting polymers: theoretical concepts and experimental results. American Chemical society, Division of Polymer Chemistry, 1982. 23(1): p. 81.
23. Bredas, J.L., B. Themans, J.G. Fripiat, and j.M. Andre, Highly conducting polyparaphenylene, polypyrrole, and polythiophene chains:an ab initio study of the geometry and electronic-structure modifications upon doping. Phys. Rev. B, 1984. 29(12): p. 6761-6773.
24. Roncali, J., Conjugated poly(thiophenes): synthesis, functionalization, and applications. Chem. Rev., 1992. 92: p. 711-738.
25. Fraid, K., M. Frechette, M. Ranger, L. Mazerolle, I. Levesque, and M. Leclerc, Chromic phenomena in regioregular and nonregioregular polythiophene derivatives. Chem. Mat., 1995. 7: p. 1390-1396.
26. Wallace, G.G., G.M. Spinks, L.A.P. Kane-Maguire, and P.R. Teasdale, Conductive Electroactive Polymers. 2 ed. 2003, New York: CRC Press.
27. Sato, M., S. Tanaka, and K. Kaeriyama, Electrochemical preparation of conducting poly(3-methylthiophene): comparison with polythiophene and poly(3-methylthiophene). Synth. Met., 1986. 14(4): p. 279-288.
28. Roncali, J., M. Lemaire, R. Garreau, and F. Garnier, Enhancement of the mean conjugation length in conducting polythiophene. Synth. Met., 1986. 18: p. 139-144.
29. Mastragostino, M., A.M. Marinangelt, A. Corradini, and S. Giacobbe, Conducting polymers as electrochromic materials. Synth. Met., 1989. 28(1989): p. C501-C506.
30. Roncali, J., R. Garreau, A. Yassar, P. Marque, F. Garnier, and M. Lemaire, Effect of steric factors on the electrosynthesis and properties of conducting poly(3-akylthiophene). J. Phys. Chem., 1987. 91: p. 6706-6714.
31. Krische, B. and M. Zagorska, Polythiophene paradox. Synth. Met., 1989. 28(1-2): p. 263-268.
32. Krische, B. and M. Zagorska, Polythiophene synthesis by electropolymerization of thiophene and bithiophene. Synth. Met., 1989. 33: p. 257-267.
33. Shi, G., S. Jin, and C. Li, A conducting polymer film stronger than aluminum. Science, 1995. 267(5200): p. 994-996.
34. Shi, G., G. Xue, C. Li, S. Jin, and B. Yu, Uniaxial oriented poly(p-phenylene) fibrils and films. Macromolecules, 1994. 27: p. 3678-3679.
35. Li, C., G. Shi, and Y. Li, Electrochemical synthesis of free-standing poly(para-pheylene) films in composite electrolytes of boron trifluoride diethyl etherate and sulfuric acid. Synth. Met., 1999. 104: p. 113-117.
36. Wang, F., G. Shi, F. Chen, J. Xu, and J. Zhang, Electrochemical polymerizaton of thianaphthene. J. Electroanal. Chem., 2001. 510: p. 29-34.
37. Huang, Z., L. Qu, G. Shi, F. Chen, and X. Hong, Electrochemical polymerization of naphthalene in the electrolyte of boron trifluoride diethyl etherate containing trifluoroacetic acid and polyethylene glycol oligomer. J. Electroanal. Chem., 2003. 556: p. 159-165.
38. Li, E., Z. Huang, G. Shi, L. Qu, and J. Zhang, Electrochemical polymerization of beta-naphthalene sulfonic acid. J. Appl. Polym. Sci., 2004. 92: p. 1939-1944.
39. Huang, Y.-H., L.-C. Chen, and K.-C. Ho, Switching behavior of the Prussian blue-indium hexacyanoferrate electrochromic device using the K-doped poly-AMPS electrolyte. Solid State Ion., 2003. 165: p. 269-277.
40. Coskun, Y., A. Cirpan, and L. Toppare, Conducting polymers of terepthalic acid bis-(2-thiophen-3-yl-ethyl) ester and their electrochromic properties. Polymer, 2004. 45: p. 4989-4995.
41. Li, E., G. S, X. Hong, and P. Wu, Electrochemical polymerization of toluene in the mixed electrolytes of boron trifluoride diethyl etherate and trifluoroacetic acid. J. Appl. Polym. Sci., 2004. 93: p. 189-195.
42. Li, C., G. Shi, Y. Liang, and Z. Sha, Crystalline polythiophene film prepared by electrochemical polymerization of thiophene at a nickel electrode. Polymer, 1997. 38(26): p. 6421-6422.
43. Zhou, L., Y. Li, and G. Xue, A study of electrochemical copolymerization of 3-butylthiophene and 3-bromothiophene. Thin Solid Films, 1998. 335: p. 112-116.
44. Zhang, D., J. Qin, and G. Xue, An investigation of the electropolymerization of terthiophene in boron fluoride-ethyl ether. Synth. Met., 1999. 100: p. 285-289.
45. Zhang, D., J. Qin, and G. Xue, Studies of electrochemically deposited films from bithiophene in boron fluoride-ethyl ether. Synth. Met., 1999. 106: p. 161-164.
46. Wang, X., G. Shi, and Y. Liang, Low potential electropolymerization of thiophene at a copper oxide electrode. Electrochem. Commun., 1999. 1: p. 536-539.
47. Xu, J., G. Shi, Z. Xu, F. Chen, and X. Hong, Low potential electrochemical polymerization of 3-chlorothiophene in mixed electrolytes of boron trifluoride diethyl etherate and trifluoroacetic acid. J. Electroanal. Chem., 2001. 514: p. 16-24.
48. Shi, G., J. Xu, and M. Fu, Raman spectroscopic and electrochemical studies on the doping level changes of polythiophene films during their electrochemical growth processes. J. Phys. Chem. B, 2002. 106: p. 288-292.
49. Xu, J., G. Shi, F. Chen, and X. Hong, Doping level increase of poly(3-methylthiophene) film during electrochemical polymerization process. Chin. J. Polym. Sci., 2002. 20(5): p. 425-430.
50. Li, X. and Y. Li, Electrochemical preparation of polythiophene in acetonitrile solution with boron fluoride-ethyl ether as the electrolyte. J. Appl. Polym. Sci., 2003. 90: p. 940-946.
51. Alkan, S., C.A. Cutler, and J.R. Reynolds, High quality electromic polythiophenes via BF3ET2O electropolymerization. Adv. Funct. Mater., 2003. 13(4): p. 331-336.
52. Zhang, Z., L. Qu, and G. Shi, Fabrication of highly hydrophobic surfaces of conductive polythiophene. J. Mater. Chem., 2003. 13: p. 2858-2860.
53. Han, G. and G. Shi, Conducting polymer electrochemical actuator made of high-strength three-layered composite films of polythiophene and polypyrrole. Sens. Actuator B-Chem., 2004. 99: p. 525-531.
54. Zhang, Z. and G. Shi, Electrochemical polymerization of 3-phenylthiophene. J. Electroanal. Chem., 2004. 569: p. 197-202.
55. Chung, T.-C., J.H. Kaufman, A.J. Heeger, and F. Wudl, Charge storage in doped poly(thiophene): optical and electrochemical studies. Phys. Rev. B, 1984. 30(2): p. 702-710.
56. Mammone, R.J. and M. Binder, Electrochemical studies of poly-3-methylthiophene electrodes in SO2 electrolyte. J. Electrochem. Soc., 1988. 135(5): p. 1057-1059.
57. Berney, H., J. West, E. Haefele, J. Alderman, W. Lane, W. Lane, and J.K. Collins, A DNA diagnostic biosensor:development, characterisation and performance. Sens. Actuator B-Chem., 2000. 68: p. 100-108.
58. Fabiano, S., C. Tran-Minh, B. Piro, L.A. Dang, M.C. Phan, and O. Vittori, Poly(3,4-ethylenedioxythiophene as an entrapment support for amperometric enzyme sensor. Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 2002. 21: p. 61-67.
59. Kudoh, Y., K. Akami, and Y. Matsuya, Solid electrolytic capacitor with highly stable conducting polymer as a counter electrode. Synth. Met., 1999. 102(1-3): p. 973-974.
60. Swathirajan, S. and Y.M. Mikhail, Methanol oxidation on platinum-tin catalysts dispersed on poly(3-methyl)thiophene conducting polymer. J. Electrochem. Soc., 1992. 139(8): p. 2105-2110.
61. Inganas, O., C. Carlberg, and T. Yohannes, Polymer electrolytes in optical devices. Electrochim. Acta, 1998. 43(10-11): p. 1615-1621.
62. Gazotti, W.A., M.-A.D. Paoli, G. Gasalibore-Miceli, A. Geri, and G. Zotti, A solid-state electrochromic device based on complementary polypyrrole/polythiophene derivatives and an elastomeric electrolyte. J. Appl. Electrochem., 1999. 29: p. 753-757.
63. Sapp, S.A., G.A. Sotzing, and J.R. Reynolds, High contrast ratio and fast-switching dual polymer electrochromic devices. Chem. Mat., 1998. 10: p. 2101-2108.
64. Garnier, F. and G. Tourillon, Organic conducting polymers derived from substituted thiophenes as electrochromic material. J. Electroanal. Chem., 1983. 148: p. 299-303.
65. Waltman, R.J., J. Bargon, and A.F. Diaz, Electrochemical studies of some conducting polythiophene films. J. Phys. Chem., 1983. 87: p. 1459-1463.
66. Tourillon, G. and F. Garnier, Effect of dopant on the physicochemical and electrical properties of organic conducting polymers. J. Phys. Chem., 1983. 87: p. 2289-2292.
67. Arbizzani, C., A. Bongini, M. Mastragostino, A. Zanelli, G. Barbarella, and M. Zambianchi, Polyalkylthiophenes as electrochromic materials: A comparative study of poly(3-methylthiophenes) and poly(3-hexylthiophenes). Adv. Mater., 1995. 7(6): p. 571-574.
68. Mastragostino, M., C. Arbizzani, A. Bongini, G. Barbarella, and M. Zambianchi, Polymer-based electrochromic devices - poly(3-methylthiophene). Electrochim. Acta, 1993. 38(1): p. 135-140.
69. Winter, I., C. Reese, J. Hormes, G. Heywang, and F. Jonas, The thermal ageing of PEDOT. An investigation by X-ray absorption and X-ray photoelectron spectroscopy. Chem. Phys., 1995. 194(1): p. 207-213.
70. Jonas, F. and L. Schrader, Conductive modifications of polymers with polypyrroles and polythiophenes. Synth. Met., 1991. 41(3): p. 831-836.
71. Groenendaal, L.B., F. Jonas, D. Freitag, H. Pielartzik, and J.R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater., 2000. 12(7): p. 481-494.
72. Hoier, S.N. and S.-M. Park, Electrochemistry of conductive polymer. 11. SPectroelectrochemical studies of poly(3-methylthiophene) oxidation. J. Phys. Chem., 1992. 96: p. 5188-5193.
73. Pern, F.-J. and A.J. Frank, Electrochemical and optical characterization of poly(3-methylthiophene). J. Electrochem. Soc., 1990. 137(9): p. 2769-2777.
74. Dian, G. and G. Barbey, Electrochemical synthesis of polythiophenes and polyselenophenes. Synth. Met., 1986. 13: p. 281-289.
75. Pern, F.-J. and A.J. Frank, Electrochemical and optical characterization of poly(3-methylthiophene). J. Am. Chem. Soc., 1990. 137(9): p. 2769-2777.
76. Arbizzani, C., M. Mastragostino, S. Passerini, R. Pileggi, and B. Scrosati, An electrochromic window based on polymethyl thiophene and nickel oxide electrodes. Electrochim. Acta, 1991. 36(5/6): p. 837-840.
77. Handbook of organic conductive molecules and pollymers, ed. H.S. Nalwa. Vol. 3. 1994, Chichester: John Wiley & Sons Ltd.
78. Marque, P., J. Roncali, and F. Garnier, Electrolyte effect on the electrochemical properties of poly(3-methylthiophene) thin films. J. Electroanal. Chem., 1987. 218: p. 107-118.
79. Corradini, A., A.M. Marinangeli, and M. Mastragostino, ITO as counter-electrode in a polymer based electrochromic device. Electrochim. Acta, 1990. 35(11/12): p. 1757-1760.
80. Mastragostino, M., C. Arbizzani, P. Ferloni, and A. Marinangeli, Polymer-based electrochromic devices. Solid State Ion., 1992. 53-56: p. 471-478.
81. Vinokurov, I.A. and J. Kankare, Beer's law and the isosbestic points in the absorption spectra of conductive polymers. J. Phys. Chem. B, 1998. 102: p. 1136-1140.
82. Dietrich, M., J. Heinze, G. Heywang, and F. Jonas, Electrochemical and spectroscopic characterization of polyalkylenedioxythiophenes. J. Electroanal. Chem., 1994. 369(1-2): p. 87-92.
83. chen, X. and O. Inganas, Three-step redox in polythiophene: evidence from electrochemistry at an ultramicroelectrode. J. Phys. Chem., 1996. 100: p. 15202-15206.
84. Zotti, G., S. Zecchin, and G. Schiavon, Conductive and magnetic properties of 3,4-ethylelediosy-capped polypyrrole and polythiophene. Chem. Mat., 2000. 12: p. 2996-3005.
85. Sonmez, G., H.B. Sonmez, C.K.F. Shen, and F. Wudl, Red, green, and blue colors in polymeric electrochromics. Adv. Mater., 2004. 16(21): p. 1905-1908.
86. Pei, Q., G. Zuccarello, M. Ahlskog, and O. Inganas, Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue. Polymer, 1994. 35(7): p. 1347-1351.
87. Borjas, R. and D.A. Buttry, EQCM studies of film growth, redox cycling, and charge trapping of n-doped and p-doped poly(thiophene). Chem. Mat., 1991. 3: p. 872-878.
88. Dini, D., F. Decker, and G. Zotti, Electrochemical growth of polyalkylthiophenes. Electrochem. Solid State Lett., 1998. 1(5): p. 217-219.
89. Chowdhury, A.-N., Y. Harima, Y. Kunugi, and K. Yamashita, p - and n-type conductance of electrochemically synthesized poly(3-methylthiophene) films. Electrochim. Acta, 1996. 41(13): p. 1993-1997.
90. Schiavon, G., S. Sitran, and G. Zotti, A simple two-band electrode for in situ conductivity measurements of polyconjugated conducting polymers. Synth. Met., 1989. 32: p. 209-217.
91. Sunde, S. and G. Hagen, Electrochemical response of poly(3-methyl-thiophene) in aqueous solutions of inorganic salts. J. Electrochem. Soc., 1991. 138(9): p. 2561-1566.
92. Zotti, G. and G. Schiavon, Evolution of in situ conductivity of polythiophene deposits by potential cycling. Synth. Met., 1990. 39: p. 183-190.
93. Lapkowski, M. and A. Pron, Electrochemical oxidation of poly(3,4-ethylenedioxythiophene)-'in situ' conductivity and spectroscopic investigations. Synth. Met., 2000. 110: p. 79-83.
94. Holze, R. and J. Lippe, A method for electrochemical in situ conductivity measurements of electrochemically synthesized intrinsically conducting polymers. Synth. Met., 1990. 38: p. 99-105.
95. Kankare, J. and E.-L. Kupila, In-situ conductance measurement during electropolymerization. J. Electroanal. Chem., 1992. 322: p. 167-181.
96. Ahonen, H.J., J. Lukkari, and J. Kankare, n and p-doped poly(3,4-ethylenedixythiophene): Two electronically conducting states of the polymer. Macromolecules, 2000. 33: p. 6787-6793.
97. Genies, E.M., P. Hany, and M. Lapkowski, In situ conductivity and photoconductivity measurements of polyaniline films. Synth. Met., 1988. 25: p. 29-37.
98. Cai, L.-T., S.-B. Yao, and S.-M. Zhou, Effects of the magnetic field on the polyaniline film studied by in situ conductivity measurements and X-ray diffraction. J. Electroanal. Chem., 1997. 421: p. 45-48.
99. Olmedo, L., I. Chanteloube, A. Germain, and M. Petit, Characterization of electrochemically prepared conductive polymers by in situ conductivity measurements. Synth. Met., 1989. 28: p. C165-C170.
100. Levi, M.D., E. Levi, Y. Gofer, and D. Aurbach, Dilute graphite-sulfates intercalation stages studied by simutaneous application of cyclic voltammerty, probe-beam deflection, in situ resistomerry, and X-ray diffraction techniques. J. Phys. Chem., 1999. 103: p. 1499-1508.
101. Feldman, B.J., P. Burgmayer, and R.W. Murray, The potential dependence of electrical conductivity and chemical charge storage of poly(pyrrole) films in electrodes. J. Am. Chem. Soc., 1985. 107: p. 872-878.
102. Thackeray, J.W., H.S. White, and M.S. Wrighton, Poly(3-methylthiophene)-coated electrodes: optical and electrical properties as a function of redox potential and amplification of electrical and chemical signals using poly(3-methylthiophene)-based microelectrochemical transistors. J. Phys. Chem., 1985. 89: p. 5133-5140.
103. Paul, E.W., A.J. Ricco, and M.S. Wrighton, Resistance of polyaniline films as a function of electrochemical potential and the fabrication of polyaniline-based microelectronic devices. J. Phys. Chem., 1985. 89: p. 1441-1447.
104. Lankinen, E., G. Sundholm, P. Talonen, T. Laitinen, and T. Saario, Characterization of a poly(3-methyl thiophene) film by an in-situ dc resistance measurement technique and in-situ FTIR spectroelectrochemistry. J. Electroanal. Chem., 1998. 447: p. 135-145.
105. Lankinen, F., M. Pohjakallio, G. Sundholm, P. Talonen, T. Laitinen, and T. Saario, Application of in situ UV-vis spectroscopy and an in situ dc resistance measurement technique to the study of a poly(thiophene-3-methanol) film. J. Electroanal. Chem., 1997. 437: p. 167-174.
106. Charny, L., T. Saario, and V.A. Marichev, Application of the contact electric resistance method for in situ investigation of semiconductor surface properties in electrolyte. Surf. Sci., 1994. 312: p. 422-428.
107. Deutscher, R.L., S. Fletcher, and J.A. Hamilton, Invention f cyclic resistometry. Electrochim. Acta, 1986. 31(5): p. 585-589.
108. Talaie, A. and G.G. Wallace, The effect of the counterion on the electrochemical properties of conducting polymers-a study using resistometry. Synth. Met., 1994. 63: p. 83-88.
109. John, R. and G.G. Wallace, Doping-dedoping of polypyrrole: a study using current-measuring and resistance-measuring techniques. J. Electroanal. Chem., 1993. 354: p. 145-160.
110. John, R., A. Talaie, and G.G. Wallace, Characterisation of conductive, electroactive polymers using resistometry. J. Electroanal. Chem., 1991. 319: p. 365-371.
111. Ribeiro, A.S., D.A. Machado, P.F.d.S. Filho, and M.-A.D. Paoli, Solid-state electrochromic device based on two poly(thiophene) derivatives. J. Electroanal. Chem., 2004. 567: p. 243-248.
112. Arbizzani, C., M. Mastragostino, L. Meneghello, M. Morselli, and A. Zanelli, Poly(3-methylthiophenes) for an all polymer electrochromic device. J. Appl. Electrochem., 1996. 26(1): p. 121-123.
113. Ko, H.C., S. Park, and H. Lee, Characteristics of dual-type electrochromic device based on poly(3-tetradecylthiophene) and poly(3,4-ethylenedioxythiophene). Synth. Met., 2004. 143: p. 31-35.
114. Camurlu, P., A. Cirpan, and L. Toppare, Dual type complementary colored polymer electrochromic devices utilized by 3-ester substituted thiophenes. J. Electroanal. Chem. , 2004. 572: p. 61-65.
115. Apetecchi, G.B., F. Croce, and B. Scrosati, High-performance electrolyte membranes for plastic lithium batteries. J. Power Sources , 1997. 66: p. 77-82.
116. Appetecchi, G.B., G. Dautzenberg, and B. Scrosati, A New Class of Advanced Polymer Electrolytes and Their Relevance in Plastic-like, Rechargeable Lithium Batteries. J. Electrochem. Soc., 1996. 143: p. 6-12.
117. Frech, R. and S. Chintapalli, Effect of propylene carbonate as a plasticizer in high molecular weight PEO-LiCF3SO3 electrolytes. Solid State Ion., 1996. 85: p. 61-66.
118. Huang, B., Z. Wang, G. Li, H. Huang, R. Xue, L. Chen, and F. Wang, Lithium ion conduction in polymer electrolytes based on PAN. Solid State Ion., 1996. 85: p. 79-84.
119. Wang, Z., B. Huang, S. Wang, R. Xue, X. Huang, and L. Chen, Competition Between the Plasticizer and Polymer on Associating with Li+ Ions in Polyacrylonitrile-Based Electrolytes. J. Electrochem. Soc., 1997. 144: p. 778-786.
120. Stallworth, P.E., S.G. Greenbaum, F. Croce, S. Slane, and M. Salomon, Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(methylmethacrylate). Electrochim. Acta, 1995. 40: p. 2137-3141.
121. Liu, X. and T. Osaka, Properties of Electric Double-Layer Capacitors with Various Polymer Gel Electrolytes. J. Electroanal. Chem., 1997. 144: p. 3066-3071.
122. Pistoia, G., A. Antonini, and G. Wang, Impedance study on the reactivity of gel polymer electrolytes towards a lithium electrode. J. Power Sources, 1996. 58: p. 139-144.
123. Sukeshini, A., A. Nishimoto, and M. Watanabe, Transport and electrochemical characterization of plasticized poly(vinyl chloride) solid electrolytes. Solid State Ion., 1996. 86-88: p. 385-393.
124. Huang, H. and S.L. Wunder, Preparation of microporous PVDF based polymer electrolytes. J. Power Sources, 2001. 97-98: p. 649-653.
125. Song, J.Y., Y.Y. Wang, and C.C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries. J. Power Sources, 1999. 77: p. 183-197.
126. Dias, F.B., L. Plomp, and J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. J. Power Sources, 2000. 88: p. 169-191.
127. Wieczorek, W., G. Zukowska, R. Borkowska, S.H. Chung, and S. Greenbaum, A basic investigation of anhydrous proton conducting gel electrolytes. Electrochim. Acta, 2001. 46: p. 1427-1438.
128. Quartarone, E., M. Brusa, P. Mustarelli, C. Tomasi, and A. Magistris, Preparation and characterization of fluorinated hybrid electrolytes. Electrochim. Acta, 1998. 44: p. 677-681.
129. Fuller, J., A.C. Breda, and R.T. Carlin, Ionic liquid-polymer gel electrollytes from hydrophilic and hydrophobic ionic liquids. J. Electroanal. Chem., 1998. 459: p. 29-34.
130. Saito, Y., C. Capiglia, H. Yamamoto, and P. Mustarelli, Ionic conduction mechanisms of polyvinylidenefluoride-hexafluoropropylene type polymer electrolytes with LiN(CF3SO2)2. J. Electrochem. Soc., 2000. 147(5): p. 1645-1650.
131. Saito, Y., H. Kataoka, C. Capiglia, and H. Yamamoto, Ionic conduction properties of PVDF-HFP type gel polymer electrolytes with lithium imide salts. J. Phys. Chem. B, 2000. 104: p. 2189-2192.
132. Saikia, D. and A. Kumar, Ionic conduction in P(VDF-HFP)/PVDF-(PC+DEC)-LiClO4 polymer gel electrolytes. Electrochim. Acta, 2004. 49: p. 2581-2589.
133. Jiang, Z., B. Carroll, and K.M. Abraham, Studies of some poly(vinylidene fluoride) electrolytes. Electrochim. Acta, 1997. 42(17): p. 2667-2677.
134. Capiglia, C., Y. Saito, H. Kataoka, T. Kodama, E. Quartarone, and P. Mustarelli, Structure and transport properties of polymer gel electrolytes based on PVdF-HFP and LiN(C2F5SO2)2. Solid State Ion., 2000. 131: p. 291-299.
135. Capiglia, C., Y. Saito, H. Yamamoto, H. Kageyama, and P. Mustarelli, Transport properties and microstructure of gel polymer electrolytes. Electrochim. Acta, 2000. 45: p. 1341-1345.
136. Abbrent, S., J. Plestil, D. Hlavata, J. Lindgren, and J. Tegenfeldt, Crystallinity and morphology of PVdF-HFP-based gel electrolyte. Polymer, 2001. 42: p. 1407-1416.
137. Gozdz, A.S., J.-M. Tarascon, C. Schmutz, P.C. Warren, O.S. Gebizlioglu, and F.K. Schokoohi. Paper No. 117. in Rechargeable Lithium and Lithium-ion (RCT) Batteries Symposium of the 186th Electrochemical Society Meeting. 1994. Miami, Florida.
138. Andrieu, X. and L. Josset, Bifunctional electrode for an electrochemical cell or a supercapacitor and a method of producing it. 1998, SAFT: USA.
139. Pasquier, A.D., P.C. Warren, D. Culver, A.S. Gozdz, G.G. Amatucci, and J.-M. Tarascon, Plastic PVDF-HFP electrolyte laminates prepared by a phase-inversion process. Solid State Ion., 2000. 135: p. 249-257.
140. Marcel, C. and J.-M. Tarascon, An all-plastic WO3-H2O/ polyaniline electrochromic device. Solid State Ion., 2001. 143: p. 89-101.
141. Wu, Y.C., W.F. Koch, and W.J. Hamer, Review of electrolytic conductance standards. Journal of Solution Chemistry, 1987. 16(12): p. 985-997.
142. 方郁文, 二庚基-4,4'聯吡啶之光電性質與其元件應用之研究, in 化學工程學研究所. 1989, 國立臺灣大學: 台北.
143. 林正嵐, 普魯士藍薄膜電極電化學析鍍與氧化還原反應行為之研究, in 化學工程學研究所. 1990, 國立臺灣大學: 台北.
144. Dietrich, M., J. Heinze, G. Heywang, and F. Jonas, Electrochemical and spectroscopic characterization of polyalkylenediosythiophenes. J. Electroanal. Chem., 1994. 369: p. 87-92.
145. Gaupp, C.L., D.M. Welsh, R.D. Rauh, and J.R. Reynolds, Composite coloration efficiency measurements of electrochromic polymers based on 3-4-alkylenedioxythiophenes. Chem. Mat., 2002. 14: p. 3964-3970.
146. Rauh, R.D., F. Wand, J.R. Reynolds, and D.L. Meeker, High coloration efficiency electrochromics and their application to multi-color devices. Electrochim. Acta, 2001. 46: p. 2023-2029.
147. Buttry, D.A. and M.D. Ward, Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev., 1992. 92: p. 1355-1379.
148. 董才士, 以PEDOT導電高分子及其衍生物與普魯士藍搭配之電致色變元件性質最適化與長期穩定性研究, in 化學工程學系. 2004, 國立台灣大學: 台北.
149. Chen, L.-C. and K.-C. Ho, Interpretations of voltammograms in a typical two-electrode cell: application to complementary electrochromic systems. Electrochim. Acta, 2001. 46: p. 2159-2166.
150. Taunier, S., C. Guery, and J.-M. Tarascon, Design and characterization of a three-electrode electrochromic device, based on the system WO3/IrO2. Electrochim. Acta, 1999. 44: p. 3219-3225.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24506-
dc.description.abstract本研究論文首次提出以PEDOT搭配PMeT之全塞吩有機電致色變元件,在顏色變化上可由亮紅色轉為深藍色。對於單極薄膜性質,除了針對PEDOT及PMeT之電致色變性質及操作穩定性加以分析,更以EQCM分析離子進出薄膜之現象,在過氯酸鋰鹽之有機電解質溶液中,於不同操作電位下以循環伏安法及階梯電位法皆獲相同結論,即在p-type摻雜及去摻雜的過程中,陽離子(Li+)及陰離子(ClO4-)皆參與摻程過程,此數據亦可進一步改善元件表現與長期穩定性質。基於對單極薄膜的了解,此全塞吩PEDOT-PMeT 構成之元件首先對兩極電量比作最適化研究,再以不同之著、去色電位做長期穩定性之最適化實驗,以0.5 V為去色電位及-1.3 V為著色電位,於655 nm波長下具有40 % 之穿透度變化,且在30,000圈之連續階梯電位操作後仍具有22 %。對於電致色變元件來說,以往的研究不具有良好的可信度且無法得知元件操作時之單極電位分布,而本研究進一步改進文獻中之實驗裝置,以雙電流電位儀之方式,量測到單極薄膜於元件內之著、去色電位分布。得到單極薄膜之電位分布後,對於整體元件之操作衰退可有更可靠的數據支持元件操作時,單極薄膜是否操作於理想電位,有助了解電位偏離之情形。除此之外本研究亦以不同電量比之元件,得到單極薄膜電位分布之趨勢與理論的預測吻合。在本研究的最後階段,以PVDF-HFP高分子基質加入電解質液中形成之膠態電解質可減少元件漏液情形並提高安全性,適用之膠態電解質具有良好的導離度,且對於元件表現及長期穩定性的表現並無明顯不良影響。zh_TW
dc.description.abstractA novel all-thiophene ECD with a color change from light red to deep blue was presented. For PEDOT and PMeT thin film properties, not only the basic electrochromic performances and stabilities but also the ion transfer phenomena cycled in lithium perchlorate organic electrolyte were studied upon different of cyclic voltammetric and potential step methods. Based on the understandings of PEDOT and PMeT thin films, the optimization of the PEDOT-PMeT ECD was searched by varying the charge capacity ratio at first, and then by exploring the long-term stabilities with different bleaching and darkening potentials. Finally, the optimized potentials were obtained: 0.5 V for bleaching and -1.3 V for darkening. The transmittance change was 40 % at 655 nm, and after 30,000 potential step cycles, the transmittance change still remained 22 %. In literature, studies were either rare about the potential distributions on each electrode within an ECD or the reported data were not reliable. In this thesis, a method reversibly measure the potential distributions of PEDOT and PMeT within the ECD by a bipotentiostat was established, and it can help us to observe the real state of each thin film, thus to improve the performances of the ECD. The potential distributions of PEDOT and PMeT within the ECDs with different charge capacity ratios were recorded by this method and the operating windows of each thin film within the ECDs were obtained, which was in good agreement with the theoretical prediction. Finally, in order to improve the liquid electrolytes’ leakage problem and for safety concern, the PVDF-HFP was added to the ordinary liquid electrolyte as a polymer matrix.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:28:43Z (GMT). No. of bitstreams: 1
ntu-94-R92524032-1.pdf: 6597747 bytes, checksum: 0668e1fe15d1cbdfb2da94e94da5c8e0 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要 I
英文摘要 IV
誌謝 VIII
目錄 IX
表目錄 XII
圖目錄 XIII
符號說明 XXIII
第一章 緒論 1
1-1前言 1
1-2電致色變技術簡介 2
1-2-1電致色變技術之發展 2
1-2-2電致色變材料與元件類型 4
1-2-2-1電致色變材料 4
1-2-2-2電致色變元件之類型與結構 5
1-2-3電致色變元件之性能要求 11
第二章 文獻回顧與研究目的 12
2-1 導電高分子之簡介 12
2-1-1聚塞吩及其衍生物介紹 15
2-1-2聚塞吩及其衍生物之應用 21
2-2 PMeT及PEDOT之介紹 22
2-2-1 PMeT及PEDOT之光電行為 24
2-2-2 PMeT及PEDOT在電致色變元件發展 30
2-3 膠態電解質之簡介 32
2-3-1 PVDF-HFP之性質介紹 32
2-3-2 PVDF-HFP之應用 33
2-4研究動機與目的 34
2-5研究架構 35
2-6研究系統結構 36
第三章 實驗部分 37
3-1儀器設備 37
3-2實驗藥品 38
3-3實驗方法 39
3-3-1導電玻璃之前處理 39
3-3-2藥品之前處理 39
3-3-3定電位析鍍PEDOT薄膜 39
3-3-4定電位析鍍PMeT薄膜 40
3-3-5液態及膠態電解質液製備與性質量測 40
3-3-6元件之組裝 41
3-4電化學特性分析 42
3-5 In-situ UV-VIS光譜分析 42
3-6離子進出電致色變薄膜分析 46
3-7元件性能最適化與長期穩定性測試 49
3-8薄膜於元件操作時之絕對電位量測 50
3-9薄膜與元件之交流阻抗分析 52
第四章 電致色變薄膜電化學及光譜分析 53
4-1薄膜循環伏安分析 56
4-1-1 PEDOT在PC中之氧化還原反應 56
4-1-2 PMeT在PC中之氧化還原反應 62
4-2光譜特性與階梯電位響應分析 67
4-2-1 PEDOT光譜、階梯電位響應與著色效率分析 67
4-2-2 PMeT光譜、階梯電位響應與著色效率分析 76
4-3不同操作電位下穩定性分析 83
4-3-1 PEDOT不同操作電位下及穩定性分析 83
4-3-2 PMeT不同操作電位下穩定性分析 94
4-4離子進出薄膜質量特性分析 105
4-4-1以EQCM分析離子進出PEDOT薄膜 106
4-4-2以EQCM分析離子進出PMeT薄膜 133
第五章 PEDOT-PMeT電致色變元件最適化設計與穩定性測試 141
5-1 PEDOT-PMeT電致色變元件 141
5-1-1 PEDOT-PMeT元件電化學與光學特性分析 141
5-1-2 PEDOT-PMeT元件安全操作電壓的決定 146
5-2兩極電量比對元件性質與長期穩定性之影響 149
5-2-1元件光譜性質 149
5-2-2元件長期穩定性 156
5-3 元件之兩極絕對電位分布 164
5-3-1兩極電量比不同之元件電位分布 164
5-3-2電量比接近1.0之元件著去色電位分布 172
5-4操作電壓對元件性質與長期穩定性之影響 175
5-4-1元件著色電壓 175
5-4-2元件去色電壓 182
5-5 PVDF-HFP膠態電解質對元件性質之影響 187
5-5-1穿透度與響應時間之比較 187
5-5-2長期穩定性之比較 189
第六章 結論與建議 191
6-1 結論 191
6-2 建議與未來工作 193
第七章 參考文獻 194
附錄A PEDOT與PMeT之膜厚與析鍍電量之關係 203
附錄B 液態與膠態電解質導離度的量測 205
附錄C PEDOT和PMeT薄膜與元件交流阻抗分析 207
附錄D 元件長期操作之單極電位分布 222
附錄E PEDOT與PMeT薄膜電位與電量之關係 224
附錄F Publications 226
dc.language.isozh-TW
dc.subjectEQCMzh_TW
dc.subject電致色變元件zh_TW
dc.subjectpoly(3zh_TW
dc.subject4-ethylenedioxythiophenes)(PEDOT)zh_TW
dc.subject聚三甲基塞吩zh_TW
dc.subject電位分布zh_TW
dc.subjectEQCMen
dc.subjectpotential distributionen
dc.subjectpoly(3-methylthiophene) (PMeT)en
dc.subject4-ethylenedioxythiophenes) (PEDOT)en
dc.subjectElectrochromic device (ECD)en
dc.subjectpoly(3en
dc.title以PEDOT及PMeT構成之全塞吩電致色變元件之光電性質及最適化zh_TW
dc.titleThe Electro-optical Properties and Optimization of a PEDOT-PMeT All-thiophene Electrochromic Deviceen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周澤川,楊明長,陸天堯
dc.subject.keyword電致色變元件,EQCM,poly(3,4-ethylenedioxythiophenes)(PEDOT),聚三甲基塞吩,電位分布,zh_TW
dc.subject.keywordElectrochromic device (ECD),EQCM,poly(3,4-ethylenedioxythiophenes) (PEDOT),poly(3-methylthiophene) (PMeT),potential distribution,en
dc.relation.page226
dc.rights.note未授權
dc.date.accepted2005-07-11
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
6.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved