請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24385完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳文章 | |
| dc.contributor.author | Chia-Hua Lee | en |
| dc.contributor.author | 李佳樺 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:24:04Z | - |
| dc.date.copyright | 2005-07-27 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-24 | |
| dc.identifier.citation | 1. Odian, G., Principles of Polymerization, 3rd edition, 1991, Wiley-Interscience, New York, ch.5.
2. Pitsikalis, M.; Pispas, S., Mays; J. W.; Hadjichristidis, N. Advances in Polymer Science 1998, 135, 1. 3. Förster, S.; Antonietti, M. Adv. Mater. 1998, 10 195. 4. Hadjichristidis, N. Block Copolymers: Synthetic Strategies, Physical Properties, and Applications 2003 John Wiley & Sons, Inc. 5. Hadjichristids, N. et al., Block Copolymers 2003, 5. John Wiley & Sons, Inc. 6. Tsitsilianis, C.; Voulgaris, D. Macromole. Chem. Phys. 1997, 198, 997. 7. Yokoyama, H.; Mates, T. E.; Kramer, E. J. Macromolecules 2000, 33, 1888. 8. Li, Z.; Zhao, W.; Liu, Y.; Rafailovich, M. H.; Sokolov, J.; Khougaz, K.; Eisenberg, A.; Lennox, R. B.; Krausch, G. J. Am. Chem. Soc. 1996, 118, 10892. 9. Liu, Y.; Zhao, W.; Zheng, X.; King, A.; Singh, A.; Raifailovich, M. H.; Sokolov, J.; Dai, K. H.; Kramer, E. J.; Schwarz, S. A.; Gebizliogiu, O. Macromolecules 1994, 27, 4000. 10. Schulz, M. F.; Khandpur, A. K.; Bates, F. S Macromolecules 1996, 29, 2857. 11. Yokoyama, H.; Kramer, E. J.; Rafailovich, M. H, Sokolov, J.; Schwarz, S. A. Macromolecules 1998, 31, 8826. 12. Grayer, V.; Dormidontova, E. E.; Hadziioannou, G. Macromolecules 2000, 33, 6330. 13. Hamley, I. W., The Physics of Block Copolymers 1998, Oxford University Press,Oxford. 14. Ruokolainen , J.; Torkkeli, M.; Serimaa, R.; Vahvaselka, S.; Saariaho,M.; Brinke, G.; Ikkala, O. Macromolecules 1996, 29, 6621. 15. Ruokolainen, J.; Tanner, J.; Ikkala, O.; Brinke, G.; Thomas, E. L. Macromolecules 1998, 31, 3532. 16. Chen, H. L.; Ko, C. C.; Lin, T. L. Langmuir, 2002, 18, 5619. 17. Ikkala, O.; Ruokolainen, J.; Brinke, G.; Torkkeli M.; Serimaa, R. Macromolecules 1995, 28, 7088. 18. Valkama, S.; Lehtonen, O.; Lappalainen, K.; Kosonen, H.; Castro, P.; Repo, T.; Torkkeli, M.; Serimaa, R.; Brinke, G.; Leskela, M.; Ikkala, O. Macromol. Rapid Commun., 2003, 24, 556. 19. Ikkala, O. Science,2002 ,295, 29. 20. Ruokolainen, J. ; Brinke, G.; Ikkala, G. Adv. Mater. 1999, 11, 9. 21. Ikkkala, O.; Brinke, G.. Chem . Commun . 2004, 2131. 22. Kohl, A. T.; Mimna, R.; Shick, R.; Rhodes, L.; Wang, Z. L.; Kohl, P. A. Electrochem. Solid-State Lett. 1998, 1, 49. . 23. Padovani, A. M.; Rhodes, L.; Allen, S. A. B.; Khol, P. A. J. Electrochem. Soc. 2002, 149, F161. 24. Padovani, A. M.; Riester, L.; Rhodes, L.; Allen, S. A. B.; Khol, P. A. J. Electrochem. Soc. 2002, 149, F171. 25. Yim, J. H.; Lyu, Y. Y.; Jeong, H. D.; Song, S. A.; Hwang, I. S. Lee, J. H.; Mah, S. K.; Chang, S.; Park, J. G.; Hu, Y. F.; Sun, J. N.; Gidley, D. W. Adv. Funct. Mater. 2003, 13, 382. 26. Hedrick, J. L.; Miller, R. D.; Hawker, C. J.; Carter, K. R.; Volksen, W.; Yoon, D. Y.; Trollsas, M. Adv. Mater. 1998, 10, 1049. 27. Nguyen, C. V.; Carter, K. R.; Hawker, C. J.; Hedrick, J. L.; Jaffe, R. L.; oon, Chem. Mater. 1999, 11, 3080. 28. Nguyen, C.; Hawker, C. J.; Miller, R. D.; Huang, E.; Hedrich, J. L.; Gauderon, R.; Hilborn, J. G. Macromolecule 2000, 33, 4281. 29. Heise, A.; Nguyen, C.; Malek, R.; Hedrick, J. L.; Frank, C. W.; Miller, R. D.; Macromolecule 2000, 33, 2346. 30. Wang, C. L.; Weber, M. H.; Lynn, K. G.; Rodbell, K. P. Appl. Phys. Lett. 2002, 81, 4413. 31. Haung, E.; Toney, M. F.; Volksen, W.; Mecerreyes, D.; Brock, P.; Kim, H. C.; Hawker, C. J.; Hedrick, J. L.; Lee, V. Y.; Magbitang, T.; Miller, R. D.; Lurio, L. B. Appl. Phys. Lett. 2002, 81, 2232. 32. Liu, J.; Gan, D.; Hu, C.; Kiene, M.; Ho, P. S.; Volksen, W.; Miller, R. D. Appl. Phys. Lett. 2002, 81, 4180. 33. Kim, H. C.; Wilds, J. B.; Hinsberg, W. D.; Johnson, L. R.; Volksen, W.; Magbitang, T.; Lee, V. Y.; Hedrick, J. L.; Hawker, C. J.; Miller, R. D.; Huang, E. Chem. Mater. 2002, 14, 4628. 34. Huang, Q. R.; Volksen, W.; Huang, E.; Toney, M.; Frank, C. W.; Miller, R, D. Chem. Mater. 2002, 14, 3676. 35. Huang, Q. R.; Kim, H. C.; Huang, E.; Mecerreyes, D.; Hedrick, J. L.; Volksen, W.; Frank, C. W.; Miller, R. D. Macromolecules 2003, 36, 7661. 36. Kim, H. C.; Volksen, W.; Miller, R. D.; Huang, E.; Yang, G.; Briber, R. M.; Shin, K.; Satija, S. K. Chem. Mater. 2003, 15, 609. 37. Hedstrom, J. A.; Toney, M. F.; Huang, E.; Kim, H. C.; Volksen, W.; Magbitang, T.; Miller, R. D. Langmuir 2004, 20, 1535. 38. Kramer, E.; Forster, S.; Goltner, C.; Antonietti, M. Langmuir 1998, 14, 2027. 39. Yang, S.; Pai, J. C. H.; Pai, C. S.; Dabbagh, G.; Nalamasu, O.; Reichmanis, E.; Seputro, J.; Obeng, Y. S. J. Vac. Sci. Technol. B. 2001, 19, 2155. 40. Brunet-Bruneau, A.; Bourgeois, A.; Sanchez, C. Adv. Funct. Mater. 2004, 14, 309. 41. Yu, K.; Hurd, A. J.; Eisenberg, A.; Brinker. C. J. Langmuir 2001, 17, 7961. 42. Yu, K.; Smarsly, B.; Brinker, C. J. Adv. Funct. Mater 2003, 13, 47. 43. Koganti, V. R.; Rankin, S. E., J. Phys. Chem. B 2005, 109, 3279. 44. Zhao, D., Adv. Mater. 1998, 10, 16. 45. Dai, C. A., Ph.D. Thesis, Cornell University, 1996, 17-30. 46. Ndoni, S.; Papadakis, C. M.; Bates, F. S.; Almdal, K. Rev. Sci. Instrum. 1995, 66, 1090. 47. Lu, Y.; Ganguli, R.; Nature, 1997, 389, 364. 48. Haung, E.; Toney, M. F.; Volksen, W.; Mecerreyes, D.; Brock, P.; Kim, H. C.; Hawker, C. J.; Hedrick, J. L.; Lee, V. Y.; Magbitang, T.; Miller, R. D.; Lurio, L. B. Appl. Phys. Lett. 2002, 81, 2232. 49. [a] Lee, L. H.; Chen, W. C.; Liu, W. C. J. Polym. Sci. Polym. Chem., 2002, 40, 1560; [b] Chen, W. C. ; Yen, C. T. J. Vac. Sci. Technol. B, 2000, 18, 201; [c] Yang, C. C.; Chen, W. C. J. Mater. Chem. 2002, 12, 1138; [d] Chen, W. C.; Lee, S. J.; Lee, L. H.; Lin, J. L. J. Mater. Chem. 2002, 12, 3644. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24385 | - |
| dc.description.abstract | 嵌段性共聚高分子本身為具有可調控型態與特殊性質的奈米材料,因而具有很高的研究興趣。在本論文中,依照文獻裡的活性陰離子聚合結合連續單體添加法可成功製備線性嵌段型、異相條型星狀以及嵌段型星狀三種不同構形之嵌段性共聚物poly(styrene-2-vinylpyridine) (PSP2VP)。兩種不同自組裝奈米結構在本論文中被探討:(1)嵌段性共聚物-雙親性(PS-b-P2VP/DBSA)小分子複合物(2)利用嵌段性共聚物為孔洞雛形的模版製備奈米級甲基倍半矽氧烷(MSSQ)孔洞材料。
在第一個研究系統中,藉由啶環上的氮可與DBSA 裡的HSO3基團形成分子間鍵結,因此可得到具有等級制的自組裝超分子結構。FTIR實驗中證實了鍵結作用力的存在。所有實驗裡不同構形之嵌段性共聚高分子都居有類似的組成與相對應的分子量,且在未與DBSA形成複合物之前皆具有相同的層狀形態。小角X光散射的結果顯示這些不同等級制的自組裝超分子結構在高溫時除了梳狀結構存在於母體之外,尚具有六方堆積排列的PS柱狀結構。再者,在線性嵌段型PS-P2VP(DBSA)複合物、異相條型星狀H-PS-b-P2VP(DBSA)複合物中,從層狀到柱狀的形態改變時,規則區域間的距離並沒有很大的改變,但是在嵌段型星狀B-PS-b-P2VP(DBSA)複合物系統裡則是看到明顯大量的減少。而在不同系統中,規則-不規則過渡區亦有明顯的不同。嵌段性星狀B-PS-b-P2VP(DBSA)複合物具有最低的過渡溫度,而異相條型星狀H-PS-b-P2VP(DBSA)複合物則是最高,這些現象可解釋為因為星狀高分子裡核的位置不同所造成,嵌段性星狀的核位於PS區域間,而異相條型星狀的核在介面上,核的位置不同將造成高分子鏈段具有類似非高斯伸展的運動過程。 在第二個研究中,由於氫鍵、離子鍵存在於MSSQ與PS-b-P2VP裡,因此可避免在熱處理前的大規模相分離,而只存在微觀的小區域。可行成自組裝微相結構的PS-b-P2VP將會藉由高溫處裡的過程移除,而留下奈米級的孔洞。本研究提出兩種製備孔洞材料的方式: 蒸發引導自組裝之熱乾燥與沈浸式塗布製程。前者可製備塊狀材料,後者可製備薄膜。孔洞塊狀材料的形態藉由SAXS與TEM作分析;得到結果是:藉由此製程所得的孔洞材料排列規則。另一方面,以FE-SEM、TEM、AFM分析鑑定孔洞薄膜材料的特性;在以異相條型星狀與線性嵌段型做為模版得到的孔洞大小,依照高分子的含量約在17-22nm:另一方面,以嵌段型星狀做為模版得到所得到的結果中,在高分子含量50%時會出現互相連接的孔洞群,此原因可能來自於在製備嵌段型星狀高分子的過程中,不易控制的特性而得到較大的分子量分布。 上述研究顯示,嵌段型共聚物的構形在控制奈米級衍生物扮演極為重要的角色。 | zh_TW |
| dc.description.abstract | Block copolymers have stimulated significant scientific interest since they offer the possibilities to nanoscale materials with tunable morphology and properties. In this thesis, linear diblock copolymer polystyrene-block-poly(2-vinyl pyridine) (L-PS-b-P2VP), heteroarm star copolymer H-PS-b-P2VP, and blockarm star copolymer B-PS-b-P2VP, were successfully synthesized by living anionic polymerization. Then, the different architectures of the PS-b-P2VP were used to prepare two different types of self-assembled nanostructures: (1) block copolymer-amphiphile complexes (PS-b-P2VP/DBSA); (2) mesoporous methylsilsesquioxane (MSSQ) materials using PS-b-P2VP as templates.
The experimental results showed that intermolecular bonding existed between the nitrogen of the 2-VP ring and the HSO3 or DBSA. Thus, the hierarchical self-organized supramolecules were obtained from the PS-b-P2VP/DBSA complexes. All the PSP2VP copolymers with a similar composition and molecular weight have lamellar morphology in the neat state. On complexation with the DBSA, the SAXS profiles suggests the formation of the hierarchical structures consisted of hexagonally packed PS cylinders in the P2VP(DBSA) lamellar morphology at a high temperature. The interdomain distance in the H-PS-b-P2VP(DBSA) and L-PS-b-P2VP(DBSA) complexes does not change significantly as the morphology change from lamellae to cylinder by complexation, but that in the B-PS-b-P2VP(DBSA) complexes shows a significant decrease. Besides, the order-disorder transition also varies significantly in the complexes of different architectures. The B-PS-b-P2VP/DBSA complex has the lowest TODT whereas the H-PS-b-P2VP/DBSA complex has the highest TODT, which is probably due to the difference on the polymer architecture. The central cores in blockarm and heteroarm block copolymers are located inside the microdomain and at the interface, respectively, which results in different degree of non-gaussian chain stretching in these copolymers. In the second topic of the thesis, nanoporous MSSQ films were prepared through the templating of PS-b-P2VP using the processes of evaporation-induced self-assembly dry-casting (for bulk materials) and dip-coating(for thin film). Hydrogen-bonding and ionic bonding interaction between the MSSQ precursors and PSP2VP prevents large-scale phase-separation before thermal treatment. Upon thermal curing, the self-condensation between the MSSQ end group results in the microphase separation between the MSSQ and PSP2VP. The self-organized PSP2VP was removed by thermal curing and left nano-pores in the MSSQ matrix. Morphologies of bulk materials were characterized preferentially using SAXS and TEM. Ordered porous thin films were observed from the images of the FE-SEM, TEM, and AFM. The pore size prepared from the cases of the MSSQ/L-PS-b-P2VP or H-PS-P2VP are in the range of 17 to 22 nm, depending on the PS-b-P2VP loading (30% ~ 50%). However, the MSSQ/B-PS-b-P2VP results in small discrete pores to connected metamorphic pores at polymer loading of 50 wt%, which could be due to the large polydispersity of the B-PS-b-P2VP. The experimental result in this thesis suggests that the architecture of the block copolymers plays a very important role on controlling the morphologies of the resulted nanostructured derivatives. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:24:04Z (GMT). No. of bitstreams: 1 ntu-94-R92549001-1.pdf: 8248405 bytes, checksum: e08b4d8bd66a00f1d4f4df1333e7af5c (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | Table of Contents
Abstract i 摘要 iii Table of Contents v Table Captions ix Figure Captions x Chapter 1 Introduction 1 1-1 Fundamentals and applications of amphiphilic block copolymers 1 1-2 Synthesis of amphiphilic block copolymers by living anionic polymerization 3 1-2-1 General characteristics of living anionic polymerization 3 1-2-2 Synthesis and morphologies of poly(styrene)-block-poly(2-vinyl pyridine)(PS-b-P2VP) with different architecture 4 1-3 Hierarchical self-organized supramolecules derived from amphiphilic block copolymers 7 1-4 Porous materials derived from amphiphilic block copolymers 9 1-4-1 Evaporation-induced self-assembly (EISA) 10 1-4-2 EISA combined with dip-coating 11 1-5 Research objectives 12 Chapter 2 Experimental 15 2-1 Materials 15 2-2 Purification 17 2-2-2 Monomer purification 17 2-2-2 Solvent purification 19 2-3 Anionic polymerization of PS-b-P2VP 20 2-3-1 Linear L-PS-b-P2VP block copolymer 21 2-3-2 Heteroarm star H-PS-b-P2VP block copolymer 21 2-3-3 Block-arm star B-PS-b-P2VP block copolymer 22 2-4 Block copolymer/amphiphile complex preparation 23 2-5 Synthesis of oligomeric methyl silsesquioxane (MSSQ) 23 2-6 Preparation of mesoporous MSSQ materials 24 2-6-1 Mesoporous MSSQ materials prepared by dry- casting 24 2-6-2 Mesoporous MSSQ thin films prepared by EISA combined with dip-coating 25 2-7 Characterization 26 2-7-1 Instruments 26 2-7-2 Conditions of instrumental analysis 29 Chapter 3 Synthesis and Characterization of the Amphiphilic Block Copolymers with Different Architectures, L-PS-b-P2VP, H-PS-b-P2VP, and B-PS-b-P2VP 30 3-1 Molecular weight and architecture information 30 3-2 FTIR analysis 30 3-3 Thermal analysis 31 3-4 Conclusions 32 Chapter 4 Characterization of Hierarchical Self-Organized Supramolecules with Different Block Copolymer Architecture 33 4-1 Methodology for preparation hierarchical self-organized supramolecules derived from block copolymers with different architectures 33 4-2 FTIR Analysis 33 4-3 WAXS analysis 35 4-4 SAXS profiles and PLOM analysis 35 4-4-1 Linear diblock copolymer L-PS-b-P2VP(DBSA), L1(DBSA), system 36 4-4-2 Heteroarm star copolymer H-PS-b-P2VP(DBSA) , H1(DBSA), system 38 4-4-3 Blockarm star copolymer B-PS-b-P2VP(DBSA) , B1(DBSA), system 39 4-5 Discussions 40 4-6 Conclusions 42 Chapter 5 Synthesis and Characterization of Mesoporous MSSQ Materials by Using Block Copolymer with Different Architectures as Templates 44 5-1 Methodology of preparing mesoporous MSSQ materials by utilizing block copolymer of three different kinds of architecture as templates 44 5-2 Molecular structure of the prepared MSSQ 45 5-3 FTIR analysis of the prepared MSSQ/PS-b-P2VP 46 5-4 Characterization of mesoporous MSSQ materials by EISA- dry casting 49 5-4-1 SAXS analysis 50 5-4-2 TEM analysis 51 5-5 Characterization of mesoporous MSSQ thin films by EISA combined with dip-coating 52 5-5-1 Morphology analysis 52 5-5-2 Refractive index and thickness by n&k analysis 54 5-6 Discussions 55 5-7 Conclusions 57 Chapter 6 Conclusions 59 6-1 Hierarchical self-organized supramolecules using different architectures PS-b-P2VP complexed with DBSA 59 6-2 Mesoporous MSSQ materials using block copolymers with different architectures as templates 60 References 62 Table Captions Table 1-1 AB diblock copolymersformed by sequential addition of monomers using anionic polymerization 66 Table 3-1 Molecular weight and PDI of the prepared linear diblock copolymer, L-PS-b-P2VP 67 Table 3-2 Molecular weight and other architecture information of the prepared heteroarm star copolymer, H-PS-b-P2VP 67 Table 3-3 Molecular weight and other architecture information of the prepared blockarm star copolymer, B-PS-b-P2VP 67 Table 5-1 Assignment of each peak area and the network to cage ratio estimated from integration analysis of FTIR spectra 68 Table 5-2 Physical properties of mesoporous MSSQ thin film. 69 Figure Captions Figure 1-1 Common morphologies of microphase-separated block copolymers: body centered cubic (bcc) packed spheres (BCC), hexagonally ordered cylinders (HEX), gyroid (Ia3d), hexagonally perforated layers (HPL), modulated lamellae (MLAM), lamellae (LAM), cylindrical micelles (CYL), and spherical micelles (MIC) 70 Figure 1-2 The synthetic procedure of linear diblock copolymer (L-PS-b-P2VP) 71 Figure 1-3 The synthetic procedure of heteroarm star copolymer (H-PS-b-P2VP.) 72 Figure 1-4 The synthetic procedure of blockarm star copolymer B-PS-b-P2VP. 73 Figure 1-5 Summary of phase behavior results for the pure PS-b-PVP diblock copolymer samples 74 Figure 1-6 Theoretical phase diagram calculated by Matsen et al. for diblock copolymers in the intermediate segregation regime. 75 Figure 1-7 Comb-shaped supramolecules and their hierarchical self-organization, showing primary and secondary structures. Similar schemes can, in principle, be used both for fexible and rodlike polymers 76 Figure 1-8 Structure-within-structure for PS-b-P4VP 77 Figure 1-9 Methodology for preparing hierarchical self-organized supramolecules derived from block copolymers with different architecture 78 Figure 1-10 Methodology of preparing of the prepared mesoporous MSSQ materials by using amphiphlic block copolymer, PS-b-P2VP, with three kinds of architecture as templates 79 Figure 2-1 Flowchart of the synthesis of living anionic polymerization of linear diblock copolymer, heteroarm star copolymer and blockarm star copolymer. 80 Figure 2-2 Reaction scheme of synthesizing oligomeric methyl silsesquioxane, MSSQ 81 Figure 3-1 FTIR spectrum of the prepared L-PS-b-P2VP, L1 82 Figure 3-2 FTIR spectrum of the prepared H-PS-b-P2VP, H1 83 Figure 3-3 FTIR spectrum of the prepared B-PS-b-P2VP, B1 84 Figure 3-4 FTIR spectrum of the prepared L-PS-b-P2VP, L2 85 Figure 3-5 FTIR spectrum of the prepared H-PS-b-P2VP, H2 86 Figure 3-6 FTIR spectrum of the prepared B-PS-b-P2VP, B2 87 Figure 3-7 TGA curves of the prepared PS-b-P2VP 88 Figure 3-8 DSC curve of the prepared block copolymer 89 Figure 4-1 FTIR spectra for the pure linear diblock copolymer (L1) and DBSA together with the complex L1(DBSA) 90 Figure 4-2 The detailed FTIR spectra of the 1000 cm-1 region in L1(DBSA) complex 91 Figure 4-3 The detailed FTIR spectra of the 1600 cm-1 region in L1(DBSA) complex 91 Figure 4-4 FTIR spectra for the pure heteroarm star copolymer (H1) and DBSA together with the complex H1(DBSA) 92 Figure 4-5 The detailed FTIR spectra of the 1000 cm-1 region in h1(DBSA) complex 93 Figure 4-6 The detailed FTIR spectra of the 1600 cm-1 region in H1(DBSA) complex 93 Figure 4-7 FTIR spectra for the pure blockarm star copolymer (B1) and DBSA together with the complex B1(DBSA) 94 Figure 4-8 The detailed FTIR spectra of the 1000 cm-1 region in B1(DBSA) complex 95 Figure 4-9 The detailed FTIR spectra of the 1600 cm-1 region in B1(DBSA) complex 95 Figure 4-10 WAXS diffraction curves of L1 (DBSA) at 25℃ 96 Figure 4-11 WAXS diffraction curves of H1 (DBSA) at 25℃ 96 Figure 4-12 WAXS diffraction curves of B1 (DBSA) at 25℃ 97 Figure 4-13 SAXS profiles of neat L1 copolymer obtained during a continuous heating cycle. 98 Figure 4-14 SAXS profiles of L1(DBSA) complex obtained during a continuous heating cycle. 99 Figure 4-15 SAXS profiles of L1(DBSA) complex obtained during a continuous heating cycle 100 Figure 4-16 SAXS profiles of L1(DBSA) complex obtained at 200℃ 101 Figure 4-17 Change in SAXS profiles near ordering of microdomains P2VPDBSA) in the case of L1(DBSA) 102 Figure 4-18 A plot of the reciprocal of the intensity of the diffraction peak (1/Imax) versus reciprocal temperature (1/T) in the case of L1(DBSA) 103 Figure 4-19 PLOM images of L1(DBSA) complex obtained during heating and then subsequent cooling. 104 Figure 4-20 SAXS profiles of neat H1 copolymer obtained during a continuous heating cycle 105 Figure 4-21 SAXS profiles of neat H1 copolymer obtained at Kyoto 106 Figure 4-22 SAXS profiles of H1(DBSA) complex obtained during a continuous heating cycle at NTHU 107 Figure 4-23 SAXS profiles of H1(DBSA) complex obtained at 240℃ 108 Figure 4-24 Temperature dependence of Imax of the primary SAXS peak in the low q region for estimating the TODT of H1(DBSA) complexes. 109 Figure 4-25 Temperature dependence of Imax of the primary SAXS peak in the high q region for estimating the TODT of H1(DBSA) complexes. 110 Figure 4-26 PLOM images of H1(DBSA) complex obtained during heating and then subsequent cooling. 111 Figure 4-27 SAXS profiles of neat B1 copolymer obtained during a continuous heating cycle. 112 Figure 4-28 SAXS profiles of neat B1 copolymer obtained at Kyoto 113 Figure 4-29 SAXS profiles of B1(DBSA) complex obtained during a continuous heating cycle at NTHU. 114 Figure 4-31 Temperature dependence of Imax of the primary SAXS peak in the high q region and the low q region for estimating the TODT of B1(DBSA) complexes. 116 Figure 4-32. PLOM images of B7(DBSA) complex obtained during heating and then subsequent cooling. 117 Figure 4-33 Interdomain distances in three syste 118 Figure 4-34 Proposed morphology change from L1 to L1(DBSA) 119 Figure 4-35 Proposed morphology change from H1 to H1(DBSA) 120 Figure 4-36 Proposed morphology change (situation one) from B1 to B1(DBSA) 121 Figure 4-37 Proposed morphology change (situation two) from B1 to B1(DBSA) 122 Figure 5-1 The FTIR spectra of the prepared MSSQ precursor at different temperatures 123 Figure 5-2 The FTIR spectra of MSSQ/L-PS-b-P2VP (L2)at T=25℃. 124 Figure 5-3 The shifting of the Si-OH absorption peak of the prepared MSSQ/ L-PS-b-P2VP (L2) in the FTIR spectra 125 Figure 5-4 The FTIR spectra of MSSQ/H-PS-b-P2VP (H2) at T=25℃ 126 Figure 5-5 The shifting of the Si-OH absorption peak of the prepared MSSQ/ H-PS-b-P2VP (H2) in the FTIR spectra 127 Figure 5-6 The FTIR spectra of MSSQ/B-PS-b-P2VP (B2) at T=25℃. 128 Figure 5-7 The shifting of the Si-OH absorption peak of the prepared MSSQ/ B-PS-b-P2VP (B2) in the FTIR spectra 129 Figure 5-8 The FTIR spectra of MSSQ/L-PS-b-P2VP at polymer loading 10 wt% (MSSQ/L10) under different curing temperatures 130 Figure 5-9 The FTIR spectra of MSSQ/L-PS-b-P2VP at polymer loading 20wt% (MSSQ/L20) under different curing temperatures 131 Figure 5-10 The FTIR spectra of MSSQ/L-PS-b-P2VP at polymer loading 30 wt% (MSSQ/L30) under different curing temperatures 132 Figure 5-11 The FTIR spectra of MSSQ/L-PS-b-P2VP at polymer loading 40 wt% (MSSQ/L40) under different curing temperatures 133 Figure 5-12 The FTIR spectra of MSSQ/L-PS-b-P2VP at polymer loading 50 wt% (MSSQ/L50) under different curing temperatures 134 Figure 5-13 The FTIR spectra of MSSQ/H-PS-b-P2VP at polymer loading 10 wt% (MSSQ/H10) under different curing temperatures 135 Figure 5-14 The FTIR spectra of MSSQ/H-PS-b-P2VP at polymer loading 20 wt% (MSSQ/H20) under different curing temperatures 136 Figure 5-15 The FTIR spectra of MSSQ/H-PS-b-P2VP at polymer loading 30 wt% (MSSQ/H30) under different curing temperatures 137 Figure 5-16 The FTIR spectra of MSSQ/H-PS-b-P2VP at polymer loading 40 wt% (MSSQ/H40) under different curing temperatures 138 Figure 5-17 The FTIR spectra of MSSQ/H-PS-b-P2VP at polymer loading 50 wt% (MSSQ/H50) under different curing temperatures 139 Figure 5-18 The FTIR spectra of MSSQ/B-PS-b-P2VP at polymer loading 10 wt% (MSSQ/B10) under different curing temperatures 140 Figure 5-19 The FTIR spectra of MSSQ/B-PS-b-P2VP at polymer loading 20 wt% (MSSQ/B20) under different curing temperatures 141 Figure 5-20 The FTIR spectra of MSSQ/B-PS-b-P2VP at polymer loading 30 wt% (MSSQ/B30) under different curing temperatures 142 Figure 5-21 The FTIR spectra of MSSQ/B-PS-b-P2VP at polymer loading 40 wt% (MSSQ/B40) under different curing temperatures 143 Figure 5-23 The FTIR spectra of the MSSQ/L-PS-b-P2VP hybrids after baking at 120 ℃ 145 Figure 5-24 The FTIR spectra of the MSSQ/H-PS-b-P2VP hybrids after baking at 120 ℃ 146 Figure 5-25 The FTIR spectra of the MSSQ/B-PS-b-P2VP hybrids after baking at 120 ℃ 147 Figure 5-26 The FTIR spectra of the MSSQ/L-PS-b-P2VP hybrids after pyrolysis at 400 ℃ 148 Figure 5-28 The FTIR spectra of the MSSQ/B-PS-b-P2VP hybrids after pyrolysis at 400 ℃ 150 Figure 5-29 The variation in the ratio of network to cage structure after curing at 120 ℃and 400 ℃, respectively.(A) MSSQ/L-PS-b-P2VP (B) MSSQ/H-PS-b-P2VP (C) MSSQ/B-PS-b-P2VP 151 Figure 5-30 SAXS profiles of MSSQ/L-PS-b-P2VP hybrids (polymer loading; 30, 40, 50 wt%) after baking at 120℃ 152 Figure 5-31 SAXS profiles of MSSQ/L-PS-b-P2VP hybrids (polymer loading; 30, 40, 50 wt%) after pyrolysis at 400℃ 153 Figure 5-32 Comparison between the SAXS profile of MSSQ/L-PS-b-P2VP hybrids (polymer loading: 40wt%) baking at 120℃ with that after pyrolysis at 400℃. 154 Figure 5-33 Comparison between the SAXS profile of MSSQ/H-PS-b-P2VP hybrids (polymer loading: 40wt%) baking at 120℃ with that after pyrolysis at 400℃ 155 Figure 5-33 Comparison between the SAXS profile of MSSQ/H-PS-b-P2VP hybrids (polymer loading: 40wt%) baking at 120℃ with that after pyrolysis at 400℃ 155 Figure 5-34 SAXS profiles of MSSQ/H-PS-b-P2VP hybrids (polymer loading; 30, 40, 50 wt%) after pyrolysis at 400℃. 156 Figure 5-35 Comparison between the SAXS profile of MSSQ/B-PS-b-P2VP hybrids (polymer loading: 40wt%) baking at 120℃ with that after pyrolysis at 400℃ 157 Figure 5-35 Comparison between the SAXS profile of MSSQ/B-PS-b-P2VP hybrids (polymer loading: 40wt%) baking at 120℃ with that after pyrolysis at 400℃ 157 Figure 5-36 SAXS profiles of MSSQ/B-PS-bP2VP hybrids (polymer loading; 30, 40, 50 wt%) after pyrolysis at 400℃. 158 Figure 5-37 TEM image of the MSSQ porous materials using H40 as templates after curing at 400 ℃ 159 Figure 5-38 Tapping mode AFM height image of MSSQ after pyrolysis at 400℃ 160 Figure 5-39 Tapping mode AFM height image of MSSQ/L10 after pyrolysis at 400℃ 160 Figure 5-40 Tapping mode AFM height image of MSSQ/L20 after pyrolysis at 400 161 Figure 5-41 Tapping mode AFM height image of MSSQ/L30 after pyrolysis at 400℃ 161 Figure 5-42 Tapping mode AFM height image of MSSQ/L40 after pyrolysis at 400℃ 162 Figure 5-43 Tapping mode AFM height image of MSSQ/L50 after pyrolysis at 400℃ 162 Figure 5-44 Tapping mode AFM height image of MSSQ/H10 after pyrolysis at 400℃ 163 Figure 5-45 Tapping mode AFM height image of MSSQ/H20 after pyrolysis at 400℃ 163 Figure 5-46 Tapping mode AFM height image of MSSQ/H30 after pyrolysis at 400℃ 164 Figure 5-47 Tapping mode AFM height image of MSSQ/H40 after pyrolysis at 400℃ 164 Figure 5-48 Tapping mode AFM height image of MSSQ/H50 after pyrolysis at 400℃ 165 Figure 5-49 Tapping mode AFM height image of MSSQ/B10 after pyrolysis at 400℃ 165 Figure 5-50 Tapping mode AFM height image of MSSQ/B20 after pyrolysis at 400℃ 166 Figure 5-51 Tapping mode AFM height image of MSSQ/B30 after pyrolysis at 400℃ 166 Figure 5-51 Tapping mode AFM height image of MSSQ/B30 after pyrolysis at 400℃ 166 Figure 5-52 Tapping mode AFM height image of MSSQ/B40 after pyrolysis at 400℃ 167 Figure 5-53 Tapping mode AFM height image of MSSQ/B50 after pyrolysis at 400℃ 167 Figure 5-54 FESEM image of the MSSQ/H40 after pyrolysis at 400 ℃ 168 Figure 5-55 FESEM image of the MSSQ/B40 after pyrolysis at 400 ℃ 168 Figure 5-55 FESEM image of the MSSQ/B40 after pyrolysis at 400 ℃ 168 Figure 5-56 TEM images of the cross-sectional area of the prepared films MSSQ/H30 after pyrolysis at 400℃ 169 Figure 5-57 TEM images of the cross-sectional area of the prepared films MSSQ/B30 after pyrolysis at 400℃. 169 Figure 5-58 TEM plane-view image of the MSSQ/B40 after pyrolysis at 400 ℃ 170 Figure 5-59 Variation of the refractive index at different polymer loading with different block copolymer architectures. 171 | |
| dc.language.iso | en | |
| dc.subject | 孔洞材料 | zh_TW |
| dc.subject | 嵌段式共聚物 | zh_TW |
| dc.subject | 階層結構 | zh_TW |
| dc.subject | hierarchical structures | en |
| dc.subject | porous materials | en |
| dc.subject | block copolymer | en |
| dc.title | 利用不同構形之嵌段式共聚物PS-b-P2VP
製備奈米材料之形態研究 | zh_TW |
| dc.title | Morphologies of Nano-materials
Derived from Amphiphilic Block Copolymers, PS-b-P2VP, with Different Architectures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 陳信龍 | |
| dc.contributor.oralexamcommittee | 邱文英,蘇安仲,何榮銘 | |
| dc.subject.keyword | 嵌段式共聚物,階層結構,孔洞材料, | zh_TW |
| dc.subject.keyword | block copolymer,hierarchical structures,porous materials, | en |
| dc.relation.page | 172 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2005-07-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 8.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
