Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24475
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳宏文(Hung-Wen Chen)
dc.contributor.authorChing-Wen Changen
dc.contributor.author張清文zh_TW
dc.date.accessioned2021-06-08T05:27:27Z-
dc.date.copyright2011-08-02
dc.date.issued2011
dc.date.submitted2011-07-28
dc.identifier.citation1. Bischof, P. and I. Irminger-Finger, The human cytotrophoblastic cell, a mononuclear chameleon. Int J Biochem Cell Biol, 2005. 37(1): p. 1-16.
2. Kalashnikova, E.P., [The human placenta and its normal role and in pathology]. Arkh Patol, 1985. 47(1): p. 3-11.
3. Flenker, H., [Orthology and pathology of the human placenta]. Fortschr Med, 1974. 92(8): p. 328-31.
4. Frost, J.M. and G.E. Moore, The importance of imprinting in the human placenta. PLoS Genet, 2010. 6(7): p. e1001015.
5. Khaliq, A., et al., Hypoxia down-regulates placenta growth factor, whereas fetal growth restriction up-regulates placenta growth factor expression: molecular evidence for 'placental hyperoxia' in intrauterine growth restriction. Lab Invest, 1999. 79(2): p. 151-70.
6. Reynolds, L.P., et al., Animal models of placental angiogenesis. Placenta, 2005. 26(10): p. 689-708.
7. Maltepe, E., A.I. Bakardjiev, and S.J. Fisher, The placenta: transcriptional, epigenetic, and physiological integration during development. J Clin Invest, 2010. 120(4): p. 1016-25.
8. Scifres, C.M. and D.M. Nelson, Intrauterine growth restriction, human placental development and trophoblast cell death. J Physiol, 2009. 587(Pt 14): p. 3453-8.
9. Boeke, J.D. and J.P. Stoye, Retrotransposons, Endogenous Retroviruses, and the Evolution of Retroelements. 1997.
10. Potgens, A.J., et al., Syncytin: the major regulator of trophoblast fusion? Recent developments and hypotheses on its action. Hum Reprod Update, 2004. 10(6): p. 487-96.
11. Black, S.G., et al., Endogenous retroviruses in trophoblast differentiation and placental development. Am J Reprod Immunol, 2010. 64(4): p. 255-64.
12. Mi, S., et al., Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature, 2000. 403(6771): p. 785-9.
13. Liang, C.Y., et al., GCM1 regulation of the expression of syncytin 2 and its cognate receptor MFSD2A in human placenta. Biol Reprod, 2010. 83(3): p. 387-95.
14. Wich, C., et al., Syncytin-1 and glial cells missing a: hypoxia-induced deregulated gene expression along with disordered cell fusion in primary term human trophoblasts. Gynecol Obstet Invest, 2009. 68(1): p. 9-18.
15. Frendo, J.L., et al., Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol Cell Biol, 2003. 23(10): p. 3566-74.
16. Kudo, Y. and C.A. Boyd, Human placental amino acid transporter genes: expression and function. Reproduction, 2002. 124(5): p. 593-600.
17. Blaise, S., et al., Genomewide screening for fusogenic human endogenous retrovirus envelopes identifies syncytin 2, a gene conserved on primate evolution. Proc Natl Acad Sci U S A, 2003. 100(22): p. 13013-8.
18. Vargas, A., et al., Syncytin-2 plays an important role in the fusion of human trophoblast cells. J Mol Biol, 2009. 392(2): p. 301-18.
19. Balada, E., J. Ordi-Ros, and M. Vilardell-Tarres, Molecular mechanisms mediated by human endogenous retroviruses (HERVs) in autoimmunity. Rev Med Virol, 2009. 19(5): p. 273-86.
20. Altshuller, Y., et al., Gcm1, a mammalian homolog of Drosophila glial cells missing. FEBS Lett, 1996. 393(2-3): p. 201-4.
21. Anson-Cartwright, L., et al., The glial cells missing-1 protein is essential for branching morphogenesis in the chorioallantoic placenta. Nat Genet, 2000. 25(3): p. 311-4.
22. Hashemolhosseini, S., et al., Restricted expression of mouse GCMa/Gcm1 in kidney and thymus. Mech Dev, 2002. 118(1-2): p. 175-8.
23. Yu, C., et al., GCMa regulates the syncytin-mediated trophoblastic fusion. J Biol Chem, 2002. 277(51): p. 50062-8.
24. Schreiber, J., et al., Placental failure in mice lacking the mammalian homolog of glial cells missing, GCMa. Mol Cell Biol, 2000. 20(7): p. 2466-74.
25. Chen, C.P., et al., Decreased placental GCM1 (glial cells missing) gene expression in pre-eclampsia. Placenta, 2004. 25(5): p. 413-21.
26. Chiang, M.H., et al., Mechanism of hypoxia-induced GCM1 degradation: implications for the pathogenesis of preeclampsia. J Biol Chem, 2009. 284(26): p. 17411-9.
27. Cohen, S.X., et al., Structure of the GCM domain-DNA complex: a DNA-binding domain with a novel fold and mode of target site recognition. EMBO J, 2003. 22(8): p. 1835-45.
28. Chang, C.W., et al., Stimulation of GCMa transcriptional activity by cyclic AMP/protein kinase A signaling is attributed to CBP-mediated acetylation of GCMa. Mol Cell Biol, 2005. 25(19): p. 8401-14.
29. Chiang, M.H., L.F. Chen, and H. Chen, Ubiquitin-conjugating enzyme UBE2D2 is responsible for FBXW2 (F-box and WD repeat domain containing 2)-mediated human GCM1 (glial cell missing homolog 1) ubiquitination and degradation. Biol Reprod, 2008. 79(5): p. 914-20.
30. Chou, C.C., et al., Small ubiquitin-like modifier modification regulates the DNA binding activity of glial cell missing Drosophila homolog a. J Biol Chem, 2007. 282(37): p. 27239-49.
31. Lin, F.Y., et al., Dual-specificity phosphatase 23 mediates GCM1 dephosphorylation and activation. Nucleic Acids Res, 2011. 39(3): p. 848-61.
32. Yang, C.S., et al., FBW2 targets GCMa to the ubiquitin-proteasome degradation system. J Biol Chem, 2005. 280(11): p. 10083-90.
33. Kirisako, T., et al., A ubiquitin ligase complex assembles linear polyubiquitin chains. EMBO J, 2006. 25(20): p. 4877-87.
34. Gareau, J.R. and C.D. Lima, The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol, 2010. 11(12): p. 861-71.
35. Boggio, R., et al., A mechanism for inhibiting the SUMO pathway. Mol Cell, 2004. 16(4): p. 549-61.
36. Bekes, M., et al., The dynamics and mechanism of SUMO chain deconjugation by SUMO-specific proteases. J Biol Chem, 2011. 286(12): p. 10238-47.
37. Wilkinson, K.A. and J.M. Henley, Mechanisms, regulation and consequences of protein SUMOylation. Biochem J, 2010. 428(2): p. 133-45.
38. Shen, L.N., et al., The structure of SENP1-SUMO-2 complex suggests a structural basis for discrimination between SUMO paralogues during processing. Biochem J, 2006. 397(2): p. 279-88.
39. Xu, Z., et al., Crystal structure of the SENP1 mutant C603S-SUMO complex reveals the hydrolytic mechanism of SUMO-specific protease. Biochem J, 2006. 398(3): p. 345-52.
40. Cheng, J.K., [SUMO-specific protease 1 and cancer]. Ai Zheng, 2008. 27(7): p. 771-4.
41. Bailey, D. and P. O'Hare, Characterization of the localization and proteolytic activity of the SUMO-specific protease, SENP1. J Biol Chem, 2004. 279(1): p. 692-703.
42. Chiu, S.Y., et al., SUMO-specific protease 2 is essential for modulating p53-Mdm2 in development of trophoblast stem cell niches and lineages. PLoS Biol, 2008. 6(12): p. e310.
43. Haindl, M., et al., The nucleolar SUMO-specific protease SENP3 reverses SUMO modification of nucleophosmin and is required for rRNA processing. EMBO Rep, 2008. 9(3): p. 273-9.
44. Di Bacco, A., et al., The SUMO-specific protease SENP5 is required for cell division. Mol Cell Biol, 2006. 26(12): p. 4489-98.
45. Geiss-Friedlander, R. and F. Melchior, Concepts in sumoylation: a decade on. Nat Rev Mol Cell Biol, 2007. 8(12): p. 947-56.
46. Keryer, G., et al., Cyclic AMP-dependent protein kinases and human trophoblast cell differentiation in vitro. J Cell Sci, 1998. 111 ( Pt 7): p. 995-1004.
47. Gloerich, M. and J.L. Bos, Epac: defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol, 2010. 50: p. 355-75.
48. Cazorla, O., et al., The cAMP binding protein Epac regulates cardiac myofilament function. Proc Natl Acad Sci U S A, 2009. 106(33): p. 14144-9.
49. Yoshie, M., et al., Possible role of the exchange protein directly activated by cyclic AMP (Epac) in the cyclic AMP-dependent functional differentiation and syncytialization of human placental BeWo cells. Hum Reprod, 2010. 25(9): p. 2229-38.
50. de Rooij, J., et al., Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature, 1998. 396(6710): p. 474-7.
51. Kawasaki, H., et al., A family of cAMP-binding proteins that directly activate Rap1. Science, 1998. 282(5397): p. 2275-9.
52. Baczyk, D., et al., Glial cell missing-1 transcription factor is required for the differentiation of the human trophoblast. Cell Death Differ, 2009. 16(5): p. 719-27.
53. Petroff, M.G., et al., Isolation and culture of term human trophoblast cells. Methods Mol Med, 2006. 121: p. 203-17.
54. Pereira, L., et al., The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol, 2007. 583(Pt 2): p. 685-94.
55. Schubert, S.W., et al., bZIP-Type transcription factors CREB and OASIS bind and stimulate the promoter of the mammalian transcription factor GCMa/Gcm1 in trophoblast cells. Nucleic Acids Res, 2008. 36(11): p. 3834-46.
56. Delidaki, M., et al., Interplay of cAMP and MAPK pathways in hCG secretion and fusogenic gene expression in a trophoblast cell line. Mol Cell Endocrinol, 2011. 332(1-2): p. 213-20.
57. Oestreich, E.A., et al., Epac-mediated activation of phospholipase C(epsilon) plays a critical role in beta-adrenergic receptor-dependent enhancement of Ca2+ mobilization in cardiac myocytes. J Biol Chem, 2007. 282(8): p. 5488-95.
58. Hochbaum, D., et al., Epac, in synergy with cAMP-dependent protein kinase (PKA), is required for cAMP-mediated mitogenesis. J Biol Chem, 2008. 283(8): p. 4464-8.
59. Petersen, R.K., et al., Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes. Mol Cell Biol, 2008. 28(11): p. 3804-16.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24475-
dc.description.abstract人類胎盤特殊轉錄因子GCM1 (Glial cells missing homolog 1)屬於GCM轉錄因子基因家族,可控制融合蛋白syncytin基因表現,促使胎盤絨毛表面的滋養層細胞(cytotrophoblast)分化為融合細胞滋養層(syncytiotrophoblast),是調控胎盤發育的重要轉錄因子之一。先前的研究指出,胎盤細胞內cAMP濃度提高時會透過訊息傳遞路徑活化GCM1的轉錄活性,促使胎盤細胞滋養層的融合,顯示cAMP可能藉由下游因子來調控GCM1活性和相關基因的表現。目前實驗室已經證實 GCM1活性可以受到不同層次的轉譯後修飾作用調控 (post-translational modification),例如藉由cAMP/PKA/CBP路徑減少泛素化 (ubiquitination)程度以提高GCM1蛋白的穩定性;或是透過UBC9將DNA結合區域內的Lys156小類泛素化 (sumoylation)以降低對DNA的結合能力。雖然cAMP/PKA調控GCM1的機制已經非常清楚;但是對於GCM1小類泛素化的調控機制確有待研究。本研究論文證實,cAMP藉由PKA以外的傳遞路徑調控GCM1的轉錄活性。透過cAMP下游因子Epac1和Rap1活化CaMKI的磷酸酶活性進而磷酸化GCM1Ser47,當GCM1Ser47被磷酸化後,會誘使SENP1(去小類泛素化酵素)結合,移除GCM1小類泛素化修飾,增加其DNA的結合能力。此外,我們發現將GCM1表現弱化(knock-down)的胎盤細胞處理Epac1活化藥物時,會導致細胞融合能力下降。為了進一步證實GCM1Ser47的重要性,我們將GCM1表現弱化的細胞株,重新導入不受shRNA作用的GCM1表現蛋白,比較正常(wild-type)、S47A (mutant)和S47D (phosphomimetic mutant )三者之間對細胞融合能力的影響。結果顯示帶有GCM1S47D表現細胞株具有較高的融合能力,顯示GCM1Ser47磷酸化對細胞融合的重要性。綜合上述結果,我們首度證實GCM1活性受到cAMP/Epac1/Rap1訊息傳遞路徑的調控,對胎盤滋養層細胞的融合扮演不可或缺的角色;同時對於cAMP誘使胎盤滋滋養層細胞融合的作用機制,提出了新的觀點,透過GCM1的磷酸化和去小類泛素化來調控胎盤滋養層細胞的分化。zh_TW
dc.description.abstractcAMP signaling and the placental transcription factor GCM1 regulate expression of syncytin-1 and -2 fusogenic proteins, which are critical for syncytiotrophoblast formation by trophoblast fusion. We recently revealed a cAMP/PKA/CBP signaling pathway that activates GCM1 by coordinating GCM1 phosphorylation and acetylation. In contrast, GCM1 activity is downregulated by sumoylation of Lys156. How GCM1 sumoylation is regulated was unknown. Here we identify a novel PKA-independent cAMP signaling pathway as the critical regulator of GCM1 sumoylation. We show that Epac1 and Rap1, in response to cAMP, activate CaMKI to phosphorylate Ser47 in GCM1. This phosphorylation facilitates the interaction between GCM1 and the desumoylating enzyme SENP1 and thereby leads to GCM1 desumoylation and activation. Using RNAi, we further demonstrate that 8-CPT-AM, an Epac activator, stimulates syncytin-1 and -2 gene expression and cell fusion of placental BeWo cells in a GCM1-dependent manner. Importantly, the cell fusion defect in GCM1-knockdown BeWo cells can be reversed and enhanced by the RNAi-resistant phosphomimetic GCM1S47D mutant. Our study has identified a novel
cAMP/Epac1/CaMKI/GCM1 signaling cascade that stimulates trophoblast fusion through promoting GCM1 phosphorylation and desumoylation.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:27:27Z (GMT). No. of bitstreams: 1
ntu-100-D95b46003-1.pdf: 1121863 bytes, checksum: 7f98e93f60a6d377f6d6ea638426fa86 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontentsAbstract 1
中文摘要 2
Introduction 3
Placental function 3
Early development of the human placenta 3
Placental trophoblast cell lineages 4
Human placental endogenous retrovirues: HERV-W and HERV-FRD 5
Human GCM1 regulates the expression of syncytin-1 and -2 7
GCM1 function in placentation 7
GCM1 in disease 8
GCM1 structure 9
Regulation of GCM1 activity by post-translational modification (PTM) 9
Regulation of GCM1 stability by ubiquitination 10
Negative regulation of GCM1 activity by sumoylation 10
The SUMO modification pathway 11
Desumoylation enzymes-SENPs 12
cAMP/PKA signaling pathway regulates GCM1 activity 13
cAMP/Epac1 signaling pathway mediates differentiation of human
placental BeWo cells 14
Models used in the study 16
Significance and purpose 17
Materials and Methods 18
Chemicals and protein kinase inhibitors 18
Plasmid constructs 18
Cell culture, transfection, and lentivirus transduction 19
Isolation of villous cytotrophoblast from term placenta 20
GCM1 sumoylation and desumoylation 20
Regulation of interaction between GCM1 and SENP1 21
Mapping the SENP1-interacting domain in GCM1 21
CaMKI-mediated GCM1 phosphorylation and mass spectrometry 22
Chromatin immunoprecipitation (ChIP) assay 23
Rap1 activity assays 23
Immunofluorescence microscopy and cell-cell fusion analysis 24
Quantitative real-time PCR 25
Results 26
CaMKI is downstream of cAMP signaling in regulation of GCM1 activity 26
CaMKI facilitates GCM1 desumoylation by enhancing the interaction
of GCM1 and SENP1 27
CaMKI mediates Ser47 phosphorylation in GCM1 29
Epac activates CaMKI to regulate the interaction of GCM1 and SENP1 31
Epac regulates placental cell fusion via GCM1 33
Discussion 35
References 53
Figures 39
Figure 1. CaMKI is involved in the regulation of GCM1 activity by cAMP. 39
Figure 2. Regulation of GCM1 desumoylation by CaMKI. 41
Figure 3. SENP1 interactions with GCM1 42
Figure 4. CaMKI mediates Ser47 phosphorylation in GCM1 to enhance the
interaction between GCM1 and SENP1 43
Figure 5. Ser47 is critical for stimulation of GCM1 activity by CaMKI. 44
Figure 6. EPAC1 regulates the interaction of GCM1 and SENP1. 46
Figure 7. Regulation of Rap1 activity by Epac1. 48
Figure 8. Stimulation of Ser47 phosphorylation by Epac1 and CaMKI in
placenta cells. 49
Figure 9. Regulation of placental cell fusion by Epac1. 50
Figure 10. Regulation of GCM1 activity and placental cell fusion by cAMP. 52
dc.language.isoen
dc.subject去小類泛素化zh_TW
dc.subject胎盤轉錄因子zh_TW
dc.subjectdesumoylationen
dc.subjectGCM1en
dc.subjectSENP1en
dc.subjectsumoylationen
dc.title磷酸化和去小類泛素化協同調控人類胎盤轉錄因子GCM1活性zh_TW
dc.titleCoordinated Regulation of Human GCM1 Activity by Phosphorylation and Desumoylation in Placental Cell Differentiationen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree博士
dc.contributor.oralexamcommittee張震東(Geen-Dong Chang),張茂山(Mau-Sun Chang),李明亭(Ming-Ting Lee),張功耀(Kung-Yao Chang)
dc.subject.keyword胎盤轉錄因子,去小類泛素化,zh_TW
dc.subject.keywordGCM1,SENP1,sumoylation,desumoylation,en
dc.relation.page57
dc.rights.note未授權
dc.date.accepted2011-07-28
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  未授權公開取用
1.1 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved