Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24385
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文章
dc.contributor.authorChia-Hua Leeen
dc.contributor.author李佳樺zh_TW
dc.date.accessioned2021-06-08T05:24:04Z-
dc.date.copyright2005-07-27
dc.date.issued2005
dc.date.submitted2005-07-24
dc.identifier.citation1. Odian, G., Principles of Polymerization, 3rd edition, 1991, Wiley-Interscience, New York, ch.5.
2. Pitsikalis, M.; Pispas, S., Mays; J. W.; Hadjichristidis, N. Advances in Polymer Science 1998, 135, 1.
3. Förster, S.; Antonietti, M. Adv. Mater. 1998, 10 195.
4. Hadjichristidis, N. Block Copolymers: Synthetic Strategies, Physical Properties, and Applications 2003 John Wiley & Sons, Inc.
5. Hadjichristids, N. et al., Block Copolymers 2003, 5. John Wiley & Sons, Inc.
6. Tsitsilianis, C.; Voulgaris, D. Macromole. Chem. Phys. 1997, 198, 997.
7. Yokoyama, H.; Mates, T. E.; Kramer, E. J. Macromolecules 2000, 33, 1888.
8. Li, Z.; Zhao, W.; Liu, Y.; Rafailovich, M. H.; Sokolov, J.; Khougaz, K.; Eisenberg, A.; Lennox, R. B.; Krausch, G. J. Am. Chem. Soc. 1996, 118, 10892.
9. Liu, Y.; Zhao, W.; Zheng, X.; King, A.; Singh, A.; Raifailovich, M. H.; Sokolov, J.; Dai, K. H.; Kramer, E. J.; Schwarz, S. A.; Gebizliogiu, O. Macromolecules 1994, 27, 4000.
10. Schulz, M. F.; Khandpur, A. K.; Bates, F. S Macromolecules 1996, 29, 2857.
11. Yokoyama, H.; Kramer, E. J.; Rafailovich, M. H, Sokolov, J.; Schwarz, S. A. Macromolecules 1998, 31, 8826.
12. Grayer, V.; Dormidontova, E. E.; Hadziioannou, G. Macromolecules 2000, 33, 6330.
13. Hamley, I. W., The Physics of Block Copolymers 1998, Oxford University Press,Oxford.
14. Ruokolainen , J.; Torkkeli, M.; Serimaa, R.; Vahvaselka, S.; Saariaho,M.; Brinke, G.; Ikkala, O. Macromolecules 1996, 29, 6621.
15. Ruokolainen, J.; Tanner, J.; Ikkala, O.; Brinke, G.; Thomas, E. L. Macromolecules 1998, 31, 3532.
16. Chen, H. L.; Ko, C. C.; Lin, T. L. Langmuir, 2002, 18, 5619.
17. Ikkala, O.; Ruokolainen, J.; Brinke, G.; Torkkeli M.; Serimaa, R. Macromolecules 1995, 28, 7088.
18. Valkama, S.; Lehtonen, O.; Lappalainen, K.; Kosonen, H.; Castro, P.; Repo, T.; Torkkeli, M.; Serimaa, R.; Brinke, G.; Leskela, M.; Ikkala, O. Macromol. Rapid Commun., 2003, 24, 556.
19. Ikkala, O. Science,2002 ,295, 29.
20. Ruokolainen, J. ; Brinke, G.; Ikkala, G. Adv. Mater. 1999, 11, 9.
21. Ikkkala, O.; Brinke, G.. Chem . Commun . 2004, 2131.
22. Kohl, A. T.; Mimna, R.; Shick, R.; Rhodes, L.; Wang, Z. L.; Kohl, P. A. Electrochem. Solid-State Lett. 1998, 1, 49. .
23. Padovani, A. M.; Rhodes, L.; Allen, S. A. B.; Khol, P. A. J. Electrochem. Soc. 2002, 149, F161.
24. Padovani, A. M.; Riester, L.; Rhodes, L.; Allen, S. A. B.; Khol, P. A. J. Electrochem. Soc. 2002, 149, F171.
25. Yim, J. H.; Lyu, Y. Y.; Jeong, H. D.; Song, S. A.; Hwang, I. S. Lee, J. H.; Mah, S. K.; Chang, S.; Park, J. G.; Hu, Y. F.; Sun, J. N.; Gidley, D. W. Adv. Funct. Mater. 2003, 13, 382.
26. Hedrick, J. L.; Miller, R. D.; Hawker, C. J.; Carter, K. R.; Volksen, W.; Yoon, D. Y.; Trollsas, M. Adv. Mater. 1998, 10, 1049.
27. Nguyen, C. V.; Carter, K. R.; Hawker, C. J.; Hedrick, J. L.; Jaffe, R. L.; oon, Chem. Mater. 1999, 11, 3080.
28. Nguyen, C.; Hawker, C. J.; Miller, R. D.; Huang, E.; Hedrich, J. L.; Gauderon, R.; Hilborn, J. G. Macromolecule 2000, 33, 4281.
29. Heise, A.; Nguyen, C.; Malek, R.; Hedrick, J. L.; Frank, C. W.; Miller, R. D.; Macromolecule 2000, 33, 2346.
30. Wang, C. L.; Weber, M. H.; Lynn, K. G.; Rodbell, K. P. Appl. Phys. Lett. 2002, 81, 4413.
31. Haung, E.; Toney, M. F.; Volksen, W.; Mecerreyes, D.; Brock, P.; Kim, H. C.; Hawker, C. J.; Hedrick, J. L.; Lee, V. Y.; Magbitang, T.; Miller, R. D.; Lurio, L. B. Appl. Phys. Lett. 2002, 81, 2232.
32. Liu, J.; Gan, D.; Hu, C.; Kiene, M.; Ho, P. S.; Volksen, W.; Miller, R. D. Appl. Phys. Lett. 2002, 81, 4180.
33. Kim, H. C.; Wilds, J. B.; Hinsberg, W. D.; Johnson, L. R.; Volksen, W.; Magbitang, T.; Lee, V. Y.; Hedrick, J. L.; Hawker, C. J.; Miller, R. D.; Huang, E. Chem. Mater. 2002, 14, 4628.
34. Huang, Q. R.; Volksen, W.; Huang, E.; Toney, M.; Frank, C. W.; Miller, R, D. Chem. Mater. 2002, 14, 3676.
35. Huang, Q. R.; Kim, H. C.; Huang, E.; Mecerreyes, D.; Hedrick, J. L.; Volksen, W.; Frank, C. W.; Miller, R. D. Macromolecules 2003, 36, 7661.
36. Kim, H. C.; Volksen, W.; Miller, R. D.; Huang, E.; Yang, G.; Briber, R. M.; Shin, K.; Satija, S. K. Chem. Mater. 2003, 15, 609.
37. Hedstrom, J. A.; Toney, M. F.; Huang, E.; Kim, H. C.; Volksen, W.; Magbitang, T.; Miller, R. D. Langmuir 2004, 20, 1535.
38. Kramer, E.; Forster, S.; Goltner, C.; Antonietti, M. Langmuir 1998, 14, 2027.
39. Yang, S.; Pai, J. C. H.; Pai, C. S.; Dabbagh, G.; Nalamasu, O.; Reichmanis, E.; Seputro, J.; Obeng, Y. S. J. Vac. Sci. Technol. B. 2001, 19, 2155.
40. Brunet-Bruneau, A.; Bourgeois, A.; Sanchez, C. Adv. Funct. Mater. 2004, 14, 309.
41. Yu, K.; Hurd, A. J.; Eisenberg, A.; Brinker. C. J. Langmuir 2001, 17, 7961.
42. Yu, K.; Smarsly, B.; Brinker, C. J. Adv. Funct. Mater 2003, 13, 47.
43. Koganti, V. R.; Rankin, S. E., J. Phys. Chem. B 2005, 109, 3279.
44. Zhao, D., Adv. Mater. 1998, 10, 16.
45. Dai, C. A., Ph.D. Thesis, Cornell University, 1996, 17-30.
46. Ndoni, S.; Papadakis, C. M.; Bates, F. S.; Almdal, K. Rev. Sci. Instrum. 1995, 66, 1090.
47. Lu, Y.; Ganguli, R.; Nature, 1997, 389, 364.
48. Haung, E.; Toney, M. F.; Volksen, W.; Mecerreyes, D.; Brock, P.; Kim, H. C.; Hawker, C. J.; Hedrick, J. L.; Lee, V. Y.; Magbitang, T.; Miller, R. D.; Lurio, L. B. Appl. Phys. Lett. 2002, 81, 2232.
49. [a] Lee, L. H.; Chen, W. C.; Liu, W. C. J. Polym. Sci. Polym. Chem., 2002, 40, 1560; [b] Chen, W. C. ; Yen, C. T. J. Vac. Sci. Technol. B, 2000, 18, 201; [c] Yang, C. C.; Chen, W. C. J. Mater. Chem. 2002, 12, 1138; [d] Chen, W. C.; Lee, S. J.; Lee, L. H.; Lin, J. L. J. Mater. Chem. 2002, 12, 3644.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24385-
dc.description.abstract嵌段性共聚高分子本身為具有可調控型態與特殊性質的奈米材料,因而具有很高的研究興趣。在本論文中,依照文獻裡的活性陰離子聚合結合連續單體添加法可成功製備線性嵌段型、異相條型星狀以及嵌段型星狀三種不同構形之嵌段性共聚物poly(styrene-2-vinylpyridine) (PSP2VP)。兩種不同自組裝奈米結構在本論文中被探討:(1)嵌段性共聚物-雙親性(PS-b-P2VP/DBSA)小分子複合物(2)利用嵌段性共聚物為孔洞雛形的模版製備奈米級甲基倍半矽氧烷(MSSQ)孔洞材料。
在第一個研究系統中,藉由啶環上的氮可與DBSA 裡的HSO3基團形成分子間鍵結,因此可得到具有等級制的自組裝超分子結構。FTIR實驗中證實了鍵結作用力的存在。所有實驗裡不同構形之嵌段性共聚高分子都居有類似的組成與相對應的分子量,且在未與DBSA形成複合物之前皆具有相同的層狀形態。小角X光散射的結果顯示這些不同等級制的自組裝超分子結構在高溫時除了梳狀結構存在於母體之外,尚具有六方堆積排列的PS柱狀結構。再者,在線性嵌段型PS-P2VP(DBSA)複合物、異相條型星狀H-PS-b-P2VP(DBSA)複合物中,從層狀到柱狀的形態改變時,規則區域間的距離並沒有很大的改變,但是在嵌段型星狀B-PS-b-P2VP(DBSA)複合物系統裡則是看到明顯大量的減少。而在不同系統中,規則-不規則過渡區亦有明顯的不同。嵌段性星狀B-PS-b-P2VP(DBSA)複合物具有最低的過渡溫度,而異相條型星狀H-PS-b-P2VP(DBSA)複合物則是最高,這些現象可解釋為因為星狀高分子裡核的位置不同所造成,嵌段性星狀的核位於PS區域間,而異相條型星狀的核在介面上,核的位置不同將造成高分子鏈段具有類似非高斯伸展的運動過程。
在第二個研究中,由於氫鍵、離子鍵存在於MSSQ與PS-b-P2VP裡,因此可避免在熱處理前的大規模相分離,而只存在微觀的小區域。可行成自組裝微相結構的PS-b-P2VP將會藉由高溫處裡的過程移除,而留下奈米級的孔洞。本研究提出兩種製備孔洞材料的方式: 蒸發引導自組裝之熱乾燥與沈浸式塗布製程。前者可製備塊狀材料,後者可製備薄膜。孔洞塊狀材料的形態藉由SAXS與TEM作分析;得到結果是:藉由此製程所得的孔洞材料排列規則。另一方面,以FE-SEM、TEM、AFM分析鑑定孔洞薄膜材料的特性;在以異相條型星狀與線性嵌段型做為模版得到的孔洞大小,依照高分子的含量約在17-22nm:另一方面,以嵌段型星狀做為模版得到所得到的結果中,在高分子含量50%時會出現互相連接的孔洞群,此原因可能來自於在製備嵌段型星狀高分子的過程中,不易控制的特性而得到較大的分子量分布。
上述研究顯示,嵌段型共聚物的構形在控制奈米級衍生物扮演極為重要的角色。
zh_TW
dc.description.abstractBlock copolymers have stimulated significant scientific interest since they offer the possibilities to nanoscale materials with tunable morphology and properties. In this thesis, linear diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (L-PS-b-P2VP), heteroarm star copolymer H-PS-b-P2VP, and blockarm star copolymer B-PS-b-P2VP, were successfully synthesized by living anionic polymerization. Then, the different architectures of the PS-b-P2VP were used to prepare two different types of self-assembled nanostructures: (1) block copolymer-amphiphile complexes (PS-b-P2VP/DBSA); (2) mesoporous methylsilsesquioxane (MSSQ) materials using PS-b-P2VP as templates.
The experimental results showed that intermolecular bonding existed between the nitrogen of the 2-VP ring and the HSO3 or DBSA. Thus, the hierarchical self-organized supramolecules were obtained from the PS-b-P2VP/DBSA complexes. All the PSP2VP copolymers with a similar composition and molecular weight have lamellar morphology in the neat state. On complexation with the DBSA, the SAXS profiles suggests the formation of the hierarchical structures consisted of hexagonally packed PS cylinders in the P2VP(DBSA) lamellar morphology at a high temperature. The interdomain distance in the H-PS-b-P2VP(DBSA) and L-PS-b-P2VP(DBSA) complexes does not change significantly as the morphology change from lamellae to cylinder by complexation, but that in the B-PS-b-P2VP(DBSA) complexes shows a significant decrease. Besides, the order-disorder transition also varies significantly in the complexes of different architectures. The B-PS-b-P2VP/DBSA complex has the lowest TODT whereas the H-PS-b-P2VP/DBSA complex has the highest TODT, which is probably due to the difference on the polymer architecture. The central cores in blockarm and heteroarm block copolymers are located inside the microdomain and at the interface, respectively, which results in different degree of non-gaussian chain stretching in these copolymers.
In the second topic of the thesis, nanoporous MSSQ films were prepared through the templating of PS-b-P2VP using the processes of evaporation-induced self-assembly dry-casting (for bulk materials) and dip-coating(for thin film). Hydrogen-bonding and ionic bonding interaction between the MSSQ precursors and PSP2VP prevents large-scale phase-separation before thermal treatment. Upon thermal curing, the self-condensation between the MSSQ end group results in the microphase separation between the MSSQ and PSP2VP. The self-organized PSP2VP was removed by thermal curing and left nano-pores in the MSSQ matrix. Morphologies of bulk materials were characterized preferentially using SAXS and TEM. Ordered porous thin films were observed from the images of the FE-SEM, TEM, and AFM. The pore size prepared from the cases of the MSSQ/L-PS-b-P2VP or H-PS-P2VP are in the range of 17 to 22 nm, depending on the PS-b-P2VP loading (30% ~ 50%). However, the MSSQ/B-PS-b-P2VP results in small discrete pores to connected metamorphic pores at polymer loading of 50 wt%, which could be due to the large polydispersity of the B-PS-b-P2VP.
The experimental result in this thesis suggests that the architecture of the block copolymers plays a very important role on controlling the morphologies of the resulted nanostructured derivatives.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:24:04Z (GMT). No. of bitstreams: 1
ntu-94-R92549001-1.pdf: 8248405 bytes, checksum: e08b4d8bd66a00f1d4f4df1333e7af5c (MD5)
Previous issue date: 2005
en
dc.description.tableofcontentsTable of Contents
Abstract i
摘要 iii
Table of Contents v
Table Captions ix
Figure Captions x
Chapter 1 Introduction 1
1-1 Fundamentals and applications of amphiphilic block copolymers 1
1-2 Synthesis of amphiphilic block copolymers by living anionic polymerization 3
1-2-1 General characteristics of living anionic polymerization 3
1-2-2 Synthesis and morphologies of poly(styrene)-block-poly(2-vinyl pyridine)(PS-b-P2VP) with different architecture 4
1-3 Hierarchical self-organized supramolecules derived from amphiphilic block copolymers 7
1-4 Porous materials derived from amphiphilic block copolymers 9
1-4-1 Evaporation-induced self-assembly (EISA) 10
1-4-2 EISA combined with dip-coating 11
1-5 Research objectives 12
Chapter 2 Experimental 15
2-1 Materials 15
2-2 Purification 17
2-2-2 Monomer purification 17
2-2-2 Solvent purification 19
2-3 Anionic polymerization of PS-b-P2VP 20
2-3-1 Linear L-PS-b-P2VP block copolymer 21
2-3-2 Heteroarm star H-PS-b-P2VP block copolymer 21
2-3-3 Block-arm star B-PS-b-P2VP block copolymer 22
2-4 Block copolymer/amphiphile complex preparation 23
2-5 Synthesis of oligomeric methyl silsesquioxane (MSSQ) 23
2-6 Preparation of mesoporous MSSQ materials 24
2-6-1 Mesoporous MSSQ materials prepared by dry- casting 24
2-6-2 Mesoporous MSSQ thin films prepared by EISA combined with dip-coating 25
2-7 Characterization 26
2-7-1 Instruments 26
2-7-2 Conditions of instrumental analysis 29
Chapter 3 Synthesis and Characterization of the Amphiphilic Block Copolymers with Different Architectures, L-PS-b-P2VP, H-PS-b-P2VP, and B-PS-b-P2VP 30
3-1 Molecular weight and architecture information 30
3-2 FTIR analysis 30
3-3 Thermal analysis 31
3-4 Conclusions 32
Chapter 4 Characterization of Hierarchical Self-Organized Supramolecules with Different Block Copolymer Architecture 33
4-1 Methodology for preparation hierarchical self-organized supramolecules derived from block copolymers with different architectures 33
4-2 FTIR Analysis 33
4-3 WAXS analysis 35
4-4 SAXS profiles and PLOM analysis 35
4-4-1 Linear diblock copolymer L-PS-b-P2VP(DBSA), L1(DBSA), system 36
4-4-2 Heteroarm star copolymer H-PS-b-P2VP(DBSA) , H1(DBSA), system 38
4-4-3 Blockarm star copolymer B-PS-b-P2VP(DBSA) , B1(DBSA), system 39
4-5 Discussions 40
4-6 Conclusions 42
Chapter 5 Synthesis and Characterization of Mesoporous MSSQ Materials by Using Block Copolymer with Different Architectures as Templates 44
5-1 Methodology of preparing mesoporous MSSQ materials by utilizing block copolymer of three different kinds of architecture as templates 44
5-2 Molecular structure of the prepared MSSQ 45
5-3 FTIR analysis of the prepared MSSQ/PS-b-P2VP 46
5-4 Characterization of mesoporous MSSQ materials by EISA- dry casting 49
5-4-1 SAXS analysis 50
5-4-2 TEM analysis 51
5-5 Characterization of mesoporous MSSQ thin films by EISA combined with dip-coating 52
5-5-1 Morphology analysis 52
5-5-2 Refractive index and thickness by n&k analysis 54
5-6 Discussions 55
5-7 Conclusions 57
Chapter 6 Conclusions 59
6-1 Hierarchical self-organized supramolecules using different architectures PS-b-P2VP complexed with DBSA 59
6-2 Mesoporous MSSQ materials using block copolymers with different architectures as templates 60
References 62

Table Captions
Table 1-1 AB diblock copolymersformed by sequential addition of monomers using anionic polymerization 66
Table 3-1 Molecular weight and PDI of the prepared linear diblock copolymer, L-PS-b-P2VP 67
Table 3-2 Molecular weight and other architecture information of the prepared heteroarm star copolymer, H-PS-b-P2VP 67
Table 3-3 Molecular weight and other architecture information of the prepared blockarm star copolymer, B-PS-b-P2VP 67
Table 5-1 Assignment of each peak area and the network to cage ratio estimated from integration analysis of FTIR spectra 68
Table 5-2 Physical properties of mesoporous MSSQ thin film. 69

Figure Captions
Figure 1-1 Common morphologies of microphase-separated block copolymers: body centered cubic (bcc) packed spheres (BCC), hexagonally ordered cylinders (HEX), gyroid (Ia3d), hexagonally perforated layers (HPL), modulated lamellae (MLAM), lamellae (LAM), cylindrical micelles (CYL), and spherical micelles (MIC) 70
Figure 1-2 The synthetic procedure of linear diblock copolymer (L-PS-b-P2VP) 71
Figure 1-3 The synthetic procedure of heteroarm star copolymer (H-PS-b-P2VP.) 72
Figure 1-4 The synthetic procedure of blockarm star copolymer B-PS-b-P2VP. 73
Figure 1-5 Summary of phase behavior results for the pure PS-b-PVP diblock copolymer samples 74
Figure 1-6 Theoretical phase diagram calculated by Matsen et al. for diblock copolymers in the intermediate segregation regime. 75
Figure 1-7 Comb-shaped supramolecules and their hierarchical self-organization, showing primary and secondary structures. Similar schemes can, in principle, be used both for fexible and rodlike polymers 76
Figure 1-8 Structure-within-structure for PS-b-P4VP 77
Figure 1-9 Methodology for preparing hierarchical self-organized supramolecules derived from block copolymers with different architecture 78
Figure 1-10 Methodology of preparing of the prepared mesoporous MSSQ materials by using amphiphlic block copolymer, PS-b-P2VP, with three kinds of architecture as templates 79
Figure 2-1 Flowchart of the synthesis of living anionic polymerization of linear diblock copolymer, heteroarm star copolymer and blockarm star copolymer. 80
Figure 2-2 Reaction scheme of synthesizing oligomeric methyl silsesquioxane, MSSQ 81
Figure 3-1 FTIR spectrum of the prepared L-PS-b-P2VP, L1 82
Figure 3-2 FTIR spectrum of the prepared H-PS-b-P2VP, H1 83
Figure 3-3 FTIR spectrum of the prepared B-PS-b-P2VP, B1 84
Figure 3-4 FTIR spectrum of the prepared L-PS-b-P2VP, L2 85
Figure 3-5 FTIR spectrum of the prepared H-PS-b-P2VP, H2 86
Figure 3-6 FTIR spectrum of the prepared B-PS-b-P2VP, B2 87
Figure 3-7 TGA curves of the prepared PS-b-P2VP 88
Figure 3-8 DSC curve of the prepared block copolymer 89
Figure 4-1 FTIR spectra for the pure linear diblock copolymer (L1) and DBSA together with the complex L1(DBSA) 90
Figure 4-2 The detailed FTIR spectra of the 1000 cm-1 region in L1(DBSA) complex 91
Figure 4-3 The detailed FTIR spectra of the 1600 cm-1 region in L1(DBSA) complex 91
Figure 4-4 FTIR spectra for the pure heteroarm star copolymer (H1) and DBSA together with the complex H1(DBSA) 92
Figure 4-5 The detailed FTIR spectra of the 1000 cm-1 region in h1(DBSA) complex 93
Figure 4-6 The detailed FTIR spectra of the 1600 cm-1 region in H1(DBSA) complex 93
Figure 4-7 FTIR spectra for the pure blockarm star copolymer (B1) and DBSA together with the complex B1(DBSA) 94
Figure 4-8 The detailed FTIR spectra of the 1000 cm-1 region in B1(DBSA) complex 95
Figure 4-9 The detailed FTIR spectra of the 1600 cm-1 region in B1(DBSA) complex 95
Figure 4-10 WAXS diffraction curves of L1 (DBSA) at 25℃ 96
Figure 4-11 WAXS diffraction curves of H1 (DBSA) at 25℃ 96
Figure 4-12 WAXS diffraction curves of B1 (DBSA) at 25℃ 97
Figure 4-13 SAXS profiles of neat L1 copolymer obtained during a continuous heating cycle. 98
Figure 4-14 SAXS profiles of L1(DBSA) complex obtained during a continuous heating cycle. 99
Figure 4-15 SAXS profiles of L1(DBSA) complex obtained during a continuous heating cycle 100
Figure 4-16 SAXS profiles of L1(DBSA) complex obtained at 200℃ 101
Figure 4-17 Change in SAXS profiles near ordering of microdomains P2VPDBSA) in the case of L1(DBSA) 102
Figure 4-18 A plot of the reciprocal of the intensity of the diffraction peak (1/Imax) versus reciprocal temperature (1/T) in the case of L1(DBSA) 103
Figure 4-19 PLOM images of L1(DBSA) complex obtained during heating and then subsequent cooling. 104
Figure 4-20 SAXS profiles of neat H1 copolymer obtained during a continuous heating cycle 105
Figure 4-21 SAXS profiles of neat H1 copolymer obtained at Kyoto 106
Figure 4-22 SAXS profiles of H1(DBSA) complex obtained during a continuous heating cycle at NTHU 107
Figure 4-23 SAXS profiles of H1(DBSA) complex obtained at 240℃ 108
Figure 4-24 Temperature dependence of Imax of the primary SAXS peak in the low q region for estimating the TODT of H1(DBSA) complexes. 109
Figure 4-25 Temperature dependence of Imax of the primary SAXS peak in the high q region for estimating the TODT of H1(DBSA) complexes. 110
Figure 4-26 PLOM images of H1(DBSA) complex obtained during heating and then subsequent cooling. 111
Figure 4-27 SAXS profiles of neat B1 copolymer obtained during a continuous heating cycle. 112
Figure 4-28 SAXS profiles of neat B1 copolymer obtained at Kyoto 113
Figure 4-29 SAXS profiles of B1(DBSA) complex obtained during a continuous heating cycle at NTHU. 114
Figure 4-31 Temperature dependence of Imax of the primary SAXS peak in the high q region and the low q region for estimating the TODT of B1(DBSA) complexes. 116
Figure 4-32. PLOM images of B7(DBSA) complex obtained during heating and then subsequent cooling. 117
Figure 4-33 Interdomain distances in three syste 118
Figure 4-34 Proposed morphology change from L1 to L1(DBSA) 119
Figure 4-35 Proposed morphology change from H1 to H1(DBSA) 120
Figure 4-36 Proposed morphology change (situation one) from B1 to B1(DBSA) 121
Figure 4-37 Proposed morphology change (situation two) from B1 to B1(DBSA) 122
Figure 5-1 The FTIR spectra of the prepared MSSQ precursor at different temperatures 123
Figure 5-2 The FTIR spectra of MSSQ/L-PS-b-P2VP (L2)at T=25℃. 124
Figure 5-3 The shifting of the Si-OH absorption peak of the prepared MSSQ/ L-PS-b-P2VP (L2) in the FTIR spectra 125
Figure 5-4 The FTIR spectra of MSSQ/H-PS-b-P2VP (H2) at T=25℃ 126
Figure 5-5 The shifting of the Si-OH absorption peak of the prepared MSSQ/ H-PS-b-P2VP (H2) in the FTIR spectra 127
Figure 5-6 The FTIR spectra of MSSQ/B-PS-b-P2VP (B2) at T=25℃. 128
Figure 5-7 The shifting of the Si-OH absorption peak of the prepared MSSQ/ B-PS-b-P2VP (B2) in the FTIR spectra 129
Figure 5-8 The FTIR spectra of MSSQ/L-PS-b-P2VP at polymer loading 10 wt% (MSSQ/L10) under different curing temperatures 130
Figure 5-9 The FTIR spectra of MSSQ/L-PS-b-P2VP at polymer loading 20wt% (MSSQ/L20) under different curing temperatures 131
Figure 5-10 The FTIR spectra of MSSQ/L-PS-b-P2VP at polymer loading 30 wt% (MSSQ/L30) under different curing temperatures 132
Figure 5-11 The FTIR spectra of MSSQ/L-PS-b-P2VP at polymer loading 40 wt% (MSSQ/L40) under different curing temperatures 133
Figure 5-12 The FTIR spectra of MSSQ/L-PS-b-P2VP at polymer loading 50 wt% (MSSQ/L50) under different curing temperatures 134
Figure 5-13 The FTIR spectra of MSSQ/H-PS-b-P2VP at polymer loading 10 wt% (MSSQ/H10) under different curing temperatures 135
Figure 5-14 The FTIR spectra of MSSQ/H-PS-b-P2VP at polymer loading 20 wt% (MSSQ/H20) under different curing temperatures 136
Figure 5-15 The FTIR spectra of MSSQ/H-PS-b-P2VP at polymer loading 30 wt% (MSSQ/H30) under different curing temperatures 137
Figure 5-16 The FTIR spectra of MSSQ/H-PS-b-P2VP at polymer loading 40 wt% (MSSQ/H40) under different curing temperatures 138
Figure 5-17 The FTIR spectra of MSSQ/H-PS-b-P2VP at polymer loading 50 wt% (MSSQ/H50) under different curing temperatures 139
Figure 5-18 The FTIR spectra of MSSQ/B-PS-b-P2VP at polymer loading 10 wt% (MSSQ/B10) under different curing temperatures 140
Figure 5-19 The FTIR spectra of MSSQ/B-PS-b-P2VP at polymer loading 20 wt% (MSSQ/B20) under different curing temperatures 141
Figure 5-20 The FTIR spectra of MSSQ/B-PS-b-P2VP at polymer loading 30 wt% (MSSQ/B30) under different curing temperatures 142
Figure 5-21 The FTIR spectra of MSSQ/B-PS-b-P2VP at polymer loading 40 wt% (MSSQ/B40) under different curing temperatures 143
Figure 5-23 The FTIR spectra of the MSSQ/L-PS-b-P2VP hybrids after baking at 120 ℃ 145
Figure 5-24 The FTIR spectra of the MSSQ/H-PS-b-P2VP hybrids after baking at 120 ℃ 146
Figure 5-25 The FTIR spectra of the MSSQ/B-PS-b-P2VP hybrids after baking at 120 ℃ 147
Figure 5-26 The FTIR spectra of the MSSQ/L-PS-b-P2VP hybrids after pyrolysis at 400 ℃ 148
Figure 5-28 The FTIR spectra of the MSSQ/B-PS-b-P2VP hybrids after pyrolysis at 400 ℃ 150
Figure 5-29 The variation in the ratio of network to cage structure after curing at 120 ℃and 400 ℃, respectively.(A) MSSQ/L-PS-b-P2VP (B) MSSQ/H-PS-b-P2VP (C) MSSQ/B-PS-b-P2VP 151
Figure 5-30 SAXS profiles of MSSQ/L-PS-b-P2VP hybrids (polymer loading; 30, 40, 50 wt%) after baking at 120℃ 152
Figure 5-31 SAXS profiles of MSSQ/L-PS-b-P2VP hybrids (polymer loading; 30, 40, 50 wt%) after pyrolysis at 400℃ 153
Figure 5-32 Comparison between the SAXS profile of MSSQ/L-PS-b-P2VP hybrids (polymer loading: 40wt%) baking at 120℃ with that after pyrolysis at 400℃. 154
Figure 5-33 Comparison between the SAXS profile of MSSQ/H-PS-b-P2VP hybrids (polymer loading: 40wt%) baking at 120℃ with that after pyrolysis at 400℃ 155
Figure 5-33 Comparison between the SAXS profile of MSSQ/H-PS-b-P2VP hybrids (polymer loading: 40wt%) baking at 120℃ with that after pyrolysis at 400℃ 155
Figure 5-34 SAXS profiles of MSSQ/H-PS-b-P2VP hybrids (polymer loading; 30, 40, 50 wt%) after pyrolysis at 400℃. 156
Figure 5-35 Comparison between the SAXS profile of MSSQ/B-PS-b-P2VP hybrids (polymer loading: 40wt%) baking at 120℃ with that after pyrolysis at 400℃ 157
Figure 5-35 Comparison between the SAXS profile of MSSQ/B-PS-b-P2VP hybrids (polymer loading: 40wt%) baking at 120℃ with that after pyrolysis at 400℃ 157
Figure 5-36 SAXS profiles of MSSQ/B-PS-bP2VP hybrids (polymer loading; 30, 40, 50 wt%) after pyrolysis at 400℃. 158
Figure 5-37 TEM image of the MSSQ porous materials using H40 as templates after curing at 400 ℃ 159
Figure 5-38 Tapping mode AFM height image of MSSQ after pyrolysis at 400℃ 160
Figure 5-39 Tapping mode AFM height image of MSSQ/L10 after pyrolysis at 400℃ 160
Figure 5-40 Tapping mode AFM height image of MSSQ/L20 after pyrolysis at 400 161
Figure 5-41 Tapping mode AFM height image of MSSQ/L30 after pyrolysis at 400℃ 161
Figure 5-42 Tapping mode AFM height image of MSSQ/L40 after pyrolysis at 400℃ 162
Figure 5-43 Tapping mode AFM height image of MSSQ/L50 after pyrolysis at 400℃ 162
Figure 5-44 Tapping mode AFM height image of MSSQ/H10 after pyrolysis at 400℃ 163
Figure 5-45 Tapping mode AFM height image of MSSQ/H20 after pyrolysis at 400℃ 163
Figure 5-46 Tapping mode AFM height image of MSSQ/H30 after pyrolysis at 400℃ 164
Figure 5-47 Tapping mode AFM height image of MSSQ/H40 after pyrolysis at 400℃ 164
Figure 5-48 Tapping mode AFM height image of MSSQ/H50 after pyrolysis at 400℃ 165
Figure 5-49 Tapping mode AFM height image of MSSQ/B10 after pyrolysis at 400℃ 165
Figure 5-50 Tapping mode AFM height image of MSSQ/B20 after pyrolysis at 400℃ 166
Figure 5-51 Tapping mode AFM height image of MSSQ/B30 after pyrolysis at 400℃ 166
Figure 5-51 Tapping mode AFM height image of MSSQ/B30 after pyrolysis at 400℃ 166
Figure 5-52 Tapping mode AFM height image of MSSQ/B40 after pyrolysis at 400℃ 167
Figure 5-53 Tapping mode AFM height image of MSSQ/B50 after pyrolysis at 400℃ 167
Figure 5-54 FESEM image of the MSSQ/H40 after pyrolysis at 400 ℃ 168
Figure 5-55 FESEM image of the MSSQ/B40 after pyrolysis at 400 ℃ 168
Figure 5-55 FESEM image of the MSSQ/B40 after pyrolysis at 400 ℃ 168
Figure 5-56 TEM images of the cross-sectional area of the prepared films MSSQ/H30 after pyrolysis at 400℃ 169
Figure 5-57 TEM images of the cross-sectional area of the prepared films MSSQ/B30 after pyrolysis at 400℃. 169
Figure 5-58 TEM plane-view image of the MSSQ/B40 after pyrolysis at 400 ℃ 170
Figure 5-59 Variation of the refractive index at different polymer loading with different block copolymer architectures. 171
dc.language.isoen
dc.subject孔洞材料zh_TW
dc.subject嵌段式共聚物zh_TW
dc.subject階層結構zh_TW
dc.subjecthierarchical structuresen
dc.subjectporous materialsen
dc.subjectblock copolymeren
dc.title利用不同構形之嵌段式共聚物PS-b-P2VP
製備奈米材料之形態研究
zh_TW
dc.titleMorphologies of Nano-materials
Derived from Amphiphilic Block Copolymers, PS-b-P2VP, with Different Architectures
en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.coadvisor陳信龍
dc.contributor.oralexamcommittee邱文英,蘇安仲,何榮銘
dc.subject.keyword嵌段式共聚物,階層結構,孔洞材料,zh_TW
dc.subject.keywordblock copolymer,hierarchical structures,porous materials,en
dc.relation.page172
dc.rights.note未授權
dc.date.accepted2005-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
8.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved