Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24493
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何國川(Kuo-Chuan Ho)
dc.contributor.authorWei-Ming Yehen
dc.contributor.author葉威明zh_TW
dc.date.accessioned2021-06-08T05:28:11Z-
dc.date.copyright2005-07-21
dc.date.issued2005
dc.date.submitted2005-07-12
dc.identifier.citation[1] K. Yano, I. Karube, “Molecularly Imprinted Polymers for Biosensor applications,” Trends Anal. Chem., 18, 3 (1999).
[2] G. Winter, A. D. Griffiths, R. E. Hawkins, H. R. Hoogenboom, “Making Antibodies by Phage Display Technology”, Annu. Rev. Immunol., 12, 433 (1994).
[3] P. J. Hudson, “Recombinant antibody fragments,“ Curr. Opin. Biotechnol., 9, 395 (1998).
[4] S. Brahim, D. Narinesingh, A. Guiseppi-Elie, “Amperometric Determination of Cholesterol in Serum Using a Biosensor of Cholesterol Oxidase Contained Within a Polypyrrole–Hydrogel Membrane,” Anal. Chim. Acta, 448, 27 (2001).
[5] B. Sellergren, Molecularly Imprinted Polymers, Elsevier Science, Amsterdam, Netherlands (2001).
[6] H. Andersson, K. Haupt, C. Allender, C. Alexander, M. Whotcombe, S. Piletsky, B. Sellergren, I. Nicholls, Fundamentals of Molecular Imprinted, Notes of MIP 2002 Pre-conference Course, Second International Workshop on Molecularly Imprinted Polymers, La Grande Mote, France Sept. 16-19th, (2002).
[7] K. Haupt, K. Mosbach, “ Molecularly Imprinted Polymers and Their Use in Biomimetic Sensors,” Chem. Rev., 100, 2495 (2000).
[8] G. Wulff, Enzyme Engineering: Proceedings of the International Enzyme Engineering Conference, 327 (1984).
[9] J. U. Klein, M. J. Whitcombe, F. Mulholland, E. N. Vulfson, “Template-Mediated Synthesis of a Polymeric Receptor Specific to Amino Acid Sequences,” Angew. Chem. Int. Ed. Engl., 38, 2057 (1999).
[10] M. Komiyama, T. Takeuchi, T. Mukawa, H. Asanuma, Molecular Imprinting From fundamentals to Applications, Wiley (2002).
[11] K. Adbo, I. A. Nicholls, “Enantioselective Solid-Phase Extraction Using Troger’s Base Molecularly Imprinted Polymers,” Anal. Chim. Acta, 435, 115 (2001).
[12] Z. H. Meng, Q. Liu, “Determination of Degradation Products of Nerve Agents in Human Serum by Solid Phase Extraction Using Molecualrly Imprinted Polymer,” Anal. Chim. Acta, 435, 121 (2001).
[13] M. Kempe, K. Mosbach, “Separation of Amino Acids, Peptides and Proteins on Molecularly Imprined Stationary Phases,” J. Chromatogr. A, 691, 317 (1995).
[14] C. C. Hwang, W. C. Lee, “Chromatographic Resolution of the Enantiomers of Phenylpropanolamine by Using Molecularly Imprinted Polymers as the Stationary Phase,” J Chromatogr. B, 765, 45 (2001).
[15] L. Schweitz. L. I. Andersson, S. Nilsson, “Rapid Electrochromatographic Enantiomer Separations on Short Molecularly Imprinted Polymer Monoliths,“ Anal. Chim. Acta, 435, 43 (2001).
[16] G. Vlatakis, L. I. Andersson, R. Muller, K. Mosbach, “Drug Assay Using Antibody Mimics Made by Molecular Imprinted,” Nature, 361, 645 (1993).
[17] R. J. Ansell, O. Ramstrom, K. Mosbach, “Towards artificial antibodies prepared by molecular imprinting,” Clin. Chem., 42, 1506 (1996).
[18] K. Haupt, K. Mosbach, “Plastic antibodies: developments and applications,“ Trends Biotechnol., 16, 468 (1998).
[19] M. A. Markowitz, P. R. Kust, J. Klaehn, G. Deng, B. P. Gaber, “Surface-Imprinted Silica Particles: the Effects of Added Organosilanes on Catalytic Activity,“ Anal. Chim. Acta, 435, 177 (2001).
[20] P. F. Turner, Advances in Biosensors, JAI Press LTD., London, England (1993).
[21] M. Lahav, A. B. Kharitonov, O. Katz, T. Kunitake, I. Willner, “Tailored Chemosensors for Chloraromatic Acids Using Molecular Imprinted TiO2 Thin Films on Ion-sensitive Filed-effect Transistors,” Anal. Chem., 73, 720 (2001).
[22] N. Sallacan, M. Zayats, T. Bourenko, A. B. Kharitonov, I. Willner, “Imprinting of Nucleotide and Monosaccharide Recognition Sites in Acrylamidephenylboronic Acid-acrylamide Copolymer Membranes Associated with Electronic Transducers,” Anal. Chem., 74, 702 (2002).
[23] Y. Kanekiyo, K. Inoue, Y. Ono, M. Sano, S. Shinkai, D. N. Reinhoudt. “Molecular-imprinting of AMP Utilizing the Polyion Complex Formation Process as Detected by a QCM System,” J. Chem. Soc., Perkin Trans., 2, 2719 (1999).
[24] K. Haupt, K. Noworyta, W. Kutner, “Imprinted Polymer-based Enantioselective Acoustic Sensor Using a Quartz Crystal Microbalance,” Anal. Commun., 36, 391 (1999).
[25] A. Kugimiya, T. Takeuchi, “Molecularly Imprinted Polymer-coated Quartz Crystal Microbalance for Detection of Biological Hormone,” Electroanalysis, 11, 1158 (1999).
[26] T. Kobayashi, Y. Murawaki, P. S. Reddy, M. Abe, N. Fujii, “Molecular Imprinting of Caffeine and Its Recognition Assay by Quartz-Crystal Microbalance,” Anal. Chim. Acta., 435, 141 (2001).
[27] F. L. Dickert, O. Hayden, “Imprinting with Sensor Development-On the Way to Synthetic Antibodies,” Fresenius J. Anal. Chem., 364, 506 (1999).
[28] T. Y. Lin, C. H. Hu, T. C. Chou, “Determination of Albumin Concentration by MIP-QCM Sensor,” Biosens. Bioelectron., 20, 75 (2004).
[29] 陳岱全,藥理學,合記圖書出版社,台北市,中華民國,第十七章(1974).
[30] 盧政典、吳念珍,有機藥物化學,大學圖書出版社,台北市,中華民國,第530頁(1972).
[31] 許桓誠,分子模版應用於嗎啡感測之研究,台北市,中華民國 (2003).
[32] 顧學裘,鴉片,商務印書館,台北市,中華民國 (1936).
[33] H. C. Hsu, L. C. Chen, K.C. Ho, “Colorimetric Detection of Morphine in a Molecularly Imprinted Polymer Using an Aqueous Mixture of Fe3+ and [Fe(CN)6]3-“, Anal. Chim. Acta, 504, 141 (2004).
[34] A. I. Bouquillon, D. Freeman, D. E. Moulin, “Simultaneous Solid-Phase Extraction and Chromatographic Analysis of Morphine and Hydromorhpine in Plasma by High-Performance Liquid Chromatography with Electrochemical Detection,” J. Chromatogr. B, 577, 354 (1992).
[35] M. R. Moelleer, S. Steinmeyer, T. Kraemer, “Determination of Drugs of Abuse in Blood,” J. Chromatogr. B., 713, 91 (1998).
[36] 李志桓,藥物濫用,行政院衛生署管制藥品管理局,台北市,中華民國(2002).
[37] 陳宏杰,自組裝薄膜分離與電流式分子感測之研究,國立台灣大學, 台北 (2004).
[38] K. Aoki, T. Yoshida, Y. Kuroiwa, “Forensic Immunochemistry,” Forensic Sci. Int., 80, 163 (1996).
[39] F. Tagliaro, D. Franchi. R. Dorizzi. M. Marigo, “High Performance Liquid Chromatographic Determination of Morphine in Biological Samples: an Overview of Separation Methods and Detection Techniques,” J. Chromatogr, 488, 215 (1989).
[40] W.-J. Liaw, S.-T. Ho, J.-J. Wang, O. Y.-P. Hu, J.-H. Li, “Determination of Morphine by High-performance Liquid Chromatography with Electrochemical Detection: Application to Human and Rabbit Pharmacokinetic Studies,” J. Chromatogr. B., 714, 237 (1998).
[41] D. G. Watson, Q. Su, J. M. Midgley, E. Doyle, N. S, Morton, “Analysis of Unconjugated Morphine, Codeine, Normorphine and Morphine as Glucuronides in Small Volumes of Plasma from Children,” J. Pharm. Biomed. Anal. 13, 27 (1995).
[42] H.-M. Lee, C. -W. Lee, “Determination of Morphine and Codeine in Blood and Bile by Gas Chromatography with a Derivation Procedure,” J. Anal. Toxicol., 15, 182 (1991).
[43] M. Krogh, A. S. Christophersen, K. E. Rasmussen, “ Automated Sample Preparation by On-line Dialysis and Trace Enrichment: Analysis of Morphine, Codeine, Ethylmorphine and Pholcodine in Plasma and Whole Blood by Capillary Gas Chromatography and Capillary Gas Chromatography-mass Spectrometry,” J. Chromatogr. 621, 41 (1993).
[44] D. Wielbo, R. Bhat, G., Chari, D. Vidyasagar, I. R. Tebbett, A. Gulati, “High-performance Liquid Chromatographic Determination of Morphine and Its Metabolites in Plasma Using Diode-array Detection,” J. Chromatogr., 615, 164 (1993).
[45] Y. Liu, T. V. Bilfinger, G. B. Stefano, “A Rapid and Sensitive Quantitation Method of Endogenous Morphine in Human Plasma,” Life Sci., 60, 237 (1997).
[46] J. O. Svensson, Q. -Y. Yue, J. Sawe, “Determination of Codeine and Metabolites in Plasma and Urine Using Ion-pair High-performance Liquid Chromatography,” J. Chromatogr. B, 674, 49 (1995).
[47] N. Tyrefors, B. Hyllbrant, L. Ekman, M. Johansson, B. Langstrom, “Determination of Morphine, Morphine-3-glucuronide and Morphine-6-glucuronide in Human Serum by Solid-phase Extraction and Liquid Chromatography-mass Spectrometry with Electrospray Ionization,” J. Chromatogr. A, 729, 279 (1996).
[48] D. Projean, T. M. Tu, J. Ducharme, “Rapid and Simple Method to Determine Morphine and Its Metabolites in Rat Plasma by Liquid Chromatography-mass Spectrometry,” J. Chromatogr. B, 787, 243 (2003).
[49] J. Huwyler, S. Rufer, E. Kusters, J. Drewe, “Rapid and Highly Automated Determination of Morphine and Morphine Glucuronides in Plasma by On-line Solid-phase Extraction and Column Liquid Chromatography,” J. Chromatogr. B, 674, 57 (1995).
[50] Y. Rotshteyn, B. Weingarten, “A Highly Sensitive Assay for the Simultaneous Determination of Morphine, Morphine-3-Glucuronide, and Morphine-6-Glucuronide in Human Plasma by High-Performance Liquid Chromatography with Electrochemical,” Ther. Drug Monit., 18, 179 (1996).
[51] K. L. Crump, I. M. McIntyre, O.H. Drummer, “Simultaneous Determination of Morphine and Codeine in Blood and Bile Using Dual Ultraviolet and Fluorescence High-performance Liquid Chromatography,” J. Anal. Toxical., 18, 208 (1994).
[52] G. Chari, A. Gulati, R. Bhat, I. R. Tebbett, “High-performance Liquid Chromatographic Determination of Morphine, Morphine-3-glucuronide, Morphine-6-glucuronide and Codeine in Biological Samples Using Multi-wavelength Forward Optical Detection,” J. Chromatogr., 571, 263 (1991).
[53] R. W. Abbott, A. Townshend, R. Gill, “Determination of Morphine in Body Fluids by High-performance Liquid Chromatography with Chemiluminescence Detection,” Analyst, 112, 397 (1987).
[54] P. Huettl, S. Koester, L. Hoffer, G. A. Gerhardt, “Separation and Identification of Drugs of Abuse in Cottons by High Prtformance Liquid Chromatography Coupled with Electrochemical Array Detectors,” Electroanalysis, 11, 313 (1999).
[55] H. He, S. D. Shay, Y. Caraco, M. Wood, A. J. J. Wood, “Simultaneous Determination of Codein and it Seven Metabolites in Plasma and Urine by Hight-Performance Liquid Chromatography with Ultraviolet and Electrochemical Detection,” J. Chromatogr. B, 708, 185 (1998).
[56] X. X. Zhang, J. Li, J. Gao, L. Sun, W. B. Chang, ”Determination of Morphine by Capillary Electrophoresis Immunoassay in Thermally Reversible Hydrogel-Modified Buffer and Laser-Induced Fluorescence Detection,” J. Chromatogr. A, 895, 1 (2000).
[57] T. Zhou, H. Yu, Q. Hu, Y. Fang, “Determination of Codeine and its Metabolite in Human Urine by CE with Amperometric Detection,” J. Pharm. Biomed. Anal., 30, 13 (2002).
[58] R. Jain, “Utility of Thin Layer Chromatography for Detection of Opioids and Benzodiazepines in a Clinical Setting,” Addictive Behaviors, 25, 451 (2000).
[59] G. Sakai, K. Ogata, T. Uda, N. Miura, N. Yamazoe, “A surface Plasmon Resonance-Based Immunosensor for Highly Sensitive Detection of Morphine,” Sens. Actuator B, 49, 5 (1998).
[60] D. Kriz, K. Mosbach, “Competitive Amperometric Morphine Sensor Based on a Agarose Immunobilised Molecularly Imprinted Polymer,” Anal. Chim. Acta, 300, 71 (1995).
[61] K. C. Ho, C. Y. Chen, H. C Hsu, L. C. Chen, S. C Shiesh, X. Z Lin, “Amperometric Detection of Morphine at a Prussian Blue-modified Indium Tin Oxide Electrode,” Biosens. Bioelectron., 20, 3 (2004).
[62] D. Kritchevsky, Cholesterol, John Wiley& Sons, New York, London (1958).
[63] 蘇大成,陳珮蓉,別怕膽固醇,聯經出版社,台北市,中華民國 (1995).
[64] T. E Hewitt, H. L. Pardue, “ Kinetics of the Cholesterol-Sulfuric Acid Reaction: A Fast Kinetic Method for Serum Cholesrerol,“ Clin. Chem., 19, 1128 (1973).
[65] H. J. Hecht, D. J. Schomburg, “3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme,“ Biosens. Bioelectron., 8, 197 (1993).
[66] 粘博欽,電化學式葡萄糖感測器之研究,台灣大學,台北,(2005).
[67] J. C. Vidal, E. Garcia-Ruiz, J. R. Castillo, “Strategies for the Improvement of an Amperometric Cholesterol Based on Electropolymerization in Flow systems: Use of Charge-trnasfer mediators and platinization of the electrode,” J. Pharm. Biomed. Anal., 24, 51 (2000).
[68] S. Fabiano, C. Tran-Minh, B. Piro, L. A. Dang, M. C. Pham, O. Vittori, “Poly 3,4-Ethylenedioxythiophene as Entrapment Support for Amperometric Enzyme Sensor,” Mat. Sci. Eng. C.-BIO S., 21, 61 (2002).
[69] R. M. Iannlello, A. M. Yacynych, “Immobilized Enzyme Chemically Modified Electrode as an Amperometric Sensor,” Anal. Chem., 53, 2090 (1981).
[70] X. Liu, K. G. Neoh, L. Cen, E. T. Kang, “Enzymatic activity of Glucose Oxidase Covalently Wired via Viologen to Electrically Conductive Polypyrrole Films,” Biosens. Bioelectron., 19, 823 (2004).
[71] S. A. Piletsky, E. V. Piletskaya, T. A. Sergeyeva, T. L. Panasyuk, A. V. El'skaya, “Molecularly imprinted self-assembled films with specificity to cholesterol,” Sens. Actuator B, 60, 216 (1999).
[72] J. L. Gong, F. C. Gong, G. M. Zeng, G. L. Shen, R. Q. Yu, “A novel electrosynthesized polymer applied to molecular imprinting technology,” Talanta, 61, 447 (2003).
[73] M. Situmorang, P. W. Alexander, D. B. Hibbert, “Flow Injection Potentiometry for Enzymatic Assay of Cholesterol with a Tungsten Electrode Sensor,” Talanta, 49, 639 (1999).
[74] M. D. Marazuela, B. Cuesta, M. C. Moreno-Bondi, A. Quejido, “Free Cholesterol Fiber-Optic Biosensor for Serum Samples with Simplex Optimization,” Biosens. Bioelectron., 12, 233 (1997).
[75] T. Yao, K. Takashima, “Amperometric Biosensor with a Composite Membrane of Sol-Gel Derived Enzyme Film and Electrochemically Generated Poly(1,2-diminobenzene) Film,” Biosen. Bioelectron., 13, 67 (1998).
[76] C. Bongiovanni, T. Ferri, A. Poscia, M. Varalli, R. Santucci, A. Desideri, “An Electrochemical Multienzymatic Biosensor for Determination of Cholesterol,” Bioelctrochem., 54, 17 (2001).
[77] G. Li, J. M. Liao, G. Q. Hu, N. Z. Ma, P. J. Wu, ”Study of Carbon Nanotube Modified Biosensor for Monitoring Total Cholesterol in Blood,“ Biosens. Bioelectron., 20, 2140 (2005).
[78] K. V. Gobi, F. Mizutani, “Layer-by-Layer Construction of an Active Multilayer Enzyme Electrode Applicable for Direct Amperometric Determination of Cholesterol,” Sens. Actuators B, 80, 272 (2001).
[79] J. C. Vial, E. Garcia, J. R. Castillo, “In situ Preparation of Overoxidized PPy/oPPD Biolayer Biosensors for the Determination of Glucose and Cholesterol in Serum,” Sens. Actuator B, 57, 219 (1999).
[80] V. Shumyantseva, G. Deluca, T. Bulko, S. Carrara, C. Nicolini, S. A. Usanov, A. Archskov, “Cholesterol Amperometric Biosensor Based on Cytochrome P450scc,” Biosens. Bioelectron., 19, 971 (2004).
[81] N. Pe´rez, M. J. Whitcombe, E. N. Vulfson, “Molecularly Imprinted Nanoparticles Prepared by Core-Shell Emulsion Polymerization,” J. Appl. Poly. Sci., 77, 1851 (2000).
[82] A. Kugimiya, Y. Kuwada, T. Takeuchi, “Preparation of sterol-imprinted polymers with the use of 2-(methacryloyloxy)ethyl phosphate,” J. Chromatogr. A, 938, 131 (2001).
[83] K. Sreenivasan, “Synthesis and Evaluation of a Beta Cyclodextrin-Based Molecularly Imprinted Copolymer,” J. Appl. Poly. Sci., 70, 15 (1998).
[84] K. Sreenivasan, “Effect of the Type of Monomers of Molecularly Imprinted Polymers on the Interaction with Steroids,” J. Appl. Poly. Sci., 68, 1863 (1998).
[85] T. Hishiya, M. Shibata, M. Kakazu, H. Asanuma, M. Komiyama, “Molecularly Imprinted Cyclodextrins as Selective Receptors for Steroids,” Macromolecules, 32, 2265 (1999).
[86] H. Asanuma, T. Hishiya, M. Komiyama, “Tailor-Made Receptors by Molecular Imprinting,” Adv. Mat., 12, 1019 (2000).
[87] W. H. Li, H. D. H. Stover, “Synthesis of Monodisperse Poly(divinylbenzene) Microspheres,” J. Polym. Sci. Part A: Polym. Chem., 31, 3257 (1993).
[88] D. C. Sherrington, “Preparation, Structure and Morphology of Polymer Supports,” Chem. Commun., 21, 2275 (1998).
[89] L. Ye, K. Mosbach, “Molecularly Imprinted Microspheres as Antibody Binding Mimics,” React. & Func. Polym., 48, 149 (2001).
[90] L. Ye., P. A. G. Cormack, K. Mosbach, “ Molecular Imprinting on Microgel Spheres,” Anal. Chim. Acta, 435, 187 (2001).
[91] W. H. Li, H. D. H. Stover, “Mono- or Narrow Disperse Poly(Methacrylate-co-Divinylbenzene) Microspheres by Precipitation Polymerization,” J. Polym. Sci., A, Poym. Chem., 37, 2899 (1999).
[92] S. Yang, S. E. Shim, S. Choe, “Stable Poly(methyl methacrylate-co-Diinylbenzene) Microspheres via precipitation Polymerization,” J. Polym. Sci., A, Poym. Chem., 43, 1309 (2005).
[93] J. Matsui, M. Okada, M. Tsuruoka, T. Takeuchi, “Solid-phase Extraction of a Triazine Herbicide Using a Molecularly Imprinted Synthetic Receptor,” Anal. Commun., 34, 85 (1997).
[94] M. Glad, P. Reinholdsson, K. Mosbach, “Molecularly imprinted composite polymers based on trimethylolpropane trimethacrylate (TRIM) particles for efficient enantiomeric separations,” React. Polym., 25, 47 (1995).
[95] K. Makoto, T. Toshiumi, M. Takashi, A. Hiroyuki, Molecular Imprinting from Fundamentals to Applications, WELEY-VCH, Weinheim, Germany (2003).
[96] A. J. Bard, Electrochemical Method: Fundamentals and Applications 2nd ed., John Wiley&Sons, New York (2001).
[97] 曾貴聖, 鐵氰化銦修飾電極感測半胱胺酸反應機制之研究,國立台灣大學, 台北 (2002).
[98] H. Liao, Z. Zhang, H., Li, L. L. Nie, S. Yao, “Preparation of the Molecularly Imprinted Polymers-Based Capacitive Sensor Specific for Tegafur and its Characterization by Electrochemical Impedance and Piezoelectric Quartz Crystal Microbalance,” Electrochin. Acta, 49, 4101 (2004).
[99] J. N. Bulter, Reference Electrode in Aprotic Organic Solvents, in advanced in Electrochemical Science and Engineering, Volume 7, P. Delahay and C. W Tobias eds., John Wiley & Sons, New York, NY (1970).
[100] 董才士,以PEDOT導電高分子及其衍生物與普魯士藍搭配之電致色變元件性質最適化與長期穩定性研究,國立台灣大學化學工程研究所碩士論文,台北,台灣 (2004).
[101] K. A. Johnson and D. Kriz,” Development of a Three-Electrode Cell Containing a Polypyrrole Coated Auxiliary Electrode,” Instrum. Sci. Technol., 25, 29 (1997).
[102] P. Li, F. Rong, C. Yuan, “Morphologies and Binding Characteristics of Molecularly Imprinted Polymers Prepared by Precipitation Polymerization,“ Polym. Int., 52, 1799 (2003).
[103] B. Proksa, L. Molnar, “Voltammetric Detection of Morphine on Stationary Platinum and Graphite Electrodes,” Anal. Chim. Acta, 97, 149 (1978).
[104] J. R. B. Rodriguez, V. C. Diaz, A. C. Garcia, P. T. Blanco, ”Voltammetric Assay of Heroin in Illicit Dosage Forms,” Analyst, 115, 209 (1990).
[105] J. M. P. J. Garrido, C. Delerue-Matos, F. Borges, T. R. A. Macedo, A. M. Oliveira-Brett, “Votammetric Oxidation of Drugs of Abuse I. Morphine and Metabolites,” Eelctroanalysis, 16, 1419 (2004).
[106] Y. Yoshimi, R. Ohdaira, C. Iiyama, K. Sakai, “Gate Effect of Thin Layer of Molecularly-Imprinted Poly (Methacrylic Acid-co- Ethyleneglycol Dimethacrylate),” Sens. Actuators B, 73, 49 (2001).
[107] S. A. Pilestsky, E. V. Pilestskaya, K. Yano, A. Kugimiya, A. V. Elgersma, R. Levi, U. Kahlow, T. Takeuchi, I. Karube, “ A Biomimetic Receptor System for Sialic Based on Molecular Imprinting,” Anal. Lett., 29, 157 (1996).
[108] H. Berney, J. West, E. Haefele, J. Alderman, W. Lane, J. K. Collins, “A DNA diagnostic biosensor: development, characterisation and performance,” Sens. Actuator B, 68, 100 (2000).
[109] A.J. Bard, L.R. Faulkner, Electrochmical Methods: Funcdamentals and Applications 2nd, John Wiley&Sons, New York, 2001.
[110] John McMurry, Fundamentals of Organic Chemistry 4th, Brook/Cole publishing Co., 1998.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24493-
dc.description.abstract本研究中主要分成三大部份, 首先我們以methacrylic acid
(MAA)為單體、trimethylolpropane trimethacrylate(TRIM)為交聯
劑,在目標分子(template)—嗎啡(morphine, MO)的存在下,利
用沈澱聚合(precipitation polymerization)的方法製作出嗎啡分子模
版(molecularly imprinted polymer, MIP),比較傳統塊狀聚合(bulk
polymerization)與沈澱聚合所製備分子模版的粒徑分布、表面形態與
表面積等特性分析,並以styrene與MAA單體掺混的方式聚合分子模
版,比較不同官能基單體掺混對嗎啡的吸附效果,分析單體官能基與
模版選擇性的影響,並在不同嗎啡濃度下測量分子模版吸附量,以
Scatchard plot估算沈澱聚合分子模版的脫附常數(KD)為0.45 mM與
吸附嗎啡的最大量(Bmax)可達186 µmole/g。
第二部分,將3,4-Ethylenedioxythiophene (EDOT)作為單體,以
電聚方式包覆沈澱聚合後之分子模版於導電玻璃ITO 上作為修飾電
極(MIP/PEDOT),以定電位方法感測嗎啡,線性感測範圍為0.1~2.0
mM,MIP/PEDOT 修飾電極的靈敏度為41.63 µA/cm2
*mM,感測下限
為0.3 mM(S/N=3),模版效率為1.11。另一方面以EDOT 做為模版
單體,分別合成嗎啡(MIP-PEDOTMO)與膽固醇(MIP-PEDOTChol)
分子模版修飾電極,以PEDOT 薄膜催化嗎啡的能力,定電位的方式
感測嗎啡,線性感測範圍為0.1~1 mM,MIP-PEDOTMO 修飾電極的靈
敏度為91.86 µA/cm2
*mM,感測下限為0.2 mM(S/N=3),模版效率為1.32。膽固醇感測方面,因為膽固醇為非電活性物質,所以無法直
接以電流的訊號判斷濃度,故於溶液中加入赤血鹽為電流指示劑,利
用MIP-PEDOTChol 修飾電極上膽固醇的特殊孔洞,對吸附膽固醇後造
成PEDOT 高分子鏈的收縮,使得指示劑分子於修飾膜中通透量增
加,間接測量指示劑電流與濃度的關係來感測溶液中的膽固醇,
MIP-PEDOTChol 修飾電極吸附膽固醇後電流變化的線性範圍為0~20
µM,靈敏度為11.768 nA/cm2
*µM,模版效率為1.81。另一方面,也
利用膽固醇容易吸附在MIP-PEDOTChol 修飾電極上的特殊孔洞,使修
飾薄膜電容發生改變,感測線性範圍為0~10 µM,MIP-PEDOTChol 修
飾電極靈敏度分別為5.92 µF/cm2
*µM,模版效率為2.21。
最後,將MIP-PEDOTMO 製備於商用IDA 上,以銀膠與FeCl3 溶
液製作成Ag/AgCl 的參考電極,電位變動在感測200 秒內不超過0.4
mV(vs. Ag/AgCl/sat’d KCl),線性感測範圍為0.01~0.10 mM,靈敏
度為0.0894 A/cm2
*mM,模版效率為4.71,感測下限可達0.02 mM
(S/N=3)。並利用微機電製程方式,自製三極式微電極感測嗎啡,線
性感測範圍為0.01~0.2 mM,MIP-PEDOTMO 修飾薄膜於自製微電極
的靈敏度為171.47 µA/cm2
*mM,模版效率為1.19,感測下限為0.2 µM
(S/N= 3)。
zh_TW
dc.description.abstractIn this work, molecular imprinted polymers (MIPs) of morphine
(MO) were prepared through precipitation polymerization of methacrylic
acid (MAA) and trimethylolpropane trimethacrylate (TRIM) in the
presence of MO templates. The distributions of particle size,
morphologies, and surface areas were compared with bulk polymerization.
Furthermore, the copolymers of styrene and MAA with different
functional groups were synthesized and the adsorption of MO was
measured. From the Scatchard plot, the dissociation constant and the
maximum amount of adsorption were calculated 0.45 mM and 186
µmole/g, respectively.
Poly(3,4-ethylenedioxythiophene) (PEDOT) was utilized to
immobilize the MIP particles onto the indium tin oxide (ITO) glass as a
MIP/PEDOT-modified electrode. The sensitivity of MIP/PEDOT with
amperometric detection of MO was 41.63 µA/cm2*mM, ranging from 0.1
to 2 mM. The detection limit and imprinting efficiency were 0.3 mM
(S/N=3) and 1.11, respectively. On the other hand, the PEDOT was also
used to prepare the MIP modified electrodes of MO (MIP-PEDOTMO)
and cholesterol (MIP-PEDOTChol) directly. The PEDOT film was capable
of electro-catalyze oxidize of MO and detected MO in MIP-PEDOTMO
modified electrode with the amperometric method. The sensitivity of
MIP-PEDOTMO was 91.86 µA/cm2*mM, ranging from 0.1 to 1 mM MO.
The detection limit was 0.2 mM (S/N=3) and the imprinting efficiency
was 1.32. As for the detection of cholesterol (Chol), Chol was
electro-inactive and the oxidation current of Chol can’t be obtained
directly. Therefore, K3Fe(CN)6 was served as an indicator for the current
response in the solution. As Chol was adsorbed on the MIP-PEDOTChol
IV
modified electrode, the MIP polymer chain shrank and increased the
porosity of MIP. Such an increase in porosity was expected to result in an
increase in the diffusive permeability of the MIP and an enhancement of
Faradic current of the K3Fe(CN)6. The sensitivity of MIP-PEDOT with
indirect amperometric method was 11.768 nA/cm2*µM from 0 to 20 µM.
The imprinting efficiency was 1.81. The capacitive detection of Chol has
been developed using the MIP-PEDOTChol modified electrode. A
capacitance decreased could be obtained as Chol adsorbed on the sites of
MIP film. The sensitivity of capacitance shift was 5.92 µF/cm2*µM from
0 to 10 µM and the imprinting efficiency was 2.21.
Finally, the MIP-PEDOT was prepared on the commercial
interdigital array (IDA). The Ag/AgCl reference electrode (RE) was
prepared with silver glue and FeCl3 solution. The variation of RE
potential was less than 0.4 mV (vs. Ag/AgCl’sat KCl) in 200s. The
sensitivity was 0.0894 A/cm2*mM from 0.01 to 0.10 mM and the
imprinting efficiency was 4.71. The detection limit was 0.02 mM (S/N=3).
With micro-fabrication process, we were able to fabricate the
MIP-PEDOT electrode in a three-electrode system for sensing MO. The
sensitivity on the microelectrode was 171.47 µA/cm2*mM from 0.01 to
0.2 mM MO. The imprinting efficiency and detection limit were 1.19 and
0.2 µM (S/N=3), respectively.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:28:11Z (GMT). No. of bitstreams: 1
ntu-94-R92524022-1.pdf: 2997200 bytes, checksum: d5183fee82de4fbbdcb6a2669a8029d4 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents中文摘要...................................................I
英文摘要.................................................III
致謝.......................................................V
目錄.....................................................VII
表目錄.....................................................X
圖目錄....................................................XI
符號說明................................................XVII
縮寫說明...............................................XVIII
第一章 緒論.............................................1
1-1 前言....................................1
1-2 分子模版之簡介..........................3
1-2-1 分子模版之表現性質之測定................8
1-2-2 分子模版技術之應用......................8
1-3 嗎啡特性及其感測發展...................13
1-3-1 嗎啡之特性.............................13
1-3-2 嗎啡之感測發展.........................16
1-4 嗎啡分子模版之文獻回顧.................21
1-4-1 膽固醇之特性...........................21
1-4-2 膽固醇之感測發展.......................25
1-5 研究動機與架構.........................35

第二章 原理............................................37
2-1 沈澱聚合法之原理.......................37
2-2 分子模版吸附分析.......................42
2-3 電流式感測原理.........................44
2-3-1 電極反應速率與電流的因素...............44
2-3-2 感測原理...............................45
2-4 電容式感測原理.........................50

第三章 實驗設備與方法..................................53
3-1 儀器設備...............................53
3-2 實驗藥品...............................55
3-3 實驗方法...............................57
3-3-1 嗎啡微球型分子模版之製備...............57
3-3-2 分子模版性質測試.......................58
3-3-3 MIP粉體模版修飾電極之製備..............58
3-3-4 嗎啡電流式感測.........................61
3-3-4-1 感測電位的選定.........................61
3-3-4-2 感測曲線...............................61
3-3-4-3 嗎啡干擾物之分析.......................62
3-3-5 MIP-PEDOTMO薄膜修飾電極之製備..........63
3-3-6 MIP-PEDOTMO薄膜修飾電極之電流感測......64
3-3-7 微電極感測器之製備.....................65
3-3-7-1 微電極製程.............................65
3-3-7-2 微感測器三極式製備.....................65
3-3-7-3 微電極之電流感測.......................66
3-3-8 膽固醇分子模版修飾電極之製備...........72
3-3-9 膽固醇間接電流式感測...................73
3-3-10 膽固醇電容式感.........................73
3-3-10-1 操作電位與頻率的尋.....................73
3-3-10-2 電容感測曲線...........................74
3-3-10-3 膽固醇類似物干擾物分...................74

第四章 結果與討論......................................75
4-1 分子模版微粒體之製備...................76
4-1-1 分子模版微粒體之粒徑分佈...............76
4-1-2 分子模版微粒體之表面積.................82
4-1-3 分子模版微粒體之表面型態...............84
4-1-4 分子模版吸附討.........................87
4-1-5 不同單體的分子模版與吸附討論...........93
4-2 嗎啡模版微粒修飾電極之電流式感.........96
4-2-1 感測電位的尋找.........................97
4-2-2 定電位電流式感測分析..................100
4-2-3 pH影響與嗎啡感測機制討論..............103
4-2-4 嗎啡之結構類似物對感測器之影響........107
4-3 MIP-PEDOTMO薄膜修飾電極之電流感測.....109
4-3-1 定電位電流感測........................114
4-3-2 嗎啡之結構類似物對感測器之影..........119
4-4 膽固醇分子模版修飾電極電流式感........121
4-4-1 膽固醇分子模版修飾電極製備與電流式設計122
4-4-2 定電位電流式感測分析與感測機制討......124
4-5 膽固醇分子模版修飾電極之電容式感......132
4-5-1 系統電容分析與感測電位與頻率的尋......132
4-5-2 電容式感測分..........................136
4-5-3 膽固醇之結構類似物對感測器之影響......141
4-6 分子模版應用於商用微電極感測嗎........143
4-6-1 商用微電極三極式製....................143
4-6-2 微電極電流感測行......................147
4-6-3 感測時間討............................151
4-7 分子模版應用於自製微電極感測嗎啡......153
4-7-1 自製微電極之三極式製..................153
4-7-2 不同流速對電流訊號的影................155
4-7-3 自製微電極電流感測行..................155
4-7-4 干擾物分..............................157
4-7-5 感測時間分............................158
4-8 綜合討................................168

第五章 結論與建議.....................................173
5-1 結論..................................173
5-2 建議..................................179

第六章 參考文獻.......................................181

附錄....................................................195
dc.language.isozh-TW
dc.subject分子模版zh_TW
dc.subject嗎啡zh_TW
dc.subject膽固醇zh_TW
dc.subject定電位電流感測zh_TW
dc.subject電容感測zh_TW
dc.subject微電極zh_TW
dc.subjectcapacitive detectionen
dc.subjectmicro- electrodeen
dc.subjectMorphineen
dc.subjectcholesterolen
dc.subjectmolecular imprinted polymer (MIP)en
dc.subjectamperometric detectionen
dc.title以分子模版修飾電極感測嗎啡及膽固醇zh_TW
dc.titleMolecularly Imprinted Polymers as Modified Electrodes for Sensing Morphine and Cholesterolen
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周澤川(Tse-Chuan Chou),楊明長(Ming-Chang Yang),顏溪成(Shi-Chern Yen)
dc.subject.keyword嗎啡,膽固醇,分子模版,定電位電流感測,電容感測,微電極,zh_TW
dc.subject.keywordMorphine,cholesterol,molecular imprinted polymer (MIP),amperometric detection,capacitive detection,micro- electrode,en
dc.relation.page195
dc.rights.note未授權
dc.date.accepted2005-07-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
2.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved