Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24442
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李苑玲
dc.contributor.authorHsin-Yi Changen
dc.contributor.author張欣怡zh_TW
dc.date.accessioned2021-06-08T05:26:09Z-
dc.date.copyright2011-10-05
dc.date.issued2011
dc.date.submitted2011-07-27
dc.identifier.citationAccorinte M, Loguercio A, Reis A, Muench A, de Araujo V (2005). Response of human pulp capped with a bonding agent after bleeding control with hemostatic agents. Oper Dent 30(2):147-55.
Aeinehchi M, Dadvand S, Fayazi S, Bayat-Movahed S (2007). Randomized controlled trial of mineral trioxide aggregate and formocresol for pulpotomy in primary molar teeth. Blackwell Publishing Ltd, pp. 261-267.
Agamy HA, Bakry NS, Mounir MMF, Avery DR (2004). Comparison of mineral trioxide aggregate and formocresol as pulp-capping agents in pulpotomized primary teeth. Pediatric Dentistry 26(4):302-309.
Al-Zayer MA, Straffon LH, Feigal RJ, Welch KB (2003). Indirect pulp treatment of primary posterior teeth: A retrospective study. Pediatric Dentistry 25(1):29-36.
Anderman, II (1982). Indications for use of electrosurgery in pedodontics. Dent Clin North Am 26(4):711-28.
Ansari G, Ranjpour M (2010). Mineral trioxide aggregate and formocresol pulpotomy of primary teeth: a 2-year follow-up: International Endodontic Journal, pp. 413-418.
Aqrabawi J (2000). Sealing ability of amalgam, super EBA cement, and MTA when used as retrograde filling materials. British Dental Journal 188(5):266-268.
Asgary S, Parirokh M, Eghbal MJ, Brink F (2005). Chemical Differences Between White and Gray Mineral Trioxide Aggregate. Journal of Endodontics 31(2):101-103.
Auerbach C, Moutschen-Dahmen M, Moutschen J (1977). Genetic and cytogenetical effects of formaldehyde and related compounds. Mutation Research 39(3-4):317-361.
Baek SH, Plenk Jr H, Kim S (2005). Periapical tissue responses and cementum regeneration with amalgam, superEBA, and MTA as root-end filling materials. Journal of Endodontics 31(6):444-449.
Bahrololoomi Z, Moeintaghavi A, Emtiazi M, Hosseini G (2008). Clinical and radiographic comparison of primary molars after formocresol and electrosurgical pulpotomy: A randomized clinical trial. Indian Journal of Dental Research 3(1):219-223.
Block RM, Lewis RD, Sheats JB, Burke SG (1978). Antibody formation to dog pulp tissue altered by formocresol within the root canal. Oral Surgery Oral Medicine and Oral Pathology 45(2):282-292.
Bodem O, Blumenshine S, Zeh D, Koch MJ (2004). Direct pulp capping with mineral trioxide aggregate in a primary molar: a case report. International Journal of Paediatric Dentistry 14(5):376-379.
Burnett S, Walker J (2002). Comparison of ferric sulfate, formocresol, and a combination of ferric sulfate/formocresol in primary tooth vital pulpotomies: A retrospective radiographic survey. Journal of Dentistry for Children 69(1):44-48.
Camilleri J, Montesin FE, Brady K, Sweeney R, Curtis RV, Ford TRP (2005). The constitution of mineral trioxide aggregate. Dental Materials 21(4):297-303.
Chacko V, Kurikose S (2006). Human pulpal response to Mineral Trioxide Aggregate (MTA): A histologic study. Journal of Clinical Pediatric Dentistry 30(3):203-209.
Cotes O, Boj JR, Canalda C, Carreras M (1997). Pulpal tissue reaction to formocresol vs. ferric sulfate in pulpotomized rat teeth. J Clin Pediatr Dent 21(3):247-53.
Dang J, Wilder-Smith P, Peavy GM (1998). Clinical preconditions and treatment modality: Effects on pulp surgery outcome: John Wiley & Sons, Inc., pp. 25-29.
Dean JA, Mack RB, Fulkerson BT, Sanders BJ (2002). Comparison of electrosurgical and formocresol pulpotomy procedures in children. International Journal of Paediatric Dentistry 12(3):177-182.
Doyle WA, McDonald RE, Mitchell DF (1962). Formocresol versus calcium hydroxide in pulpotomy. Journal of Dentistry for Children 29):86-97.
Ebihara A (1989). Effects of Nd:YAG laser irradiation on the amputated pulp. Japanese Journal of Conservative Dentistry 32(1670-1684.
Eidelman E, Holan G, Fuks AB (2001). Mineral trioxide aggregate vs. formocresol in pulpotomized primary molars: a preliminary report. Pediatr Dent 23(1):15-8.
El-Meligy O, Abdalla M, El-Baraway S, El-Tekya M, Dean J (2002). Histological evaluation of electrosurgery and formocresol pulpotomy techniques in primary teeth in dogs. Journal of Clinical Pediatric Dentistry 26(1):81-85.
El Meligy OAS, Avery DR (2006). Comparison of mineral trioxide aggregate and calcium hydroxide as pulpotomy agents in young permanent teeth (apexogenesis). Pediatric Dentistry 28(5):399-404.
Elliott RD, Roberts MW, Burkes J, Phillips C (1999). Evaluation of the carbon dioxide laser on vital human primary pulp tissue. Pediatr Dent 21(6):327-31.
Fadavi S (1996). A comparison of the pulpal response to freeze-dried bone, calcium hydroxide, and zinc oxide-eugenol in primary teeth in two cynomolgus monkeys. Pediatric Dentistry 18(1):52-56.
Farsi N, Alamoudi N, Balto K, Mushayt A (2005). Success of mineral trioxide aggregate in pulpotomized primary molars. Journal of Clinical Pediatric Dentistry 29(4):307-311.
Fei AL, Udin RD, Johnson R (1991). A clinical study of ferric sulfate as a pulpotomy agent in primary teeth. Pediatric Dentistry 13(6):327-332.
Fogel HM, Peikoff MD (2001). Microleakage of Root-End Filling Materials. Journal of Endodontics 27(7):456-458.
Ford T, Torabinejad M, Abedi H, Bakland L, Kariyawasam S (1996). Using mineral trioxide aggregate as a pulp-capping material. J Am Dent Assoc 127(10):1491-1494.
Fuks AB, Bimstein E (1981). Clinical evaluation of diluted formocresol pulpotomies in primary teeth of school children. Pediatr Dent 3(4):321-4.
Fuks AB, Bimstein E, Guelmann M, Klein H (1990). Assessment of a 2 percent buffered glutaraldehyde solution in pulpotomized primary teeth of schoolchildren. ASDC journal of dentistry for children 57(5):371-375.
Fuks AB (1997). Ferrie sulfate versus dilute formocresol in pulpotomized primary molars: Long-term follow up. Pediatric Dentistry 19(5):327-330.
Fuks AB, Eidelman E, Cleaton-Jones P, Michaeli Y (1997). Pulp response to ferric sulfate, diluted formocresol and IRM in pulpotomized primary baboon teeth. ASDC J Dent Child 64(4):254-9.
Fuks AB (2002). Current concepts in vital primary pulp therapy. Eur J Paediatr Dent 3(3):115-20.
Fuks AB, Papagiannoulis L (2006). Pulpotomy in primary teeth: review of the literature according to standardized criteria. Eur Arch Paediatr Dent 7(2):64-71; discussion 72.
Fuks AB (2008). Vital Pulp Therapy with New Materials for Primary Teeth: New Directions and Treatment Perspectives. Journal of Endodontics 34(7, Supplement 1):S18-S24.
Funteas UR, Wallace JA, Fochtman FW (2003). A Comparative Analysis Of Mineral Trioxide Aggregate And Portland Cement: Blackwell Publishing Ltd, pp. 43-44.
Garcia-Godoy F, Novakovic DP, Carvajal IN (1982). Pulpal response to different application times of formocresol. J Pedod 6(2):176-93.
Garcia-Godoy F (1986). A 42 month clinical evaluation of glutaraldehyde pulpotomies in primary teeth. J Pedod 10(2):148-55.
Ghoddusi J, Sanaan A, Shahrami F (2007). Clinical and radiographic evaluation of root perforation repair using MTA. The New York state dental journal 73(3):46-49.
Guelmann M, Bookmyer KL, Villalta P, García-Godoy F (2004). Microleakage of Restorative Techniques for Pulpotomized Primary Molars. Journal of Dentistry for Children 71:209-211.
Guelmann M, McIlwain MF, Primosch RE (2005). Radiographic Assessment of Primary Molar Pulpotomies Restored With Resin-based Materials. Pediatric Dentistry 27: 24-27.
Hafez AA, Kopel HM, Cox CF (2000). Pulpotomy reconsidered: application of an adhesive system to pulpotomized permanent primate pulps. Quintessence Int 31(8):579-89.
Hafez AA, Cox CF, Tarim B, Otsuki M, Akimoto N (2002). An in vivo evaluation of hemorrhage control using sodium hypochlorite and direct capping with a one- or two-component adhesive system in exposed nonhuman primate pulps Berlin, ALLEMAGNE: Quintessenz.
Heilig J, Yates J, Siskin M, McKnight J, Turner J (1984). Calcium hydroxide pulpotomy for primary teeth: a clinical study. J Am Dent Assoc 108(5):775-8.
Higashi T, Okamoto H (1996). Influence of particle size of calcium phosphate ceramics as a capping agent on the formation of a hard tissue barrier in amputated dental pulp. J Endod 22(6):281-3.
Hill SD, Berry CW, Seale NS, Kaga M (1991). Comparison of antimicrobial and cytotoxic effects of glutaraldehyde and formocresol. Oral Surgery, Oral Medicine, Oral Pathology 71(1):89-95.
Holan G, Eidelman E, Fuks AB (2005). Long-term Evaluation of Pulpotomy in Primary Molars Using Mineral Trioxide Aggregate or Formocresol. Pediatric Dentistry 27:129-136.
Holland R, de Souza V, Murata SS, Nery MJ, Bernabe PF, Otoboni Filho JA, et al. (2001). Healing process of dog dental pulp after pulpotomy and pulp covering with mineral trioxide aggregate or Portland cement. Brazilian dental journal 12(2):109-113.
Hsien H-C, Cheng Y-A, Lee Y-L, Lan W-H, Lin C-P (2003). Repair of Perforating Internal Resorption with Mineral Trioxide Aggregate: A Case Report. Journal of Endodontics 29(8):538-539.
Huth KC, Paschos E, Hajek-Al-Khatar N, Hollweck R, Crispin A, Hickel R, et al. (2005). Effectiveness of 4 pulpotomy techniques - Randomized controlled trial. Journal of Dental Research 84(12):1144-1148.
Ibricevic H, Al-Jame Q (2000). Ferric sulfate as pulpotomy agent in primary teeth: twenty month clinical follow-up. Journal of Clinical Pediatric Dentistry 24(4):269-272.
Ibricevic H, Al-Jame Q (2003). Ferric sulphate and formocresol in pulpotomy of primary molars: long term follow-up study. Eur J Paediatr Dent 4(1):28-32.
Islam I, Kheng Chng H, Jin Yap AU (2006). Comparison of the Physical and Mechanical Properties of MTA and Portland Cement. Journal of Endodontics 32(3):193-197.
Jabbaifar SE, Khademi AA, Ghasemi D (2004). Success rate of formocresol pulpotomy versus mineral trioxide aggregate in human primary molar tooth. 9(6):55-58.
Jeng HW, Feigal RJ, Messer HH (1987). Comparison of the cytotoxicity of formocresol, formaldehyde, cresol, and glutaraldehyde using human pulp fibroblast cultures. Pediatr Dent 9(4):295-300.
JukiĆ S, AniĆ I, Koba K, NajŽAr-Fleger D, Matsumoto K (1997). The effect of pulpotomy using CO2 and Nd:YAG lasers on dental pulp tissue. International Endodontic Journal 30(3):175-180.
Keiser K, Chad Johnson C, Tipton DA (2000). Cytotoxicity of mineral trioxide aggregate using human periodontal ligament fibroblasts. Journal of Endodontics 26(5):288-291.
Kim S, Kratchman S (2006). Modern Endodontic Surgery Concepts and Practice: A Review. Journal of Endodontics 32(7):601-623.
Kimura Y, Wilder-Smith P, Matsumoto K (2000). Lasers in endodontics: a review: Blackwell Science Ltd, pp. 173-185.
Koh ET, Torabinejad M, Pitt Ford TR, Brady K, McDonald F (1997). Mineral trioxide aggregate stimulates a biological response in human osteoblasts. Journal of Biomedical Materials Research 37(3):432-439.
Koh ET, McDonald F, Pitt Ford TR, Torabinejad M (1998). Cellular response to mineral trioxide aggregate. Journal of Endodontics 24(8):543-547.
Kopel HM, Bernick S, Zachrisson E, DeRomero SA (1980). The effects of glutaraldehyde on primary pulp tissue following coronal amputation: an in vivo histologic study. ASDC J Dent Child 47(6):425-30.
Landau MJ, Johnsen DC (1988). Pulpal responses to ferric sulfate in monkeys. Journal of Dental Research 16(7):215.
Lemon RR, Steele PJ, Jeansonne BG (1993). Ferric sulfate hemostasis: effect on osseous wound healing. Left in situ for maximum exposure. J Endod 19(4):170-3.
Lewis B, Chestner S (1981). Formaldehyde in dentistry: a review of mutagenic and carcinogenic potential. J Am Dent Assoc 103(3):429-434.
Liu J-f (2006). Effects of Nd:YAG Laser Pulpotomy on Human Primary Molars. Journal of Endodontics 32(5):404-407.
Loh A, O'Hoy P, Tran X, Charles R, Hughes A, Kubo K, et al. (2004). Evidence-based assessment: evaluation of the formocresol versus ferric sulfate primary molar pulpotomy. Pediatr Dent 26(5):401-9.
Loos PJ, Han SS (1971). An enzyme histochemical study of the effect of various concentrations of formocresol on connective tissues. Oral Surgery, Oral Medicine, Oral Pathology 31(4):571-585.
Loos PJ, Straffon LH, Han SS (1973). Biological effects of formocresol. ASDC J Dent Child 40(3):193-7.
Mack RB, Dean JA (1993). Electrosurgical pulpotomy: a retrospective human study. ASDC J Dent Child 60(2):107-14.
Main C, Mirzayan N, Shabahang S, Torabinejad M (2004). Repair of root perforations using mineral trioxide aggregate: A long-term study. Journal of Endodontics 30(2):80-83.
Marchi JJ, De Araujo FB, Froner AM, Straffon LH, Nor JE (2006). Indirect pulp capping in the primary dentition: A 4 year follow-up study. Journal of Clinical Pediatric Dentistry 31(2):68-71.
Markovic D, Zivojinovic V, Vucetic M (2005). Evaluation of three pulpotomy medicaments in primary teeth. European journal of paediatric dentistry 6(3):133-138.
Maroto M, Barberia E, Planells P, Garcia Godoy F (2005). Dentin bridge formation after mineral trioxide aggregate (MTA) pulpotomies in primary teeth. Am J Dent 18(3):151-4.
Min K-S, Park H-J, Lee S-K, Park S-H, Hong C-U, Kim H-W, et al. (2008). Effect of Mineral Trioxide Aggregate on Dentin Bridge Formation and Expression of Dentin Sialoprotein and Heme Oxygenase-1 in Human Dental Pulp. Journal of Endodontics 34(6):666-670.
Mitchell DF, Shankwalker GB (1958). Osteogenic potential of calcium hydroxide and other materials in soft tissue and bone wounds. J Dent Res 37(6):1157-63.
Morawa AP, Straffon LH, Han SS, Corpron RE (1975). Clinical evaluation of pulpotomies using dilute formocresol. ASDC J Dent Child 42(5):360-3.
Moretti ABS, Sakai VT, Oliveira TM, Fornetti APC, Santos CF, Machado MAAM, et al. (2008). The effectiveness of mineral trioxide aggregate, calcium hydroxide and formocresol for pulpotomies in primary teeth: Blackwell Publishing Ltd, pp. 547-555.
Myers DR, Shoaf HK, Dirksen TR, Pashley DH, Whitford GM, Reynolds KE (1978). Distribution of 14C-formaldehyde after pulpotomy with formocresol. The Journal of the American Dental Association 96(5):805-813.
Naik S, Hegde AM (2005). Mineral trioxide aggregate as a pulpotomy agent in primary molars: An in vivo study. Journal of Indian Society of Pedodontics and Preventive Dentistry 23(1):13-16.
Nakashima M (1994). Induction of dentin formation on canine amputated pulp by recombinant human bone morphogenetic proteins (BMP)-2 and -4. Journal of Dental Research 73(9):1515-1522.
Osorio RM, Hefti A, Vertucci FJ, Shawley AL (1998). Cytotoxicity of endodontic materials. Journal of Endodontics 24(2):91-96.
Ozata F, Piskin B, Erdilek N, Aktener O, Tuncer AV (1987). Comparison of calcium hydroxide and formocresol pulpotomies in primary teeth in lambs: preliminary study. J Endod 13(7):328-35.
Pace R, Giuliani V, Pagavino G (2008). Mineral Trioxide Aggregate as Repair Material for Furcal Perforation: Case Series. Journal of Endodontics 34(9):1130-1133.
Peng L, Ye L, Tan H, Zhou X (2006). Evaluation of the formocresol versus mineral trioxide aggregate primary molar pulpotomy: a meta-analysis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 102(6):e40-e44.
Phaneuf RA, Frankl SN, Ruben MP (1968). A comparative histological evaluation of three calcium hydroxide preparations on the human primary dental pulp. J Dent Child 35(1):61-76.
Primosch RE, Glomb TA, Jerrell RG (1997). Primary tooth pulp therapy as taught in predoctoral pediatric dental programs in the United States. Pediatr Dent 19(2):118-22.
Pruhs RJ, Olen GA, Sharma PS (1977). Relationship between formocresol pulpotomies on primary teeth and enamel defects on their permanent successors. The Journal of the American Dental Association 94(4):698-700.
Ranly DM, Lazzari EP (1983). A biochemical study of two bifunctional reagents as alternatives to formocresol. J Dent Res 62(10):1054-7.
Ranly DM, Garcia-Godoy F, Horn D (1987). Time, concentration, and pH parameters for the use of glutaraldehyde as a pulpotomy agent: an in vitro study. Pediatr Dent 9(3):199-203.
Ranly DM, Horn D, Hubbard GB (1989). Assessment of the systemic distribution and toxicity of glutaraldehyde as a pulpotomy agent. Pediatr Dent 11(1):8-13.
Ranly DM, Garcia-Godoy F (2000). Current and potential pulp therapies for primary and young permanent teeth. Journal of Dentistry 28(3):153-161.
Rivera N, Reyes E, Mazzaoui S, Morón A (2003). Pulpal Therapy for Primary Teeth: Formocresol vs Electrosurgery: A Clinical Study. Journal of Dentistry for Children 70:71-73.
Rodd HD, Waterhouse PJ, Fuks AB, Fayle SA, Moffat MA (2006). Pulp therapy for primary molars. International Journal of Paediatric Dentistry 16:15-23.
Rosenfeld EF, James GA, Burch BS (1978). Vital pulp tissue response to sodium hypochlorite. Journal of Endodontics 4(5):140-146.
Ruemping DR, Morton TH, Jr., Anderson MW (1983). Electrosurgical pulpotomy in primates--a comparison with formocresol pulpotomy. Pediatr Dent 5(1):14-8.
Ruiz-Rubio M, Alejandre-Duran E, Pueyo C (1985). Oxidative mutagens specific for A-T base pairs induce forward mutations to L-arabinose resistance in Salmonella typhimurium. Mutat Res 147(4):153-63.
Rutherford RB, Wahle J, Tucker M, Rueger D, Charette M (1993). Induction of reparative dentine formation in monkeys by recombinant human osteogenic protein-1. Archives of Oral Biology 38(7):571-576.
s-Gravenmade EJ (1975). Some biochemical considerations of fixation in endodontics. J Endod 1(7):233-7.
Saidon J, He J, Zhu Q, Safavi K, Spngberg LSW (2003). Cell and tissue reactions to mineral trioxide aggregate and portland cement. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology & Endodontics 95(4):483-489.
Schroder U (1978). A 2-year follow-up of primary molars, pulpotomized with a gentle technique and capped with calcium hydroxide. Scand J Dent Res 86(4):273-8.
Schroder U, Szpringer-Nodzak M, Janicha J, Wacińska M, Budny J, Mlosek K (1987). A one-year follow-up of partial pulpotomy and calcium hydroxide capping in primary molars: Blackwell Publishing Ltd, pp. 304-306.
Shaw DW, Sheller B, Barrus BD, Morton TH, Jr. (1987). Electrosurgical pulpotomy--a 6-month study in primates. J Endod 13(10):500-5.
Sheller B, Morton Jr TH (1987). Electrosurgical pulpotomy: A pilot study in humans. Journal of Endodontics 13(2):69-76.
Shoji S, Nakamura M, Horiuchi H (1985). Histopathological changes in dental pulps irradiated by CO2 laser: a preliminary report on laser pulpotomy. J Endod 11(9):379-84.
Shulman ER, McIver FT, Burkes EJ, Jr. (1987). Comparison of electrosurgery and formocresol as pulpotomy techniques in monkey primary teeth. Pediatr Dent 9(3):189-94.
Shumayrikh NM, Adenubi JO (1999). Clinical evaluation of glutaraldehyde with calcium hydroxide and glutaraldehyde with zinc oxide eugenol in pulpotomy of primary molars. Dental Traumatology 15(6):259-264.
Sloan AJ, Smith AJ (2007). Stem cells and the dental pulp: potential roles in dentine regeneration and repair. Oral Diseases 13(2):151-157.
Smith NL, Seale NS, Nunn ME (2000). Ferric sulfate pulpotomy in primary molars: A retrospective study. Pediatric Dentistry 22(3):192-199.
Sonmez D, Sari S, Tugba T (2008). A Comparison of Four Pulpotomy Techniques in Primary Molars: A Long-term Follow-up. Journal of Endodontics 34(8):950-955.
Srinivasan V, Patchett CL, Waterhouse PJ (2006). Is there life after Buckley's Formocresol? Part I – A narrative review of alternative interventions and materials. International Journal of Paediatric Dentistry 16(2):117-127.
Straffon LH, Han SS (1968). The effect of formocresol on hamster connective tissue cells, a histologic and quantitative radioautographic study with proline-H3. Archives of Oral Biology 13(3):271-284, IN11-IN12, 285-286, IN13-IN14, 287-288, IN15.
Subramaniam P, Konde S, Mathew S, Sugnani S (2009). Mineral trioxide aggregate as pulp capping agent for primary teeth pulpotomy: 2 year follow up study. J Clin Pediatr Dent 33(4):311-4.
Sue Seale N, Coll JA (2010). Vital pulp therapy for the primary dentition. General Dentistry 58(3):194-200.
Sun HW, Feigal RJ, Messer HH (1990). Cytotoxicity of glutaraldehyde and formaldehyde in relation to time of exposure and concentration. Pediatric Dentistry 12(5):303-307.
Torabinejad M, Hong CU, Lee SJ, Monsef M, Pitt Ford TR (1995a). Investigation of mineral trioxide aggregate for root-end filling in dogs. Journal of Endodontics 21(12):603-608.
Torabinejad M, Hong CU, McDonald F, Pitt Ford TR (1995b). Physical and chemical properties of a new root-end filling material. Journal of Endodontics 21(7):349-353.
Torabinejad M, Hong CU, Pitt Ford TR, Kettering JD (1995c). Cytotoxicity of four root end filling materials. Journal of Endodontics 21(10):489-492.
Torabinejad M, Pitt Ford TR, McKendry DJ, Abedi HR, Miller DA, Kariyawasam SP (1997). Histologic assessment of mineral trioxide aggregate as a root-end filling in monkeys. Journal of Endodontics 23(4):225-228.
Torabinejad M, Chivian N (1999). Clinical applications of mineral trioxide aggregate. Journal of Endodontics 25(3):197-205.
Tronstad L, Andreasen JO, Hasselgren G, Kristerson L, Riis I (1981). pH changes in dental tissues after root canal filling with calcium hydroxide. J Endod 7(1):17-21.
Tunc ES, Saroglu I, SarI S, Gunhan O (2006). The effect of sodium hypochlorite application on the success of calcium hydroxide pulpotomy in primary teeth. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology 102(2):e22-e26.
Vargas KG, Packham B, Lowman D (2006). Preliminary Evaluation of Sodium Hypochlorite for Pulpotomies in Primary Molars. Pediatric Dentistry 28:511-517.
Vij R, Coll JA, Shelton P, Farooq NS (2004). Caries Control and Other Variables Associated With Success of Primary Molar Vital Pulp Therapy. Pediatric Dentistry 26(214-220.
Waterhouse PJ, Nunn JH, Whitworth JM (2000). Paediatric dentistry: An investigation of the relative efficacy of Buckley's Formocresol and calcium hydroxide in primary molar vital pulp therapy. Br Dent J 188(1):32-36.
Wilder-Smith P, Peavy GM, Nielsen D, Arrastia-Jitosho A-M (1997). CO2 laser treatment of traumatic pulpal exposures in dogs: John Wiley & Sons, Inc., pp. 432-437.
Wilkerson MK, Hill SD, Arcoria CJ (1996). Effects of the argon laser on primary tooth pulpotomies in swine. J Clin Laser Med Surg 14(1):37-42.
Wu MK, Wang ME, Chang SP (1989). Antibody formation to dog pulp tissue altered by a paste containing paraformaldehyde. International Endodontic Journal 22(3):133-137.
Zander HA (1939). Reaction of the Pulp to Calcium Hydroxide. Journal of Dental Research 18(4):373-379.
Zealand CM, Briskie DM, Botero TM (2010). Comparing Gray Mineral Trioxide Aggregate and Diluted Formocresol in Pulpotomized Human Primary Molars. Pediatric Dentistry 32:393-399.
Zurn D, Seale SN (2008). Light-cured Calcium Hydroxide vs Formocresol in Human Primary Molar Pulpotomies: A Randomized Controlled Trial. Pediatric Dentistry 30:34-41.
行政院衛生署:台灣地區6歲以下兒童口腔狀況,行政院衛生署九十四年度委託研究計畫保健工作研究報告,2005。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24442-
dc.description.abstract在乳牙因蛀牙產生牙髓發炎情況時,冠髓切除術(pulpotomy)是臨床上最常使用的治療方式。而五倍稀釋的Formocresol(diluted FC,DFC)是目前最廣泛應用於乳牙冠髓治療的材料,但由於FC化學成分的致癌性以及造成牙根內吸收併發症等問題,使其在臨床治療使用上產生疑慮。MTA為1993年研發的生醫材料,具有優異的生物相容性及良好的封閉能力,於恆牙活髓治療應用時可以促進組織癒合及誘導硬組織的形成,被認為具有潛力取代FC應用於乳牙冠髓切除術。因此,本研究應用臨床隨機試驗的研究方法,比較使用MTA和DFC在人類乳臼齒冠髓切除術的臨床與放射學治療結果,評估MTA是否可以取代FC成為人類乳臼齒進行冠髓切除術的常規治療術式。本研究招募自2009年12月至2010年12月期間,於臺灣大學附設醫院兒童牙科進行治療,年齡介於2.8至6.8歲之42位健康孩童,共94顆乳臼齒,以隨機分配使用灰色MTA(Grey MTA,GMTA)或DFC進行冠髓切除術;所有的治療步驟與結果分析方法均遵循臨床試驗研究倫理的規範。研究結果顯示術後3個月追蹤回診率為93%,6個月追蹤回診率為82%。所有的牙齒在回診時均未出現臨床病理症狀,兩組的臨床治療成功率為100%。在3個月追蹤時, GMTA組的放射學成功率為98%,DFC組為85%,其差異具有統計上的意義(p=0.045);而6個月追蹤時,兩組的放射學成功率無統計顯著差異(p=0.24),GMTA組為95%,DFC組為86%。在不同回診期間,兩組大部份樣本的放射學影像沒有明顯變化(3個月:GMTA為51%,DFC為67%;6個月;GMTA為43%,DFC為49%),且兩組間也無顯著差異;而出現牙本質屏障影像的樣本多為GMTA組,兩組間的差異具有統計意義(p < 0.01);至於根管鈣化和牙根外吸收的情形在兩個治療組別都有表現,兩組間無顯著差異;另外,DFC組約有15%的樣本出現牙根內吸收與牙根外吸收等放射線病理影像,略高於GMTA組(<5%),但無顯著差異。根據多變項名義邏輯回歸模型分析可能的結果預測因子變項與放射學評估分數間的關係結果顯示,受試者的性別、年齡、牙齒的左右位置、乳臼齒的種類以及受試者的合作度等變項並不會影響放射學評估結果,而所使用的治療材料、牙弓位置、與操作者則對放射學評估分數有所影響。而使用類別邏輯回歸模型分析治療材料與放射學評估分數之間的關係,結果顯示無論在3個月或6個月回診時,與DFC組相比較,GMTA組有較高的機會出現較低的放射學評估分數,其勝算比在3個月為3.81(p= 0.003),6個月為3.40(p=0.006),意即GMTA組有較高的機會出現較理想的放射學預後。綜合本研究結果,雖然使用GMTA與DFC進行乳牙冠髓切除術在臨床成功率表現沒有顯著差異,但再放射學成功率與放射學影像變化方面,則可發現GMAT組明顯優於DFC組。因此GMTA應具有潛力取代DFC成為乳臼齒冠髓治療的材料,不過此一論點仍需更多樣本的臨床試驗與更長的追蹤觀察結果來加以佐證。zh_TW
dc.description.abstractPulpotomy is the most common treatment used for the carious primary teeth without radicular pulp involvement and formocresol (FC) is the most widely used medicament for this treatment. However, there are concerns associated with this medicament, primarily the carcinogenicity of the chemical and internal resorption of the treated tooth. Alternative pulp therapies have been investigated but none have been adopted as the current standard of care to replace FC. Recently, Mineral Trioxide Aggregate (MTA) has been reported as a potential material for pulp therapy of primary teeth because of its good sealing ability, excellent biocompatibility and the ability to actively promote hard tissue formation in vital pulp therapy of permanent teeth. The purpose of this study is prospectively assess the clinical and radiographic outcomes between gray MTA (GMTA) and DFC (dilute 20% Formocresol (DFC)) in pulpotomized human primary molars and evaluate if GMTA is a suitable replacement for FC in the pulpotomy of human primary molar teeth. To assess this goal, 94 primary molars from 2.5 to 6.8 year-old patients of Pediatric Dental Department of National Taiwan University Hospital were randomly assigned to GMTA group or DFC group. The recall rates at 3- and 6-month follow up were 93% and 82%, respectively. None of the treated teeth showed the signs of clinical failure within the follow-up periods. Clinical success was 100% in the both group. The radiographic success rate of GMTA group (98%) is significant higher than DFC (86%) group at 3-month follow-up (p=0.045). At 6-month follow-up, GMTA (95%) group showed a higher radiographic success than DFC (86%), but with no significant difference ( p=0.24). In both groups, most of treated teeth demonstrated no radopgraphic change either at 3-month or 6-month follow-up. More GMTA-treated teeth presented dentin bridge radiographically than DFC-treated teeth, and this difference between the two groups was statistically significant (p<0.05). Pulp canal obliteration and external root resorption were also observed in the both group. Internal root resoption without perforation or with perforation were only found in DFC group. Using the multinomial logistic model analysis, the investigated factors, “treatment material”, “arch type”, and “operator”, were found to influence the outcome of radiographic scores significantly (p<0.05). The analysis of ordinal logistic regression model showed that the GMTA-treated teeth were more likely to have lower scores than the DFC-treated teeth. The odds ratios of GMTA/DFC for lower to higher scores at 3-month follow-up and 6-month follow-up were 3.8 (p=0.003) and 3.4 (p=0.006), respectively. These results indicated that the GMTA pulpotomy revealed more favorable radiographic prognosis than the DFC pulpotomy. In conclusion, clinical success rate in both groups of GMTA and DFC was 100%, but statistically significant higher radiographic success and more favorable radiographic changes were found in GMTA group. Based on the results of this study, GMTA appears to be a potential replacement for FC as a pulpotomy agent in primary dentition. The further randomized clinical study with lager sample size and longer follow-up periods is needed to prove this point of view.en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:26:09Z (GMT). No. of bitstreams: 1
ntu-100-R97422010-1.pdf: 1495019 bytes, checksum: d48aeb02dcd7de9caef6c17479824709 (MD5)
Previous issue date: 2011
en
dc.description.tableofcontents謝誌……………………………………………………………I
中文摘要………………………………………………………II
英文摘要………………………………………………………IV
目錄..…………………………………………………………VI
圖次……………………………………………………………X
表次……………………………………………………………XI
英文縮寫與中文對照表………………………………………XIV
第一章 前言……………………………………………………1
第二章 文獻回顧………………………………………………3
第一節 活髓治療…………………………………………3
第二節 斷髓材料與技術…………………………………4
2.1 Formocresol的應用與現況…………………4
2.2 戊二醛………………………………………6
2.3 氫氧化鈣……………………………………7
2.4 電刀燒灼法…………………………………8
2.5 二氧化碳與Nd:YAG 雷射……………………9
2.6 硫酸鐵………………………………………9
2.7 冷凍乾燥骨…………………………………11
2.8 骨形成蛋白…………………………………11
2.9 次氯酸鈉……………………………………12
第三節 Mineral Trioxide Aggregate(MTA)…………13
3.1 MTA的發展……………………………………13
3.2 MTA應用於乳牙冠髓切除術…………………14
第三章 研究動機與目的………………………………………17
第四章 材料與方法……………………………………………18
第一節 研究對象…………………………………………18
1.1 受試者選擇…………………………………18
1.2 牙齒選擇標準……………..………………19
第二節 臨床試驗分組與操作……………………………20
2.1 臨床試驗前訓練……………………………20
2.2 隨機分配方式………………………………20
2.3 DFC與GMTA的製備…………………………20
2.4 臨床試驗器械組……………………………21
第三節 臨床治療流程……………………………………21
3.1 放射學影像的照射…………………………21
3.2 控制組(DFC)……………………………21
3.3 實驗組(MTA)……………………………22
第四節 追蹤回診及治療結果評估………………………22
  4.1 臨床評估……………………………………22
4.2 放射學評估…………………………………22
第五節 統計分析…………………………………………23
第五章 結果……………………………………………………25
第一節 受試者與樣本特性描述性統計結果……………25
1.1 年齡…………………………………………25
1.2 性別…………………………………………26
1.3 患者的治療合作程度………………………26
1.4 齒位…………………………………………26
1.5 治療醫師……………………………………27
1.6 牙髓組織狀態………………………………27
第二節 樣本特性之相關性分析…………………………28
2.1 性別與年齡…………………………………28
2.2 性別與受試者合作程度……………………28
2.3 性別與齒位……………………………………28
2.4 年齡與受試者合作程度………………………29
2.5 年齡與治療醫師………………………………29
2.6 其他……………………………………………29
第三節 回診檢查結果之差異性統計分析…………………30
3.1 三個月回診檢查結果…………………………30
3.2 六個月回診檢查結果…………………………31
3.3 九個月回診檢查結果…………………………33
第四節 邏輯回歸模型………………………………………34
4.1類別邏輯回歸(Multinomial logistic
regression)結果…………………………………34
4.2多變項名義邏輯回歸(Multinomial logistic
regression)結果…………………………………35
第五節 配對牙齒樣本之回診結果…………………………36
第六章 討論……………………………………………………38
第一節 研究樣本……………………………………………38
第二節 臨床治療效果………………………………………39
第三節 放射學治療效果……………………………………39
3.1 放射學影像變化………………………………39
3.2 放射學評估分數………………………………43
3.3 放射學結果……………………………………44
第四節 邏輯回歸分析………………………………………45
4.1類別邏輯回歸分析結果………………………45
4.2多變項名義邏輯回歸分析結果………………45
第五節 配對樣本分析………………………………………46
第六節 研究限制……………………………………………48
6.1 研究樣本收集…………………………………48
6.2 齲齒的診斷與治療過程………………………48
6.3 回診的評估與分析……………………………49
第七章 結論……………………………………………………51
參考文獻…………………………………………………………52

圖 次
圖一 FC臨床試驗器械組………………………………62
圖二 MTA臨床試驗器械組……………………………62
圖三 受試樣本分布圖…………………………………63
圖四 兩組術後6個月放射學影像無明顯變化(No change, NC).64
圖五 GMTA組術後6個月出現牙本質屏障(DB)…………………65
圖六 兩組術後6個月出現根管鈣化(PCO)…………66
圖七 DFC組術後追蹤出現牙根外吸收(ERR)………67
圖八 DFC組術後追蹤的放射學影像(IRR-NP)………68
圖九 GMTA組和DFC組在3個月回診追蹤時放射學評估分數出現機率之累積百分比………………………………………69
圖十 GMTA組和DFC組在6個月回診追蹤時放射學評估分數出現機率之累積百分比………………………………………70
圖十一 配對樣本之GMTA組和DFC組在3個月回診追蹤時放射學評估分數出現機率之累積百分比…………………………71
圖十二 配對樣本之GMTA組和DFC組在6個月回診追蹤時放射學評估分數出現機率之累積百分比…………………………72
表 次
Table 1 Clinical articles comparing MTA and FC pulpotomies………………………………………………………73
Table 2 Criteria for clinical scoring……………………………………………………………75
Table 3 Criteria for radiographic scoring……………………………………………………………76
Table 4 Univarite distribution of the investigated factors in the study population……………………………77
Table 5 Distribution of age(year) in the study population ……………………………………………………………………78
Table 6 Bivariate analysis of associations between the 'selected factors' and the 'material' in the study population………………………………………………………79
Table 7 Correlation of “Age” and “Gender” in the study population ………………………………………………83
Table 8 Crosstab of 'Gender' and 'Behavior ' in the study population………………………………………………………84
Table 9 Crosstab of 'Gender' and 'Tooth position ' in the study population………………………………………………85
Table 10 Crosstab of 'Gender' and 'Arch ' in the study population………………………………………………………85
Table 11 Crosstab of 'Gender' and 'Tooth type ' in the study population………………………………………………86
Table 12 Correlation of “Age” and “Behavior” in the study population………………………………………………87
Table 13 Correlation of 'Age' and 'Operator ' in the study population………………………………………………………88
Table 14 Clinical scores of the recalled teeth at follow-up…………………………………………………………………89
Table 15 Clinical outcomes of the recalled teeth at follow-up…………………………………………………………………89
Table 16 Bivariate analysis of association between “Radiographic findings” and “Materials” in the recalled teeth at 3-month follow-up…………………………………90
Table 17 Chi-squared test of radiographic scores in the recalled teeth at 3-month follow-up………………………91
Table 18 Radiographic outcomes of the recalled teeth at 3-month follow-up…………………………………………………91
Table 19 Bivariate analysis of association between “Radiographic findings” and “Materials” in the recalled teeth at 6-month follow-up…………………………………92
Table 20 Chi-squared test of radiographic scores in the recalled teeth at 6-month follow-up………………………93
Table 21 Radiographic outcomes of the recalled teeth at 6-month follow-up…………………………………………………93
Table 22 Bivariate analysis of association between “Radiographic findings” and “Materials” in the recalled teeth at 9-month follow-up…………………………………94
Table 23 Chi-squared test of radiographic scores in the recalled teeth at 9-month follow-up………………………95
Table 24 Radiographic outcomes of the recalled teeth at 9-month follow-up…………………………………………………95
Table 25 Ordinal logistic model of associations between 'Materials' and 'Radiographic scores' in the recalled teeth at 3-month follow-up………………………96
Table 26 Ordinal logistic model of associations between 'Materials' and 'Radiographic scores' in the recalled teeth at 6-month follow-up………………………96
Table 27 Multinomial regression model of associations between all investigated factors and radiographic scores in the recalled teeth at 3-month follow-up…………………97
Table 28 Multinomial regression model of associations between all investigated factors and radiographic scores in the recalled teeth at 6-month follow-up…………………98
Table 29 Simplify miltinomial regression model of associations between possible predictors and radiographic scores in the recalled teeth at 3-month follow-up…99
Table 30 Simplify miltinomial regression model of associations between possible predictors and radiographic scores in the recalled teeth at 6-month follow-up…100
Table 31 Clinical score of the recalled paired teeth at follow-up……………………………………………………101
Table 32 Clinical outcome of the recalled paired teeth at follow-up………………………………………………………101
Table 33 Bivariate analysis of association between “Radiographic findings” and “Materials” in the recalled paired teeth at 3-month follow-up………………………102
Table 34 Chi-squared test of radiographic scores in the recalled paired teeth at 3-month follow-up……………103
Table 35 Radiographic outcomes of the recalled paired teeth at 3-month follow up…………………………………103
Table 36 Bivariate analysis of association between “Radiographic findings” and“Materials” in the recalled paired teeth at 6-month follow-up…………………………104
Table 37 Chi-squared test of radiographic scores in the recalled paired teeth at 6-month follow-up……………105
Table 38 Radiographic outcomes of the recalled paired teeth at 6-month follow up……………………………………105
Table 39 Ordinal logistic model of associations between 'Materials' and 'Radiographic scores' in the recalled paired teeth at 3-month follow-up………………106
Table 40 Ordinal logistic model of associations between 'Materials' and 'Radiographic scores' in the recalled paired teeth at 6-month follow-up………………106
dc.language.isozh-TW
dc.titleMTA與DFC對於乳牙冠髓切除術治療療效評估之臨床試驗研究zh_TW
dc.titleComparison of Mineral Trioxide Aggregate and 20% Formocresol in Pulpotomized Human Primary Molarsen
dc.typeThesis
dc.date.schoolyear99-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭敏光,張曉華,劉正芬
dc.subject.keywordFormocresol,Mineral Trioxide aggregate,冠髓切除術,乳臼齒,臨床隨機試驗,zh_TW
dc.subject.keywordFormocresol,Mineral Trioxide aggregate,pulpotomy,primary molar,randomized clinical trial,en
dc.relation.page106
dc.rights.note未授權
dc.date.accepted2011-07-28
dc.contributor.author-college牙醫專業學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-100-1.pdf
  目前未授權公開取用
1.46 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved