請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24420
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 楊健志(Chien-Chih Yang) | |
dc.contributor.author | Chi-Tui Shih | en |
dc.contributor.author | 石琦瑞 | zh_TW |
dc.date.accessioned | 2021-06-08T05:25:21Z | - |
dc.date.copyright | 2011-08-05 | |
dc.date.issued | 2011 | |
dc.date.submitted | 2011-07-27 | |
dc.identifier.citation | 參考文獻
林秋宏 (2001) 綠竹筍蔗糖合成酶 cDNA 之選殖與檢定 國立臺灣大學農業化學研究所碩士論文. 曾永祥 (2002) 綠竹不同生長階段之基因表現分析 國立臺灣大學微生物與生化學研究所碩士論文. 戴伶如 (2005) 綠竹筍細胞分裂素受體 cDNA 之選殖與分析 國立臺灣大學微生物與生化學研究所碩士論文. 葉勝雄 (2005) 未發表. 葉佳佳 (2007) 綠竹筍細胞分裂素受體 cDNA 之選殖與表現 國立臺灣大學微生物與生化學研究所碩士論文. 高艾玲 (2009) 阿拉伯芥AtMAPRs之分子特性研究 國立臺灣大學微生物與生化學研究所博士論文. 邱珮琦 (2010) 泛素化修飾分析方法之再探討 國立臺灣大學微生物與生化學研究所碩士論文. 郭巡銓 (2010) 阿拉伯芥中與ARGONAUTE有潛在交互作用之蛋白質研究 國立臺灣大學微生物與生化學研究所碩士論文. Ausubel, F.M., Brent, R., Kingston, R. E., Moore, D. D., Seidman, J. G., Smith, J. A., and Struhl, K. (1987). Current Protocols in Molecular Biology. John Wiley & Sons, Inc, New York. Bassil, N.V., Mok, D. & Mok, M.C. (1993) Partial Purification of a cis-trans-Isomerase of Zeatin from Immature Seed of Phaseolus vulgaris L. Plant Physiol, 102, 867-872. Barciszewski, J., Massino, F., and Clark, B.F. (2007). Kinetin--a multiactive molecule. International Journal of Biological Macromolecules , 40, 182-192. Benjamins, R. & Scheres, B. (2008) Auxin: the looping star in plant development. Annu Rev Plant Biol, 59, 443-465. Calderon-Villalobos, L.I., Tan, X., Zheng, N. & Estelle, M. (2010) Auxin perception--structural insights. Cold Spring Harb Perspect Biol, 2, a005546. Chatfield, J.M. & Armstrong, D.J. (1986) Regulation of Cytokinin Oxidase Activity in Callus Tissues of Phaseolus vulgaris L. cv Great Northern. Plant Physiol, 80, 493-499. Dello Ioio, R., Linhares, F.S., Scacchi, E., Casamitjana-Martinez, E., Heidstra, R., Costantino, P. & Sabatini, S. (2007) Cytokinins determine Arabidopsis root-meristem size by controlling cell differentiation. Curr Biol, 17, 678-682. Dello Ioio, R., Nakamura, K., Moubayidin, L., Perilli, S., Taniguchi, M., Morita, M.T., Aoyama, T., Costantino, P. & Sabatini, S. (2008) A genetic framework for the control of cell division and differentiation in the root meristem. Science, 322, 1380-1384. Dettmer, J., Elo, A. & Helariutta, Y. (2009) Hormone interactions during vascular development. Plant Mol Biol, 69, 347-360. Dortay, H., Mehnert, N., Burkle, L., Schmulling, T. & Heyl, A. (2006) Analysis of protein interactions within the cytokinin-signaling pathway of Arabidopsis thaliana. FEBS J, 273, 4631-4644. Emery, R.J.N., Leport, L., Barton, J.E., Turner, N.C. & Atkins, C.A. (1998) cis-Isomers of cytokinins predominate in chickpea seeds throughout their development. Plant Physiol, 117, 1515-1523. Entsch, B., Parker, C.W. & Letham, D.S. (1983) An Enzyme from Lupin Seeds Forming Alanine Derivatives of Cytokinins. Phytochem, 22, 375-381. Ferreira, F.J. & Kieber, J.J. (2005) Cytokinin signaling. Curr Opin Plant Biol, 8, 518-525. Frebort, I., Kowalska, M., Hluska, T., Frebortova, J. & Galuszka, P. (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot, 62, 2431-2452. Frebortova, J., Fraaije, M.W., Galuszka, P., Sebela, M., Pec, P., Hrbac, J., Novak, O., Bilyeu, K.D., English, J.T. & Frebort, I. (2004) Catalytic reaction of cytokinin dehydrogenase: preference for quinones as electron acceptors. Biochem J, 380, 121-130. Galuszka, P., Frebort, I., Sebela, M., Sauer, P., Jacobsen, S. & Pec, P. (2001) Cytokinin oxidase or dehydrogenase? Mechanism of cytokinin degradation in cereals. Eur J Biochem, 268, 450-461. Galuszka, P., Popelkova, H., Werner, T., Frebortova, J., Pospisilova, H., Mik, V., Kollmer, I., Schmulling, T. & Frebort, I. (2007) Biochemical characterization of cytokinin Oxidases/Dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J Plant Growth Regul, 26, 255-267. Giulini, A., Wang, J. & Jackson, D. (2004) Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature, 430, 1031-1034. Gonzalez-Rizzo, S., Crespi, M. & Frugier, F. (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell, 18, 2680-2693. Hamant, O., Nogue, F., Belles-Boix, E., Jublot, D., Grandjean, O., Traas, J. & Pautot, V. (2002) The KNAT2 homeodomain protein interacts with ethylene and cytokinin signaling. Plant Physiol, 130, 657-665. Hanano, S., Domagalska, M.A., Nagy, F. & Davis, S.J. (2006) Multiple phytohormones influence distinct parameters of the plant circadian clock. Genes Cells, 11, 1381-1392. Heyl, A., Riefler, M., Romanov, G.A. & Schmulling, T. (2011) Properties, functions and evolution of cytokinin receptors. Eur J Cell Biol. In Press, Corrected Proof. Heyl, A. & Schmulling, T. (2003) Cytokinin signal perception and transduction. Curr Opin Plant Biol, 6, 480-488. Heyl, A., Wulfetange, K., Pils, B., Nielsen, N., Romanov, G.A. & Schmulling, T. (2007) Evolutionary proteomics identifies amino acids essential for ligand-binding of the cytokinin receptor CHASE domain. BMC Evol Biol, 7, 62. Higuchi, M., Pischke, M.S., Mahonen, A.P., Miyawaki, K., Hashimoto, Y., Seki, M., Kobayashi, M., Shinozaki, K., Kato, T., Tabata, S., Helariutta, Y., Sussman, M.R. & Kakimoto, T. (2004) In planta functions of the Arabidopsis cytokinin receptor family. Proc Natl Acad Sci U S A, 101, 8821-8826. Hou, B.K., Lim, E.K., Higgins, G.S. & Bowles, D.J. (2004) N-glucosylation of cytokinins by glycosyltransferases of Arabidopsis thaliana. J Biol Chem, 279, 47822-47832. Hwang, I. & Sheen, J. (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature, 413, 383-389. Imamura, A., Yoshino, Y. & Mizuno, T. (2001) Cellular localization of the signaling components of Arabidopsis His-to-Asp phosphorelay. Biosci Biotech Bioch, 65, 2113-2117. Inoue, T., Higuchi, M., Hashimoto, Y., Seki, M., Kobayashi, M., Kato, T., Tabata, S., Shinozaki, K. & Kakimoto, T. (2001) Identification of CRE1 as a cytokinin receptor from Arabidopsis. Nature, 409, 1060-1063. Jackson, D., Lee, B.H., Johnston, R., Yang, Y., Gallavotti, A., Kojima, M., Travencolo, B.A.N., Costa, L.D. & Sakakibara, H. (2009) Studies of aberrant phyllotaxy1 mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Plant Physiol, 150, 205-216. Jaillais, Y. & Chory, J. (2010) Unraveling the paradoxes of plant hormone signaling integration. Nat Struct Mol Biol, 17, 642-645. Jasinski, S., Piazza, P., Craft, J., Hay, A., Woolley, L., Rieu, I., Phillips, A., Hedden, P. & Tsiantis, M. (2005) KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Current Biology, 15, 1560-1565. Kakimoto, T. (2003) Perception and signal transduction of cytokinins. Annu Rev Plant Biol, 54, 605-627. Kamada-Nobusada, T. & Sakakibara, H. (2009) Molecular basis for cytokinin biosynthesis. Phytochem, 70, 444-449. Kiba, T., Aoki, K., Sakakibara, H. & Mizuno, T. (2004) Arabidopsis response regulator, ARR22, ectopic expression of which results in phenotypes similar to the wol cytokinin-receptor mutant. Plant Cell Physiol, 45, 1063-1077. Kieber, J.J., Punwani, J.A., Hutchison, C.E. & Schaller, G.E. (2010) The subcellular distribution of the Arabidopsis histidine phosphotransfer proteins is independent of cytokinin signaling. Plant Journal, 62, 473-482. Kim, H.J., Ryu, H., Hong, S.H., Woo, H.R., Lim, P.O., Lee, I.C., Sheen, J., Nam, H.G. & Hwang, I. (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci USA, 103, 814-819. Kowalska, M., Galuszka, P., Frebortova, J., Sebela, M., Beres, T., Hluska, T., Smehilova, M., Bilyeu, K.D. & Frebort, I. (2010) Vacuolar and cytosolic cytokinin dehydrogenases of Arabidopsis thaliana: heterologous expression, purification and properties. Phytochem, 71, 1970-1978. Krall, L., Raschke, M., Zenk, M.H. & Baron, C. (2002) The Tzs protein from Agrobacterium tumefaciens C58 produces zeatin riboside 5 '-phosphate from 4-hydroxy-3-methyl-2-(E)-butenyl diphosphate and AMP. Febs Lett, 527, 315-318. Kurakawa, T., Ueda, N., Maekawa, M., Kobayashi, K., Kojima, M., Nagato, Y., Sakakibara, H. & Kyozuka, J. (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature, 445, 652-655. Lee, P.D., and Su, J.C (1970) Cytokinin activity of bamboo shoot soluble RNA. J.Chinese Agric. Chem. Soc., Sp. Iss, 54-64. Leibfried, A., To, J.P.C., Busch, W., Stehling, S., Kehle, A., Demar, M., Kieber, J.J. & Lohmann, J.U. (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature, 438, 1172-1175. Letham, D.S. (1963) Zeatin, a factor Inducing cell division isolated from Zea mays. Life Sci, 8, 569-573. Lin W. (1958). Studies on the growth of bamboo species in Taiwan. Taipei, Taiwan: Bulletin of Taiwan Forestry Institute. Mahonen, A.P., Bishopp, A., Higuchi, M., Nieminen, K.M., Kinoshita, K., Tormakangas, K., Ikeda, Y., Oka, A., Kakimoto, T. & Helariutta, Y. (2006a) Cytokinin signaling and its inhibitor AHP6 regulate cell fate during vascular development. Science, 311, 94-98. Mahonen, A.P., Higuchi, M., Tormakangas, K., Miyawaki, K., Pischke, M.S., Sussman, M.R., Helariutta, Y. & Kakimoto, T. (2006b) Cytokinins regulate a bidirectional phosphorelay network in Arabidopsis. Curr Biol, 16, 1116-1122. Marina, A., Waldburger, C.D. & Hendrickson, W.A. (2005) Structure of the entire cytoplasmic portion of a sensor histidine-kinase protein. EMBO J, 24, 4247-4259. Martin, R.C., Mok, M.C., Shaw, G. & Mok, D.W. (1989) An enzyme mediating the conversion of zeatin to dihydrozeatin in phaseolus embryos. Plant Physiol, 90, 1630-1635. Melcher, K., Ng, L.M., Zhou, X.E., Soon, F.F., Xu, Y., Suino-Powell, K.M., Park, S.Y., Weiner, J.J., Fujii, H., Chinnusamy, V., Kovach, A., Li, J., Wang, Y., Peterson, F.C., Jensen, D.R., Yong, E.L., Volkman, B.F., Cutler, S.R., Zhu, J.K. & Xu, H.E. (2009) A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature, 462, 602-608. Miller, C.O., Skoog, F., Vonsaltza, M.H. & Strong, F.M. (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc, 77, 1392-1392. Miyazono, K., Miyakawa, T., Sawano, Y., Kubota, K., Kang, H.J., Asano, A., Miyauchi, Y., Takahashi, M., Zhi, Y., Fujita, Y., Yoshida, T., Kodaira, K.S., Yamaguchi-Shinozaki, K. & Tanokura, M. (2009) Structural basis of abscisic acid signalling. Nature, 462, 609-614. Mok, D.W. & Mok, M.C. (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol, 52, 89-118. Mok, M.C., Mok, D.W. & Armstrong, D.J. (1978) Differential cytokinin structure-activity relationships in phaseolus. Plant Physiol, 61, 72-75. Mok, M.C., Mok, D.W.S., Dixon, S.C., Armstrong, D.J. & Shaw, G. (1982) Cytokinin structure-activity-relationships and the metabolism of N-6-(Delta-2-Isopentenyl) adenosine-8-C-14 in phaseolus callus tissues. Plant Physiol, 70, 173-178. Murase, K., Hirano, Y., Sun, T.P. & Hakoshima, T. (2008) Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature, 456, 459-463. Murray, J.D., Karas, B.J., Sato, S., Tabata, S., Amyot, L. & Szczyglowski, K. (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science, 315, 101-104. Nam, H.G., Lim, P.O. & Kim, H.J. (2007) Leaf senescence. Ann Rev Plant Biol, 58, 115-136. Nishimura, C., Ohashi, Y., Sato, S., Kato, T., Tabata, S. & Ueguchi, C. (2004) Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in Arabidopsis. Plant Cell, 16, 1365-1377. Papon, N., Vansiri, A., Gantet, P., Chenieux, J.C., Rideau, M. & Creche, J. (2004) Histidine-containing phosphotransfer domain extinction by RNA interference turns off a cytokinin signalling circuitry in Catharanthus roseus suspension cells. Febs Lett, 558, 85-88. Quesnelle, P.E. & Emery, R.J.N. (2007) cis-Cytokinins that predominate in Pisum sativum during early embryogenesis will accelerate embryo growth in vitro. Can J Bot, 85, 91-103. Rashotte, A.M., Carson, S.D., To, J.P. & Kieber, J.J. (2003) Expression profiling of cytokinin action in Arabidopsis. Plant Physiol, 132, 1998-2011. Rashotte, A.M., Mason, M.G., Hutchison, C.E., Ferreira, F.J., Schaller, G.E. & Kieber, J.J. (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci U S A, 103, 11081-11085. Reinhardt, D., Mandel, T. & Kuhlemeier, C. (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell, 12, 507-518. Riefler, M., Novak, O., Strnad, M. & Schmulling, T. (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell, 18, 40-54. Rupp, H.M., Frank, M., Werner, T., Strnad, M. & Schmulling, T. (1999) Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem. Plant J, 18, 557-563. Sakakibara, H., Kasahara, H., Ueda, N., Kojima, M., Takei, K., Hishiyama, S., Asami, T., Okada, K., Kamiya, Y., Yamaya, T. & Yamaguchi, S. (2005) Agrobacterium tumefaciens increases cytokinin production in plastids by modifying the biosynthetic pathway in the host plant. Proc Natl Acad Sci U S A, 102, 9972-9977. Salome, P.A., To, J.P., Kieber, J.J. & McClung, C.R. (2006) Arabidopsis response regulators ARR3 and ARR4 play cytokinin-independent roles in the control of circadian period. Plant Cell, 18, 55-69. Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S.Y., Jamin, M., Cutler, S.R., Rodriguez, P.L. & Marquez, J.A. (2009) The abscisic acid receptor PYR1 in complex with abscisic acid. Nature, 462, 665-668. Schmitz, R.Y. & Skoog, F. (1972) Cytokinins: synthesis and biological activity of geometric and position isomers of zeatin. Plant Physiol, 50, 702-705. Shantz, E.M. & Steward, F.C. (1955) The identification of compound-a from coconut milk as 1,3-diphenylurea. J Am Chem Soc, 77, 6351-6353. Spichal, L., Rakova, N.Y., Riefler, M., Mizuno, T., Romanov, G.A., Strnad, M. & Schmulling, T. (2004) Two cytokinin receptors of Arabidopsis thaliana, CRE1/AHK4 and AHK3, differ in their ligand specificity in a bacterial assay. Plant and Cell Physiology, 45, 1299-1305. Suzuki, T., Miwa, K., Ishikawa, K., Yamada, H., Aiba, H. & Mizuno, T. (2001) The Arabidopsis sensor His-kinase, AHK4, can respond to cytokinins. Plant Cell Physiol, 42, 107-113. Takahashi, S., Shudo, K., Okamoto, T., Yamada, K. & Isogai, Y. (1978) Cytokinin Activity of N-Phenyl-N'-(4-Pyridyl)Urea Derivatives. Phytochem, 17, 1201-1207. Takei, K., Sakakibara, H. & Sugiyama, T. (2001) Identification of genes encoding adenylate isopentenyltransferase, a cytokinin biosynthesis enzyme, in Arabidopsis thaliana. J Biol Chem, 276, 26405-26410. Tan, X., Calderon-Villalobos, L.I., Sharon, M., Zheng, C., Robinson, C.V., Estelle, M. & Zheng, N. (2007) Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature, 446, 640-645. Terauchi, R. & Kahl, G. (2000) Rapid isolation of promoter sequences by TAIL-PCR: the 5’-flanking regions of Pal and Pgi genes from yams (Dioscorea). Mol Gen Genet, 263, 554-560. Tirichine, L., Sandal, N., Madsen, L.H., Radutoiu, S., Albrektsen, A.S., Sato, S., Asamizu, E., Tabata, S. & Stougaard, J. (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science, 315, 104-107. Tucker, M.R. & Laux, T. (2007) Connecting the paths in plant stem cell regulation. Trends Cell Biol, 17, 403-410. Turner, J.E., Mok, D.W., Mok, M.C. & Shaw, G. (1987) Isolation and partial purification of an enzyme catalyzing the formation of O-xylosylzeatin in Phaseolus vulgaris embryos. Proc Natl Acad Sci U S A, 84, 3714-3717. Ueda K (1960). Studes on the physiology of bamboo; with reference to practical application.In. Forests Bulletin 30. Kyoto, Japan: Kyoto university Ueguchi, C., Koizumi, H., Suzuki, T. & Mizuno, T. (2001) Novel family of sensor histidine kinase genes in Arabidopsis thaliana. Plant Cell Physiol, 42, 231-235. Van Montagu, M.C.E., Pertry, I., Vaclavikova, K., Depuydt, S., Galuszka, P., Spichal, L., Temmerman, W., Stes, E., Schmulling, T., Kakimoto, T., Strnad, M., Holsters, M., Tarkowski, P. & Vereecke, D. (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci USA, 106, 929-934. Vyroubalova, S., Vaclavikova, K., Tureckova, V., Novak, O., Smehilova, M., Hluska, T., Ohnoutkova, L., Frebort, I. & Galuszka, P. (2009) Characterization of new maize genes putatively involved in cytokinin metabolism and their expression during osmotic stress in relation to cytokinin levels. Plant Physiol, 151, 433-447. Werner, T., Motyka, V., Laucou, V., Smets, R., Van Onckelen, H. & Schmulling, T. (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell, 15, 2532-2550. Whitty, C.D. & Hall, R.H. (1974) A cytokinin oxidase in Zea mays. Can J Biochem, 52, 789-799. Wicks, R.J. (1986). RNA molecular weight determination by agarose gel electrophoresis using formaldehyde as denaturant: comparison of RNA and DNA molecular weight markers. Int J Biochem 18, 277-278. Wulfetange, K., Saenger, W., Schmulling, T. & Heyl, A. (2011) E. coli-based cell-free expression, purification and characterization of the membrane-bound ligand-binding CHASE-TM domain of the cytokinin receptor CRE1/AHK4 of Arabidopsis thaliana. Mol Biotechnol, 47, 211-219. Xie, D.X., Yan, J.B., Zhang, C., Gu, M., Bai, Z.Y., Zhang, W.G., Qi, T.C., Cheng, Z.W., Peng, W., Luo, H.B., Nan, F.J. & Wang, Z. (2009) The Arabidopsis CORONATINE INSENSITIVE1 Protein Is a Jasmonate Receptor. Plant Cell, 21, 2220-2236. Yamada, H., Suzuki, T., Terada, K., Takei, K., Ishikawa, K., Miwa, K., Yamashino, T. & Mizuno, T. (2001) The Arabidopsis AHK4 histidine kinase is a cytokinin-binding receptor that transduces cytokinin signals across the membrane. Plant Cell Physiol, 42, 1017-1023. Yan, N., Yin, P., Fan, H., Hao, Q., Yuan, X.Q., Wu, D., Pang, Y.X., Yan, C.Y., Li, W.Q. & Wang, J.W. (2009) Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol, 16, 1230-U1242. Yanai, O., Shani, E., Dolezal, K., Tarkowski, P., Sablowski, R., Sandberg, G., Samach, A. & Ori, N. (2005) Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr Biol, 15, 1566-1571. Yonekura-Sakakibara, K., Kojima, M., Yamaya, T. & Sakakibara, H. (2004) Molecular characterization of cytokinin-responsive histidine kinases in maize. Differential ligand preferences and response to cis-zeatin. Plant Physiol, 134, 1654-1661. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24420 | - |
dc.description.abstract | 綠竹具生長快速的特性,此現象可能與細胞分裂素的生理特性有關。前人經由綠竹 cDNA 庫篩選到兩個推定為細胞分裂素受體基因 (CRE, cytokinin response element),分別為 BoCRE1 和 BoCRE2p,然而所得到的 BoCRE1 和 BoCRE2p 與阿拉伯芥或水稻之 CRE 相比,少了 N 端的部分序列,因此為了獲得 BoCRE1 和 BoCRE2p 之完整序列,故以 TAIL-PCR、5’-RACE、及 RT-PCR 進行 5’端序列之延長。序列比對結果顯示,BoCRE1 的初級序列與水稻的 OsCRE1 相似,而 BoCRE2p 的初級序列與 ZmHK 相似,但 BoCRE2p 缺少 histidine kinase (HK) 和 receiver domain (RD)。為了後續可以進行 BoCRE1 之生化研究,利用大腸桿菌 BL21(DE3) 表現不同長度的 BoCRE1,分別為 HK、 RD,和 HKRD 進行重組蛋白質表現。目前發現 HK 及 HKRD 的重組蛋白質會分布在不溶體。而 RD 則分布在可溶部份,並將其進行蛋白質純化,作為抗原免疫小鼠生產多株抗體。另一方面,為驗證 BoCRE2p 在綠竹中的身分,以 3’-RACE 確認其轉譯終止碼,並以 BoCRE1 和 BoCRE2p 保守性序列設計探針進行北方墨點法,觀察這兩個基因在 RNA 層次的表現情形,並以 real-time PCR 偵測綠竹筍出土前後 BoCRE1 和 BCRE2p 的表現差異,發現 BoCRE1 在出土後基部和頂部表現量會有明顯差異,而 BoCRE2p 在出土後中部表現量也會有明顯差異。 | zh_TW |
dc.description.abstract | Bambusa oldhamii is characterized by its fast growth. This feature might relate to physiological role of cytokinin. Two putative cytokinin receptors genes (CRE, cytokinin response element) are cloned from bamboo cDNA library, designated as BoCRE1 and BoCRE2p. However, both genes lack the DNA fragment encoding the N-terminal sequences by comparing with CRE1 from other species, such as rice and Arabidopsis.
To obtain the full-length cDNA encoding BoCRE1 and BoCRE2p, TAIL-PCR, 5’-RACE and RT-PCR were used to amplify the fragment of the 5’-end. The deduced protein sequences of BoCRE1 is similar to the OsCRE1. The deduced protein sequences of BoCRE2p is more similar to the ZmHK, but lacks of histidine kinase (HK) and receiver domain (RD). In an attempt to analyze BoCRE1 biochemical properties, recombanant protein of HK, RD and the HKRD domains were heterologously expressed in BL21(DE3). Recombinant HK and HKRD were expressed in inclusion bodies, whereas recombinant RD was expressed in soluble fraction. Polyclonal antibody against purified recombinant RD was prepared. To confirm the identity of BoCRE2p in Bambusa oldhamii, 3’-RACE were employed to identify the stop codon. Probes designed based on the conserved sequences of BoCRE1 and BoCRE2p were prepared for Northern blot analysis to determine RNA expression level of these genes. The expression profiles of these two genes in the different bamboo tissues and the different growth stages were analyzed by quantitative real-time PCR. The levels of BoCRE1 mRNA showed significant changes in the base and the top regions of bamboo at different growth stages, whereas the levels of BoCRE2p mRNA showed significant changes in the middle regions at different growth stages. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:25:21Z (GMT). No. of bitstreams: 1 ntu-100-R98b47215-1.pdf: 26101560 bytes, checksum: 2dfcd5241e7d1581e9105a9aa9c366cb (MD5) Previous issue date: 2011 | en |
dc.description.tableofcontents | 目錄 I
縮寫表 IV 摘要 VI Abstract VII 目錄 第一章 緒論 1 1.1 綠竹簡介 1 1.2 細胞分裂素簡介 2 1.2.1 細胞分裂素 2 1.2.2 細胞分裂素生合成及降解 4 1.3 細胞分裂素訊息傳遞路徑 6 1.3.1 二元傳遞系統 6 1.3.2 細胞分裂素訊息傳遞路徑成員相關研究 7 1.3.2.1 細胞分裂素受體 7 1.3.2.2 組胺酸磷酸根傳遞蛋白質 9 1.3.2.3 反應調控因子 10 1.3.2.4 細胞分裂素反應因子 10 1.4 細胞分裂素受體3D結構之研究 11 1.5 細胞分裂素參與植物生理調控 12 1.5.1 細胞分裂素調控芽之發育 12 1.5.2 細胞分裂素與根部維管束發育 13 1.5.3 細胞分裂素與根發育 13 1.6 研究動機與目的 15 第二章 材料與方法 16 2.1 實驗材料 16 2.1.1 植物材料 16 2.1.1.1 綠竹 (Bambusa oldhamii) 16 2.1.1.2 綠竹多芽體 (bamboo multiple shoots) 16 2.1.2 載體 17 2.1.3 菌種 17 2.2 實驗藥品 18 2.3 實驗儀器 19 2.4 實驗方法 20 2.4.1 DNA 之純化與分析 20 2.4.1.1 聚合脢鏈鎖反應 (polymerase chain reaction, PCR) 20 2.4.1.2 T-A cloning 20 2.4.1.3 接合反應 21 2.4.1.4. 質體轉形 21 2.4.1.5 藍白篩選法 21 2.4.1.6 菌種保存 21 2.4.1.7 質體DNA 之抽取 22 2.4.1.8 DNA膠體電泳分析 22 2.4.1.9 DNA片段之純化 22 2.4.1.10 熱不對稱交錯PCR反應 (TAIL-PCR) 23 2.4.2 RNA 之純化與分析 25 2.4.2.1 綠竹筍之 total RNA抽取 25 2.4.2.2 甲醛洋菜膠體電泳 26 2.4.2.3 反轉錄反應 (Reverse Transcription) 26 2.4.2.4 北方墨點法 (Northern Blot) 27 2.4.2.4.1 DIG 探針製備 27 2.4.2.4.2 RNA之轉印 28 2.4.2.4.3 雜合反應 28 2.4.2.5 cDNA端快速增幅法 (RACE) 29 2.4.2.5.1 DNase 前處理 29 2.4.2.5.2 5’-RACE 29 2.4.2.5.3 3’-RACE 30 2.4.2.6 及時聚合酶鏈鎖反應 (real-time PCR) 30 2.4.3 重組蛋白質之建構、抽取及電泳分析 32 2.4.3.1 最佳蛋白質表現條件及純化之探討 32 2.4.3.2 SDS 膠體電泳 32 2.4.3.3 蛋白質染色 33 2.4.3.4 蛋白質電泳轉印及酵素免疫染色法 34 2.4.3.5 重組蛋白質純化 34 2.4.3.6 BoCRE1-RD多源性抗體製備 35 第三章 結果與討論 36 3.1 BoCRE1 及 BoCRE2p 之蛋白質一級結構分析 36 3.1.1 功能區塊預測 36 3.1.2 演化樹分析 36 3.2 綠竹細胞分裂素受體BoCRE1和BoCRE2p之cDNA 5’端延長 37 3.2.1 利用5’-RACE 進行5’端延長 37 3.2.2 利用玉米細胞分裂素受體及BoCRE1靠近5’端序列設計引進行RT-PCR 38 3.2.3 利用TAIL-PCR進行5’端延長 39 3.3 BoCRE1 保守性區塊之重組蛋白質表現 40 3.4 BoCRE2p的存在與否 42 3.4.1 3’-RACE 確認轉譯中止碼和poly (A) signal 42 3.4.2 Northern blot分析 43 3.5 BoCRE1和BoCRE2p在綠竹筍不同時期表現量分析 43 第四章 結論與展望 45 4.1 綠竹其他細胞分裂素受體的選殖與分析 46 4.2 綠竹細胞分裂素受體基因表現 46 4.3 以酵母菌系統進行 BoCRE1保守性區塊的 表現及cytokinin binding assay 46 4.4 篩選與 BoCRE1和BoCRE2p有交互作用的蛋白質 47 4.5 BoCRE1磷酸化活性分析 47 4.6 轉殖株之建立 47 4.7 綠竹多芽體的分析 47 參考文獻 48 圖與表 59 附錄 83 | |
dc.language.iso | zh-TW | |
dc.title | 綠竹中兩種推定為細胞分裂素受體BoCRE1及BoCRE2p之選殖及分子生物學研究 | zh_TW |
dc.title | Cloning and molecular characterization of two putative cytokinin receptors, BoCRE1 and BoCRE2p, in bamboo Bambusa oldhamii | en |
dc.type | Thesis | |
dc.date.schoolyear | 99-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 蘇仲卿,李平篤(Ping-Du Lee),常怡雍(Yee-Yung Charng),張俊哲 | |
dc.subject.keyword | cytokinin,bamboo, | zh_TW |
dc.subject.keyword | 細胞分裂素,綠竹, | en |
dc.relation.page | 85 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2011-07-28 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-100-1.pdf 目前未授權公開取用 | 25.49 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。