Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2439Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 陳玉怜(Yuh-Lien Chen) | |
| dc.contributor.author | Hsin-Ching Sung | en |
| dc.contributor.author | 宋欣錦 | zh_TW |
| dc.date.accessioned | 2021-05-13T06:40:14Z | - |
| dc.date.available | 2019-09-08 | |
| dc.date.available | 2021-05-13T06:40:14Z | - |
| dc.date.copyright | 2017-09-08 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-27 | |
| dc.identifier.citation | PART I
Abe, F., Nagao, T., Okabe, H., 2002. Antiproliferative constituents in plants 9. Aerial parts of Lippia dulcis and Lippia canescens. Biological and Pharmaceutical Bulletin 25, 920-922. Aksamitiene, E., Kiyatkin, A., Kholodenko, B. N., 2012. Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochemical Society Transactions 40, 139-146. Balakrishnan, G., Janakarajan, L., Balakrishnan, A., 2010. Lakshmi, B. S., Molecular basis of the anti-inflammatory property exhibited by cyclo-pentano phenanthrenol isolated from Lippia nodiflora. Immunological Investigations 39, 713-739. Banerjee, T., Valacchi, G., Ziboh, V. A., van der Vliet, A., 2002. Inhibition of TNFα-induced cyclooxygenase-2 expression by amentoflavone through suppression of NF-κB activation in A549 cells. Molecular and Cellular Biochemistry 238, 105-110. Barnes, P.J., 2011. Similarities and differences in inflammatory mechanisms of asthma and COPD. Breathe 7, 229-238. Binion, D. G., Heidemann, J., Li, M. S., Nelson, V. M., Otterson, M. F., Rafiee, P., 2009. Vascular cell adhesion molecule-1 expression in human intestinal microvascular endothelial cells is regulated by PI 3-kinase/Akt/MAPK/NF-κB: inhibitory role of curcumin. American Journal of physiology-Gastrointestinal and Liver Physiology 297, G259-G268. Bölck, B., Ibrahim, M., Steinritz, D., Morguet, C. Dühr, S., Suhr, F., Lu-Hesselmann, J., Bloch, W., 2014. Detection of key enzymes, free radical reaction products and activated signaling molecules as biomarkers of cell damage induced by benzo [a] pyrene in human keratinocytes. Toxicology in Vitro 28, 875-884. Chen, C. C., Chou, C. Y., Sun, Y. T., Huang, W. C., 2001. Tumor necrosis factor α-induced activation of downstream NF-κB site of the promoter mediates epithelial ICAM-1 expression and monocyte adhesion: Involvement of PKCα, tyrosine kinase, and IKK2, but not MAPKs, pathway. Cellular Signalling 13, 543-553. Choi, K. W., Um, S. H., Kwak, J. H., Park, H. J. Kim, K. H., Moon, E. Y., Kwon, S. T., Pyo, S., 2012. Suppression of adhesion molecule expression by phenanthrene-containing extract of bulbils of Chinese Yam in vascular smooth muscle cells through inhibition of MAPK, Akt and NF-κB. Food and Chemical Toxicology 50, 2792-2804. Chung, K. S., Choi, J. H., Back, N. I., Choi, M. S. Kang, E. K., Chung, H. G., Jeong, T. S., Lee, K. T., 2010. Eupafolin, a flavonoid isolated from Artemisia princeps, induced apoptosis in human cervical adenocarcinoma HeLa cells. Molecular Nutrition & Food Research 54, 1318-1328. Dabaghi-Barbosa, P., Rocha, A. M., Da Cruz Lima, A.F., De Oliveira, B. H., Martinelli De Oliveira, M. B., Skare Carnieri, E. G., Cadena, S. M., Merlin Rocha, M. E., 2005. Hispidulin: Antioxidant properties and effect on mitochondrial energy metabolism. Free Radical Research 39, 1305-1315. Demir, T., Yalcinoz, C., Keskinel, I., Demiröz, F., Yildirim, N., 2002. sICAM-1 as a serum marker in the diagnosis and follow-up of treatment of pulmonary tuberculosis. The International Journal of Tuberculosis and Lung Disease 6, 155-159. Elakovich, S. D., Stevens, K. L., 1985. Volatile constituents of Lippia nodiflora. Journal of Natural Products 48, 504-506. Forestieri, A. M., Monforte, M. T., Ragusa, S., Trovato, A., Iauk, L., 1996. Antiinflammatory, analgesic and antipyretic activity in rodents of plant extracts used in African medicine. Phytotherapy Research 10, 100–106. Jang, J. H., Yang, E. S., Min, K. J., Kwon, T. K., 2012. Inhibitory effect of butein on tumor necrosis factor-α-induced expression of cell adhesion molecules in human lung epithelial cells via inhibition of reactive oxygen species generation, NF-κB activation and Akt phosphorylation. International Journal of molecular and cellular medicine 30, 1357-1364. Karin, M., Cao, Y., Greten, F. R., Li, Z. W., 2002. NF-κB in cancer: from innocent bystander to major culprit. Nature Reviews Cancer 2, 301-310. Kim, H., Hwang, J. S., Woo, C. H., Kim, E. Y., Kim, T. H., Cho, K. J., Seo, J. M., Lee, S. S., Kim, J. H., 2008. TNF-α-induced up-regulation of intercellular adhesion molecule-1 is regulated by a Rac-ROS-dependent cascade in human airway epithelial cells. Experimental & Molecular Medicine 40, 167-175. Kim, S. R., Park, M. J., Lee, M. K., Sung, S. H., Park, E. J., Kim, J., Kim, S. Y., Oh, T. H., Markelonis, G. J., Kim, Y. C., 2002. Flavonoids of Inula Britannica protect cultured cortical cells from necrotic cell death induced by glutamate. Free Radical Biology and Medicine 32, 596-604. Ko, H. H., Chiang, Y. C., Tsai, M. H., Liang, C. J., Hsu, L. F., Li, S. Y., Wang, M. C., Yen, F. L., Lee, C. W., 2014. Eupafolin, a skin whitening flavonoid isolated from Phyla nodiflora, downregulated melanogenesis: Role of MAPK and Akt pathways. Journal of Ethnopharmacology 151, 386–393. Koyasu, S., The role of PI3K in immune cells, 2003. Nature Immunology 4, 313-319. Lai, Z. R., Ho, Y. L., Huang, S. C., Huang, T. H., Lai, S. C., Tsai, J. C., Wang, C. Y., Huang, G. J., Chang, Y. S., 2011. Antioxidant, anti-inflammatory and antiproliferative activities of Kalanchoe gracilis (L.) DC stem. The American Journal of Chinese Medicine 39, 1275-1290. Lee, C. W., Lin, C. C., Lee, I. T., Lee, H. C., Yang, C. M., 2011. Activation and induction of cytosolic phospholipase A2 by TNF‐α mediated through Nox2, MAPKs, NF‐κB, and p300 in human tracheal smooth muscle cells. Journal of Cellular Physiology 226, 2103-2114. Lee, I. T., Lin, C. C., Lee, C. Y., Hsieh, P. W., Yang, C. M., 2013. Protective effects of (−)-epigallocatechin-3-gallate against TNF-α-induced lung inflammation via ROS-dependent ICAM-1 inhibition. The Journal of Nutritional Biochemistry 24, 124-136. Lee, I. T., Yang, C.M., 2013. Inflammatory signalings involved in airway and pulmonary diseases. Mediators of Inflammation ID 791231. Liang, C. J., Yen, Y. H., Hung, L. Y., Wang, S. H., Pu, C. M., Chien, H. F., Tsai, J. S., Lee, C. W., Yen, F. L., Chen, Y. L., 2013. Thalidomide inhibits fibronectin production in TGF-1-treated normal and keloid fibroblasts via inhibition of the p38/Smad3 pathway. Biochemical Pharmacology 85, 1594-1602. Liu, K., Park, C., Chen, H., Hwang, J., Thimmegowda, N. R., Bae, E. Y., Lee, K. W., Kim, H. G., Liu, H., Soung, N. K., Peng, C., Jang, J. H., Kim, K. E., Ahn, J. S., Bode, A. M., Dong, Z., Kim, B. Y., Dong, Z., 2014. Eupafolin suppresses prostate cancer by targeting phosphatidylinositol 3‐kinase‐mediated Akt signaling. Molecular Carcinogensis DOI 10.1002/mc.22139. Maas, M., Deters, A. M., Hensel, A., 2011. Anti-inflammatory activity of Eupatorium perfoliatum L. extracts, eupafolin, and dimeric guaianolide via iNOS inhibitory activity and modulation of inflammation-related cytokines and chemokines. Journal of Ethnopharmacology 137, 371-381. Oh, J. H., Kwon, T. K., 2009. Withaferin A inhibits tumor necrosis factor-α-induced expression of cell adhesion molecules by inactivation of Akt and NF-κB in human pulmonary epithelial cells. International Immunopharmacology 9, 614-619. Qureshi, M. H., Cook-Mills, J., Doherty, D. E., Garvy, B. A., 2003. TNF-α-dependent ICAM-1-and VCAM-1-mediated inflammatory responses are delayed in neonatal mice infected with Pneumocystis carinii. Journal of Immunology 171, 4700-4707. Rahman, A., Anwar, K. N., True, A. L., Malik, A. B., 1999. Thrombin-induced p65 homodimer binding to downstream NF-κB site of the promoter mediates endothelial ICAM-1 expression and neutrophil adhesion. Journal of Immunology 162, 5466-5476. Ravikanth, V., Ramesh, P., Diwan, P. V., Venkateswarlu, Y., 2000. Halleridone and Hallerone from Phyla nodiflora as taxonomic markers. Biochemical Systematics and Ecology 28, 905-906. Rosseau, S., Selhorst, J., Wiechmann, K., Leissner, K., Maus U., Mayer K., Grimminger F., Seeger W., Lohmeyer J., 2000. Monocyte migration through the alveolar epithelial barrier: adhesion molecule mechanisms and impact of chemokines. Journal of Immunology 164, 427-435. Sanz, M. J., Ferrandiz, M. L., Cejudo, M., Terencio, M. C., Gil, B., Bustos, G., Ubeda, A., Gunasegaran, R., Alcaraz, M. J., 1994. Influence of a series of natural flavonoids on free radical generating systems and oxidative stress. Xenobiotica 24, 689-699. Siddiqui, B. S., Ahmed, F., Ali, S. K., Perwaiz, S., Begum, S., 2009. Steroidal constituents from the aerial parts of Lippia nodiflora Linn. Natural Product Research 23, 436-441. Tomás-Barberán, F. A., Harborne, J. B., Self, R., 1987. Twelve 6-oxygenated flavone sulphates from Lippia nodiflora and L. canescens. Phytochemistry 26, 2281-2284. Wang, C. Y., Chiang, T. H., Chen, C. L., Tseng, P. C., Chien, S. Y., Chuang, Y. J., Yang, T. T., Hsieh, C. Y., Choi, P. C., Lin, C. F., 2014. Autophagy facilitates cytokine-induced ICAM-1 expression. Innate Immunity 20, 200-213. Wang, C.Y., Huang, S. C., Lai, Z. R., Ho, Y. L. Jou, Y. J., Kung S. H., Zhang, Y., Chang, Y. S., Lin, C. W., 2013. Eupafolin and ethyl acetate fraction of Kalanchoe gracilis stem extract show potent antiviral activities against enterovirus 71 and coxsackievirus A16. Evidence-based Complementary and Alternative Medicine, ID 591354. Wang, Y. C., Huang, T. L., 2005. Screening of anti‐Helicobacter pylori herbs deriving from Taiwanese folk medicinal plants. FEMS Immunology and Medical Microbiology 43, 295-300. Wu, C., Wang, H., Xu, J., Huang, J., Chen, X., Liu, G., 2014. Magnolol inhibits tumor necrosis factor-α-induced ICAM-1 expression via suppressing NF-κB And MAPK Signaling pathways in human lung epithelial cells. Inflammation 37, 1957-1967. Yang, Y. P., Lu, S. Y., Chen, T. T., 1998. Verbenaceae. Flora of Taiwan 127, 421. PART II Alipoor, S.D., Adcock, I.M., Garssen, J., Mortaz, E., Varahram, M., Mirsaeidi, M., Velayati, A., 2016. The roles of miRNAs as potential biomarkers in lung diseases. Eur. J. Pharmacol. 791, 395-404. Bai, L. Y., Chiu, C.F., Chu, P.C., Lin, W.Y., Chiu, S.J., Weng, J.R., 2016. A triterpenoid from wild bitter gourd inhibits breast cancer cells. Sci. Rep. 6, 22419. Chao, C.Y., Sung, P.J. Wan, W.H., Kuo, Y.H., 2014. Anti-inflammatory effect of momordica charantia in sepsis Mmice. Molecules. 19, 12777-12788. Chaturvedi, P., 2012. Antidiabetic potentials of momordica charantia: multiple mechanisms behind the effects. J. Med. Food 15, 101-107. Chen, C.C., Chou, C.Y., Sun, Y.T., Huang, W.C., 2001. Tumor necrosis factor α-induced activation of downstream NF-κB site of the promoter mediates epithelial ICAM-1 expression and monocyte adhesion: Involvement of PKCα, tyrosine kinase, and IKK2, but not MAPKs, pathway. Signal. 13, 543-553. Choi, K.W., Um, S.H., Kwak, J.H., Park, H.J., Kim, K.H., Moon, E.Y., Kwon, S.T., Pyo, S., 2012. Suppression of adhesion molecule expression by phenanthrene-containing extract of bulbils of Chinese Yam in vascular smooth muscle cells through inhibition of MAPK, Akt and NF-κB. Food Chem. Toxicol. 50:2792–804. Demir, T., Yalcinoz, C., Keskinel, I., Demiröz, F., Yildirim, N., 2002. sICAM-1 as a serum marker in the diagnosis and follow-up of treatment of pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 6,155-159. Desai, S., Tatke, P., 2015. Charantin: An important lead compound from Momordica charantia for the treatment of diabetes. J. Pharmacogn. Phytochem. 3, 163-166. Dandawate, P.R., Subramaniam, D., Padhye, S.B., Anant, S., 2016. Bitter melon: a panacea for inflammation and cancer. Chin. J. Nat. Med. 2016, 14, 0081-0100. Duan, M., Yao, H., Hu, G., Chen, X., Lund, A.K., Buch, S., 2013. HIV Tat Induces Expression of ICAM-1 in HUVECs: Implications for miR-221/-222 in HIV-Associated Cardiomyopathy. PLoS. One 8, 1-11. Duirham, A.L., Caramori, G., Chung, K.F., Adcock, I. M., 2015. Targeted anti-inflammatory therapeutica astham and chronic obstructive luing disease. Transl. Res. 67, 192-203. Gong, A.Y., Hu, G., Zhou, R. Liu, J., Feng, Y., Soukup, G.A. , Chen ,X.M., 2011. MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection. Int. J. Parasit. 41, 397-403. Hu, G., Gong, A. Y., Liu, J., Zhou, R., Deng, C., Chen, X. M., 2010. miR-221 suppresses ICAM-1 translation and regulates interferon-γ-induced ICAM-1 expression in human cholangiocytes. Am. J. Physiol. Gastroint. Liver 298, G542–G550. Hu, H., Liu, Y., Kong, B., Fan, Y., Wang, Z., Peng, J., Xiong, X., Mei, Y., Liu, W., Huang, H., 2016. Protective effect of momordica charantia fruit extract on TNF α-induced NF-κB activation and cardiomyocyte apoptosis. Int. J. Clin. Exp. Med. 9, 5951-5959. Ikari, J., Smith, L.M., Nelson, A.J., Iwasawa, S., Gunji, Y., Farid, M., Wang, X., Basma, H., Feghali-Bostwick, C., Liu, X., DeMeo, D.L., Rennard, S. I., 2015. Effect of culture conditions on microRNA expression in primary adult control and COPD lung fibroblasts in vitro. In Vitro Cell Dev. Biol. Anim. 51, 390-399. Jansen, F., Yang, X., Baumann, K., Przybilla, D, Schmitz, T., Flender, A., Paul, K., Alhusseiny, A., Nickenig, G., Werner, N., 2015. Endothelial microparticles reduce ICAM-1 expression in a microRNA-222-dependent mechanism. J. Cell Mol. Med. 19, 2202-2214. Lee, I.T., Lin, C.C., Lee, C.Y., Hsieh, P.W., Yang, C.M., 2013. Pertective effects of (─)-epigallocatechin-3-gallate against TNF-α-induced lung inflammation via ROS-dependent ICAM-1 inhibition. J. Nutr. Biochem. 24, 124-36. Lee, I.T., Yang, C.M., 2013. Inflammatory signalings involved in airway and pulmonary disease. Mediat. Inflamm. 791231. Lii, C.K., Chen, H.W., Yun, W.T., Liu, K.L., 2009. Suppressive effects of wild bitter gourd (Momordica charantia Linn. var. abbreviate ser.) fruit extracts on inflammatory responses in RAW264.7 macrophages. J. Ethnopharmacol. 122, 227-233. Lu, K.H., Tseng, H.C., Liu, C.T., Huang, C.J., Chyuan, J.H., Sheen, L.Y., 2014. Wild bitter gourd protects against alchoholic fatty liver in mice by attenuating oxidative stress and inflammatory responses. Food Funct. 5, 10271037. Marques-Rocha, JL, Samblas, M, Milagro, FI, Bressan, J, Martínez, JA, Marti, A. Noncoding RNAs, cytokine, and inflammation-related diseases. F.A.S.E.B. J. 2015;29:3595-611. Oh, J.H., Kwon, T.K., 2009. Withaferin A inhibits tumor necrosis factor-α-induced expression of cell adhesion molecules by inactivation of Akt and NF-κB in human pulmonary epithelial cells. Int. Immunopharmacol. 9, 614–619. Patel, S., Patel, T., Parmar, K., Bhatt, Y., Patel, Y, Patel, N.M., 2010. Isolation, characterization and antimicrobial activity of charantin from momordica charantialinn. Fruit. Int. J. Drug Dev. & Res. 2, 629-634. Rahman, A., Anwar, K.N., True, A.L., Malik, A.B.. 1999. Thrombin-induced p65 homodimer binding to downstream NF-κB site of the promoter mediates endothelial ICAM-1 expression and neutrophil adhesion. J. Immunol. 162:5466-76. Sung, H.C., Liang, C.J., Lee, C.W., Yen, F.L., Hsiao, C.Y., Wang, S.H., Jiang-Shieh, Y. F., Tsai, J. S., Chen, Y.L., 2015. The protective effect of eupafolin against TNF-α-induced lung inflammation via the reduction of intercellular cell adhesion molecule-1 expression. J. Ethnopharmacol. 170, 136–147. Somasagara, R.R., Deep, G., Shrotriya, S., Patel, M., Agarwal, C., Agarwal, R., 2015. Bitter melon juice targets molecular mechanisms underlying gemcitabine resistance in pancreatic cancer cells. Int. J. Oncol. 46: 1849-1857. Upadhyay, A., Agrahari, P., Singh, D.K., 2015. A Review on Salient Pharmacological Features of Momordica charantia. Int. J. Pharmacol. 11, 405-413. Wu, W.H., Lin, B.Y., Kuo, Y.H., Huang, C.J., 2009. Triglycerides constituted of short and medium chain fatty acids and dicarboxylic acids in Momordica charantia, as well as capric acid, inhibit PGE2 production in RAW264.7. macrophages. Food Chem. 117, 306-311. Yang, S.J., Choi, J. M., Park, S.E., Rhee, E.J., Lee, W.Y., Oh, K.W., Park, S.W., Park, C.Y., 2015. Preventive effects of bitter melon (Momordica charantia) against insulin resistance and diabetes are associated with the inhibition of NF-κB and JNK pathways in high-fat-fed OLETF rats. The Journal of Nutritional Biochemistry. 26,234–240. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/2439 | - |
| dc.description.abstract | 在肺臟相關的發炎疾病中,白血球會經由與呼吸道上皮細胞的細胞黏附因子黏著而移動,因此細胞黏附因子對發炎疾病具有重要的功能。Eupafolin是一種類黃酮,也是鴨舌癀(Phyla nodiflora)中的主要活性物質,具有抗發炎的能力。另外,山苦瓜萃取物也具有許多藥理上的活性。本文主要目的在探討,在經過TNF-α刺激肺泡上皮細胞、C57BL/6小鼠以及miRNA-221/222基因剔除小鼠中,eupafolin及山苦瓜萃取物對細胞黏附因子表現的影響。研究中首先利用西方點墨法及免疫螢光染色法,觀察eupafolin及山苦瓜萃取物對TNF-α刺激A549細胞後ICAM-1及相關蛋白表現的影響。另外小鼠以腹腔注射eupafolin 3天(第一部分),或是給予C57BL/6小鼠及miRNA-221/222基因剔除小鼠口服5天山苦瓜萃取物(第二部分)後, 再以插管方式給予TNF-α 1天後取出肺臟。接著再以西方點墨法及組織免疫染色觀察ICAM-1表現的改變。第一部分實驗結果顯示,eupafolin確實可降低因TNF-α刺激引起的ICAM-1表現,而此作用是經由抑制ERK1/2、JNK、p38和AKT/PI3K的磷酸化。然而,加入p38和PI3K的抑制劑並不會改變ICAM-1的表現。再者,eupafolin同時降低了TNF-α 所引起之NF-κB的活化及核轉移。在小鼠肺臟組織中,受TNF-α刺激而表現量增加的ICAM-1會受到eupafolin的抑制。第二部分實驗結果顯示,在A549細胞中,山苦瓜萃取物確實可經由抑制PI3K/AKT/NF-κB/IκB的磷酸化作用而減緩因TNF-α引起的ICAM-1表現,並且減少了白血球的黏附作用。除此之外,山苦瓜萃取物也會降低內生性的ICAM-1表現且會增加miRNA -221/-222的表現。讓細胞過度表現miRNA 222也可降低PI3K/AKT/NF-κB/IκB的磷酸化及ICAM-1表現量與白血球的黏附作用。另外,在小鼠肺臟組織中,山苦瓜萃取物可抑制TNF-α刺激或沒刺激而表現的ICAM-1以及增加miRNA -221/-222的表現;但並不影響miRNA-221/222基因剔除小鼠之miRNA-221/-222但些微影響ICAM-1的表現。此結果顯示,eupafolin及山苦瓜萃取物在細胞及動物實驗中皆可降低ICAM-1的表現。Eupafolin可降低因TNF-α引起的ICAM-1表現以及白血球的黏附作用,且是經由抑制AKT/ERK1/2/JNK的磷酸化作用以及NF-κB的核轉移所致;而山苦瓜萃取物則是經由miR-221/-222/PI3K/AKT/NF-κB這條路徑來控制。因此,eupafolin及山苦瓜萃取物也提供了另一種治療肺臟發炎相關疾病的藥物的另一種新選擇。 | zh_TW |
| dc.description.abstract | The deregulation of cell adhesion molecules associated with the epithelium-leukocyte interaction plays the important role in the pathogenesis of lung airway inflammatory disorders. Eupafolin, a major bioactive compound found in Phyla nodiflora, has been reported to have the anti-inflammatory property. In addition, the extracts from wild bitter gourd fruit (WBGE) also possess numerous pharmacological activities. The purpose of this study was to investigate the effects of eupafolin or WBGE on intercellular adhesion molecule-1 (ICAM-1) expression in epithelial cells, C57BL/6 wild-type (WT) mice or microRNA (miR)-221/-222 knockout (KO) mice with or without tumor necrosis factor-α treatment and the related mechanisms. At first, the effects of eupafolin and WBGE on ICAM-1 expression and the related signals in A549 cells were examined by western blot and immunofluorescent staining. The part of the manuscript is the mice were injected intraperitoneally with or without eupafolin and then left untreated or injected intratracheally with TNF-α. The part section of them, WT mice and miR-221/-222 KO mice were orally treated with or without WBGE and then left untreated or injected intratracheally with TNF-α. The expression levels and patterns of ICAM-1 in the lung tissues were examined by western blot and immunohistochemical staining. In part one, eupafolin pretreatment reduced the TNF-α-induced ICAM-1 expression and also the ERK, JNK, p38, and AKT/ PI3K phosphorylation. However, the increase in ICAM-1 expression with TNF-α treatment was unaffected by p38 and PI3K inhibitors. Moreover, eupafolin decreased the TNF-α-induced NF-κB p65 activation and its nuclear translocation. Furthermore, eupafolin reduced ICAM-1 expression in the lung tissues of TNF-α-treated mice. In part two, WBGE significantly decreased the TNF-α-induced ICAM-1 expression in A549 cells through the inhibition of PI3K/ AKT/ NF-κB /IκB phosphorylation and decreased leukocyte adhesion. In addition, WBGE reduced endogenous ICAM-1 expression and upregulated miR-221/-222 expression. The overexpression of miR-222 decreased PI3K/AKT/NF-κB/IκB phosphorylation and ICAM-1 expression, which resulted in reducing monocyte adhesion. Moreover, WBGE reduced ICAM-1 expression in lung tissues of WT mice with or without TNF-α treatment and upregulated miR-221/222. WBGE did not affect the miR-221/-222 level and had little effect on ICAM-1 expression in miR-221/-222 KO mice. These results suggest that eupafolin and WBGE reduced ICAM-1 expression both under in vitro and in vivo conditions. The protective effects of eupafolin were mediated via AKT/ERK1/2/JNK phosphorylation and nuclear translocation of NF-κB. Furthermore, WBGE were mediated partly through the miR-221/-222/PI3K/AKT/NF-κB pathway. Therefore, eupafolin and WBGE may represent novel therapeutic agents targeting epithelial activation in lung inflammation. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-13T06:40:14Z (GMT). No. of bitstreams: 1 ntu-106-D01446002-1.pdf: 4187183 bytes, checksum: e9ffccb5ef39cb96e8422413d6cf5662 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 目錄
口試委員會審定書 I 誌 謝 II 中文摘要 III 英文摘要 IV 簡介 VI PART I 1 中文摘要 1 英文摘要 2 第一章 簡介 3 第二章 材料與方法 5 2.1. Extraction and purification of eupafolin 5 2.2. Cell culture 5 2.3. Preparation of cell lysates and Western blot analysis 6 2.4. Immunofluorescent staining of ICAM-1 and NF-κB p65 7 2.5. siRNA knockdown of ERK, JNK, and p65 8 2.6. Preparation of nuclear extracts and electrophoretic mobility-shift assay (EMSA) 8 2.7. Epithelial cell–leukocyte adhesion assay 9 2.8. Animal care and experimental procedures 9 2.9. Immunohistochemistry 10 2.10. Statistical analysis 10 第三章 結果 12 3.1. Eupafolin reduces TNF-α-induced upregulation of ICAM-1 in A549 cells 12 3.2. The inhibition of ERK1/2 and JNK phosphorylation mediates eupafolin-increased reduction in TNF-α-induced ICAM-1 expression 12 3.3. The inhibition of AKT phosphorylation mediates eupafolin-increased reduction in TNF-α-induced ICAM-1 expression 13 3.4. The inhibition of NF-κB activation and NF-κB p65 translocation mediates eupafolin-reduced ICAM-1 expression in TNF-α-treated A549 cells 14 3.5. TNF-α-induced ICAM-1 expression was mediated by AKT/ERK1/2/JNK/NF-κB signaling pathway 15 3.6. Eupafolin suppressed the adhesion of monocytes to TNF-α-stimulated A549 cells 16 3.7. Eupafolin reduces ICAM-1 expression in lung tissues in TNF-α-treated mice 17 第四章 討論 18 參考資料 23 附圖 29 Figure 1: Chemical structure of eupafolin. 29 Figure 2: The effects of TNF-α-induced ICAM-1 expression in A549 cells. 30 Figure 3: The effects of eupafolin on ICAM-1 expression in TNF-α-treated A549 cells. 31 Figure 4: The role of MAPKs activation on eupafolin-reduced ICAM-1 expression in TNF-α-treated A549 cells. 33 Figure 5: The effects of MAPKs phosphorylation on ICAM-1 expression in TNF-α-treated A549 cells. 35 Figure 6: The roles of AKT/PI3K activation on eupafolin-reduced ICAM-1 expression in TNF-α-treated A549 cells. 36 Figure 7: The effects of eupafolin on NF-κB and IκB phosphorylation in TNF-α-treated A549 cells. 38 Figure 8: The effects of eupafolin on NF-κB expression in TNF-α-stimulated A549 cells. 39 Figure 9: The effects of NF-κB on ICAM-1 expression in TNF-α-stimulated A549 cells. 40 Figure 10: The effects of eupafolin on the nuclear activation of NF-κB in TNF-α-stimulated A549 cells. 41 Figure 11: The crosstalk among AKT, ERK1/2, JNK and NF-B signaling pathways in TNF-α-treated A549 cells. 42 Figure 12: The effects of AKT/ERK1/2/JNK signaling pathways on IκB phosphorylation in TNF-α-treated A549 cells. 44 Figure 13: The effects of eupafolin on the adhesion of U937 cells to TNF-α-treated A549 cells. 45 Figure 14: The effects of eupafolin on the TNF-α-induced ICAM-1 expression in lung tissues. 47 Figure 15: A summary diagram showing that eupafolin reduced ICAM-1 expression in TNF-α-treated A549 cells through the inhibition of the phosphorylation of AKT, ERK, and JNK as well as the inactivation of transcription factor NF-B. 49 PART II 50 中文摘要 50 英文摘要 51 第一章 簡介 53 第二章 材料與方法 56 2.1 Extraction of WBG (WBGE) 56 2.2 Analysis of WBGE by HPLC 56 2.3 Cell culture 57 2.4 Preparation of cell lysates and Western blot analysis 57 2.5 Immunocytochemical localization of ICAM-1 and NF-κB p65 58 2.6 Preparation of cytoplasmic and nuclear extracts for Western blotting 58 2.7 Chromatin immunoprecipitation assay 58 2.8 RNA preparation and real-time PCR 59 2.9 Overexpression of miR-221/-222 60 2.10 Cell adhesion assay 60 2.11 Luciferase reporter assay 61 2.12 Mouse model, diets, and experimental procedures 61 2.13 Immunohistochemistry 62 2.14 Statistical analysis 62 第三章 結果 63 3.1 Characterization of WBGE 63 3.2 WBGE decreased the TNF-α-induced ICAM-1 expression in A549 cells 63 3.3 The inhibition of PI3K/AKT phosphorylation mediates the reduction in ICAM-1 expression by WBGE in TNF-α-treated A549 cells 64 3.4 The inhibition of NF-κB p65 activation and translocation mediates WBGE-reduced ICAM-1 expression in TNF-α-treated A549 cells 65 3.5 WBGE reductions in endogenous ICAM-1 expression in A549 cells involves miR-222 upregulation 66 3.6 WBGE reduces ICAM-1 expression in lung tissues of TNF-α-treated WT mice 68 第四章 討論 69 參考資料 74 附圖 78 Figure 1: Characterization of WBGE 78 Figure 2: The effects of WBGE and charantin on ICAM-1 expression in TNF-α-treated A549 cells 79 Figure 3: The effects of WBGE and charantin on ICAM-1 expression patterns in A549 cells 80 Figure 4: The effects of WBGE on ICAM-1 promoter activity in A549 cells. 81 Figure 5: The effects of WBGE on the adhesion of U937 cells to TNF-α-treated A549 cells 82 Figure 6: The effects of WBGE on MAPKs phosphorylation in TNF-α-treated A549 cells. 84 Figure 7: The effects of PI3K/AKT phosphorylation on WBGE-reduced ICAM-1 expression in TNF-α-treated A549 cells 85 Figure 8: The effects of PI3K/AKT on the adhesion of U937 cells to TNF-α-treated A549 cells 86 Figure 9: The effects of WBGE on NF-κB and IκB phosphorylation in TNF-α-treated A549 cells. 87 Figure 10: The effects of WBGE on NF-κB activation in TNF-α-treated A549 cells 88 Figure 11: The effects of NF-κB on WBGE-reduced ICAM-1 expression in TNF-α-treated A549 cells 90 Figure 12: The effects of NF-κB on the adhesion of U937 cells to TNF-α-treated A549 cells 91 Figure 13: The levels of miRNA-221 and -222 expression in TNF-α-treated A549 cells 92 Figure 14: The effects of pre-miRNA-221/-222 on the TNF-α-treated A549 cells. 93 Figure 15: The effects of pre-miRNA-221/-222 on the adhesion of U937 cells to the TNF-α-treated A549 cells 95 Figure 16: The effects of pre-miRNA-221/-222 on the A549 cells 97 Figure 17: The effects of pre-miRNA-221/-222 on the adhesion of U937 cells to the A549 cells 98 Figure 18: The effects of p-AKT, p-PI3K, p-p65 on endogenous expression of ICAM-1 in A549 cells 99 Figure 19: The effects of WBGE on the TNF-α-induced miRNA-221/-222 expression in lung tissues 100 Figure 20: The effects of WBGE on the TNF-α-induced ICAM-1 expression in lung tissues 101 結論 103 未來展望 105 | |
| dc.language.iso | en | |
| dc.subject | eupafolin | zh_TW |
| dc.subject | MAPKs | zh_TW |
| dc.subject | 細胞黏附因子-1 | zh_TW |
| dc.subject | 發炎 | zh_TW |
| dc.subject | 山苦瓜 | zh_TW |
| dc.subject | miR-221/-222 | zh_TW |
| dc.subject | NF-κB | zh_TW |
| dc.subject | PI3K/AKT | zh_TW |
| dc.subject | eupafolin | en |
| dc.subject | NF-κB | en |
| dc.subject | PI3K/AKT | en |
| dc.subject | miR-221/-222 | en |
| dc.subject | MAPKs | en |
| dc.subject | ICAM-1 | en |
| dc.subject | inflammation | en |
| dc.subject | WBGE | en |
| dc.title | 研究Eupafolin和山苦瓜對腫瘤壞死因子刺激肺臟發炎之影響及相關機轉 | zh_TW |
| dc.title | To study the protective effects of eupafolin and wild bitter gourd on TNF-α-induced lung inflammation and the related mechanisms | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳建春(Jiahn-Chun Wu),江美治(Meei-Jyh Jiang),陳永祥(Yung-Hsiang Chen),林豐彥(Feng-Yen Lin) | |
| dc.subject.keyword | eupafolin,山苦瓜,發炎,細胞黏附因子-1,MAPKs,miR-221/-222,PI3K/AKT,NF-κB, | zh_TW |
| dc.subject.keyword | eupafolin,WBGE,inflammation,ICAM-1,MAPKs,miR-221/-222,PI3K/AKT,NF-κB, | en |
| dc.relation.page | 105 | |
| dc.identifier.doi | 10.6342/NTU201701930 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2017-07-27 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 解剖學暨細胞生物學研究所 | zh_TW |
| Appears in Collections: | 解剖學暨細胞生物學科所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-106-1.pdf | 4.09 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
