請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24348完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳秀熙(Tony Hsiu-Hsi Chen) | |
| dc.contributor.author | Ruoh-Fang Yen | en |
| dc.contributor.author | 顏若芳 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:22:47Z | - |
| dc.date.copyright | 2005-08-03 | |
| dc.date.issued | 2005 | |
| dc.date.submitted | 2005-07-25 | |
| dc.identifier.citation | 1. Huang DP. Epidemiology of nasopharyngeal carcinoma. Ear Nose Throat J 1990; 69:222-225.
2. Department of Health. Cancer Registry Annual Report Republic of China, 1998. Department of Health, The Executive Yuan, Republic of China, 2002. 3. Cheng SH, Jian JJ, Tsai SY, et al. Long-term survival of nasopharyngeal carcinoma following concomitant radiotherapy and chemotherapy. Int J Radiat Oncol Biol Phys 2000;48:1323-30. 4. Cheng SH, Tsai SY, Yen KL, et al. Concomitant radiotherapy and chemotherapy for early stage nasopharyngeal carcinoma. J Clin Oncol 2000;18:2040-5 5. Oh JL, Vokes EE, Kies MS, et al. Induction chemotherapy followed by concomitant chemoradiotherapy in the treatment of locoregionally advanced nasopharyngeal cancer. Ann Oncol. 2003;14:564-569. 6. Rischin D, Corry J, Smith J, et al. Excellent disease control and survival in patients with advanced nasopharyngeal cancer treated with chemoradiation. J Clin Oncol 2002;20:1845-1852. 7. Hong RL, Ting LL, Ko JY, et al. Induction chemotherapy with mitomycin, epirubicin, cisplatin, fluorouracil, and leucovorin followed by radiotherapy in the treatment of locoregionally advanced nasopharyngeal carcinoma. J Clin Oncol 2001;19:4305-4313. 8. Baker SR and Wolfe RA. Prognostic factors of nasopharyngeal malignancy. Cancer.1982; 49:163-169. 9. Liu MT, Hsieh CY, Chang TH, et al. Prognostic factors affecting the outcome of nasopharyngeal carcinoma. Jpn J Clin Oncol 003; 33:501-508. 10. Farias TP, Dias FL, Lima RA, et al. Prognostic factors and outcome for nasopharyngealcarcinoma. Arch Otolaryngol Head Neck Surg 2003; 129:794-799. 11. Chong VF, Fan YF. Detection of recurrent nasopharyngeal carcinoma: MR imaging versus CT. Radiology 1997; 202:463-470. 12. Ng SH, Chang JTC, Ko SF, et al. MRI in recurrent nasopharyngeal carcinoma. Neuroradiology 1999; 41:855-862. 13. Olmi P, Fallai C, Colagrande S, et al. Staging and follow-up of nasopharyngeal carcinoma: magnetic resonance imaging versus computerized tomography. Int J Radiat Oncol Biol Phys 1995; 32:795-800. 14. Spaepen K, Stroobants S, Dupont P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is[18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol 2001;19:414-419. 15. Spaepen K, Stroobants S, Dupont P, et al. Early restaging positron emission tomography with 18F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin’s lymphoma. Ann Onco. 2002; 13:1356-1363. 16. Kosgakoglu L, Cloemen M, Leonard JP, et al. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med 2002;43:1018-1027. 17. Jansson T, Westlin JE, Ahlstrom H, et al. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol 1995;13:1470-1477. 18. Bassa P, Kim EE, Inoue T, et al: Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med 1996;37:931-938. 19. Smith IC, Welch AE, Hutcheon AW, et al. Positron tomography using [18F]-fluorodeoxy-d-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 2000;18:1679-1688. 20. Schelling M, Avril N, Nährig J, et al. Positron emission tomography using [18F]fluorodeoxyglucose for monitoring to primary chemotherapy in breast cancer. J Clin Oncol 2000;18:1689-1695. 21. Burcombe RJ, Makris A, Pittam M, et al. Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using[18F]-fluorodeoxyglucose positron emission tomography. Eur J Cancer 2002;38:375-379. 22. Schulte M, Brecht-Krauss D, Werner M, et al: Evaluation of neoadjustvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 1999;40:1637-1643. 23. Franzius C, Bielack S, Flege S, et al. Prognostic significance of 18F-FDG and 99m Tc-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 2002;43:1012-1017. 24. Weber WA, Ott K, Becker K, et al. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophgogastric junction by metabolic imaging. J Clin Oncol 2001;19:3058-3065. 25. Brücher B, Weber W, Bauer M, et al. Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography. Ann Surg 2001;233:300-309. 26. Flamen P, Van Cutsem E, Lerut A, et a. Positron emission tomography for assessment of the response to induction chemotherapy in locally advanced esophageal cancer. Ann Oncol 2002;13:361-368. 27. Ott K, Fink U, Becker K, et al. Prediction of response to properative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol 2003;21:4604-4610. 28. Weber WA, Petersen V, Schmidt B, et al. Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy to quantitative assessment of glucose use. J Clin Oncol 2003: 21:2651-2657. 29. Lowe VJ, Dunphy FR, Varvares M, et al. Evaluation of chemotherapy response in patients with advanced had and neck cancer using [F-18]fluorodeoxyglucose positron emission tomography. Head Neck 1997;19:666-674. 30. Kostakoglu L, Goldsmith SJ. PET in the assessment of therapy response in patients with carcinoma of the head and neck and of the esophagus. J Nucl Med 2004;45:56-68. 31. Reisser C, Haberkom U, Dimitrakopulou-Strauss A, et al. Chemotherapeutic management of head and neck malignancies with positron emission tomography. Arch Otolaryngol Head Neck Surg 1995; 121:272-276. 32. Kao CH, ChangLai SP, Chieng PU, et al. Detection of recurrent or persistent nasopharyngeal carcinomas after radiotherapy with 18-fluoro-2- deoxyglucose positron emission tomography and comparison with computed tomography. J Clin Oncol 1998; 16:3550-3555. 33. Fischbein NJ, AAssar OS, Caputo GR, et al. Clinical utility of positron emission tomography with 18F-fluorodeoxyglucose in detecting residual/recurrent squamous cell carcinoma of the head and neck. Am J Neuroradiol 1998; 19:1189-1196. 34. Kao CH, Shiau YC, Shen YY, et al. Detection of recurrent or persistent nasopharyngeal carcinomas after radiotherapy with technetium-99m methoxyisobutylisonitrile single photon emission computed tompgraphy and conputed tomography. Comparison with 18-fluoro-2-deoxyglucose positron emission tomography. Cancer 2002; 94:1981-1986. 35. Yen RF, Hung RL, Pan MH, et al. 18-fluoro-2-deoxyglucose positron emission tomography in detecting residual/recurrent nasopharyngeal carcinomas and comparison with magnetic resonance imaging. Cancer 2003; 98:283-287. 36. Lee AWM, Foo W, Law SC, Poon YF, O SK, Tung SY, wt al. Staging of nasopharyngeal carcinoma: from Ho’s to the new UICC system. Int J Cancer 1999; 84:179-187. 37. American Joint Committee on Cancer (AJCC). Manual for staging of cancer, sixth edition. Springer, 2002; 35-36. 38. Shanmugaratnam K. Histopahtology of nasopharyngeal carcinoma. Correlations with epideriomolgy, survival rates and other biological characteristics. Cancer 1979; 44:1029-1044. 39. Ng SH, Liu HM, Ko SF, et al. Postreatment imaging of the nasopharynx. Eur J Radiol 2002; 44:82-95. 40. Roychowdhury DG. Tseng AJ, Weinbery V, et al. New prognostic factors in nasopharyngeal carcinoma: tumor angiogenesis and C-erbB2 expression. Cancer 1996; 77:1419-1426. 41. Mould RF, Tai THP. Nasopharyngeal carcinoma: treatments and outcomes in the 20th century. Brit J Radiol 2002; 75:307-339. 42. Di Chiro G. Positron emission tomography using 18F-fluoro-deoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 1986; 22:360-371. 43. Rigo P, Paulus P, Kaschten BJ, et al. Oncological applications of positron emission tomography with fluorine-18 fluorodeoxyglucose. Eur J Nucl Med 1996; 23:1641-1674. 44. Gallagher BM, Fowler JS, Gutterson NI et al. Metabolic trapping as a principle of radiopharmaceutical design : some factors responsible for the biodistribution of F-18-2-deoxy-2-fluoro-D-glucose. J Nucl Med 1978; 19:1154-1161. 45. Sokoloff L, Reivich M, Kennedy C et al. The (14C)-deoxyglucose method the the mesurement of local cerebral glucose utilization: theroy, procedure and normal values on the conscious and anesthetized albino rat. J neurochem 1977; 28:897-916. 46. Warburg O. On the origin of cancer cells. Science 1956; 123:309-314. 47. Hatanaka M. Transport of sugar in tumor cell membranes. Biochem Biophys Acta 1974; 355:77-104. 48. Hiraki Y, Rosen OM, Birnbaum MJ. Growth factors rapidly induce expression of the glucose transporter gene. J boil chem 1988; 263:13655-13662. 49. Gould MK, aclean CC, Kuschner WG, et al: Accuracy of positron emission tomography for diagnosis of pulmonary nodules and mass lesions: A meta-analysis. JAMA 2001; 285:914-924. 50. Moog F, Bangerter M, Diederichs CG, et al. Lymphoma: role of whole-body 2-deoxy-2-[F-18]fluoro-D-glucose(FDG) PET in nodal staging. Radiology 1997; 203:795-800. 51. Wahl RL, Cody RL, Hutchnis GD, et al. Primary and metastatic breast carcinoma: initial clinical evaluation with PET with the radiolabeled glucose analogue 2[F-18]2-deoxy-2-fluoro-D-glucose. Radiology 1991; 179:765-770. 52. Price P, Jones T. Can positron emission tomography (PET) be used to detect subclinical response to cancer therapy? The EC PET Oncology Concerted Action and the EORTC PET Study Group. Eur J Cancer 1995; 31A:1924-1927. 53. Young H, Baum R, Cremerius U, et al. Measurement of clinical and subclinical tumour response using [18F]-fluorodexoyglucose and positron emission tomography: review and 1999 EORTC recommendation. Eur J Cancer 1999;35:1773-1782. 54. Spaepen K, Stroobants S, Dupont P, Van Steenweghen S, Thomas J, Vandenberghe P, et al. Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is[18F]FDG-PET a valid alternative to conventional diagnostic methods? J Clin Oncol 2001; 19:414-419. 55. Spaepen K, Stroobants S, Dupont P, Vandenberghe P, Thomas J, de Groot T, et al. Early restaging positron emission tomography with 18F-fluorodeoxyglucose predicts outcome in patients with aggressive non-Hodgkin’s lymphoma. Ann Oncol 2002; 13:1356-1363. 56. Kosgakoglu L, Cloemen M, Leonard JP, Kuji I, Zoe H, and Goldsmith SJ. PET predicts prognosis after 1 cycle of chemotherapy in aggressive lymphoma and Hodgkin’s disease. J Nucl Med 2002; 43:1018-1027. 57. Jansson T, Westlin JE, Ahlstrom H, Lilja A, Langstrom B, and Bergh J. Positron emission tomography studies in patients with locally advanced and/or metastatic breast cancer: a method for early therapy evaluation? J Clin Oncol 1995; 13:1470-1477. 58. Bassa P, Kim EE, Inoue T, Wong FC, Korkmaz M, Yang DJ, et al. Evaluation of preoperative chemotherapy using PET with fluorine-18-fluorodeoxyglucose in breast cancer. J Nucl Med 1996; 37:931-938. 59. Smith IC, Welch AE, Hutcheon AW, Miller ID, Payne S, Chilcott F, et al. Positron tomography using [18F]-fluorodeoxy-d-glucose to predict the pathologic response of breast cancer to primary chemotherapy. J Clin Oncol 2000; 18:1679-1688. 60. Schelling M, Avril N, Nährig J, Kuhn W, Römer W, Sattler D, et al. Positron emission tomography using [18F]fluorodeoxyglucose for monitoring to primary chemotherapy in breast cancer. J Clin Oncol 2000; 18:1689-1695. 61. Burcombe RJ, Makris A, Pittam M, Lowe J, Emmott J, and Wong WL. Evaluation of good clinical response to neoadjuvant chemotherapy in primary breast cancer using [18F]-fluorodeoxyglucose positron emission tomography. Eur J Cancer 2002; 38:375-379. 62. Schulte M, Brecht-Krauss D, Werner M, Hartwig E, Sarkar MR, Keppler P, et al. Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 1999; 40:1637-1643. 63. Franzius C, Bielack S, Flege S, Sciuk J, Jürgens H, and Schober O. Prognostic significance of 18F-FDG and 99m Tc-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 2002; 43:1012-1017. 64. Weber WA, Ott K, Becker K, Dittler HJ, Helmberger H, Avril NE, et al. Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging. J Clin Oncol 2001; 19:3058-3065. 65. Brücher B, Weber W, Bauer M, Fink U, Avril N, Stein HJ, et al. Neoadjuvant therapy of esophageal squamous cell carcinoma: response evaluation by positron emission tomography. Ann Surg 2001; 233:300-309. 66. Flamen P, Van Cutsem E, Lerut A, Cambier JP, Haustermans K, Bormans G, et al. Positron emission tomography for assessment of the response to induction chemotherapy in locally advanced esophageal cancer. Ann Oncol 2002; 13:361-368. 67. Ott K, Fink U, Becker K, Stahl A, Dittler HJ, Busch R, Stein H, et al. Prediction of response to properative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial. J Clin Oncol 2003; 21:4604-4610. 68. Weber WA, Petersen V, Schmidt B, Tyndale-Hines L, Link T, Peschel C, et al. Positron emission tomography in non-small-cell lung cancer: prediction of response to chemotherapy to quantitative assessment of glucose use. J Clin Oncol 2003: 21:2651-2657. 69. Lowe VJ, Dunphy FR, Varvares M, Kim H, Wittry M, Dunphy CH, et al. Evaluation of chemotherapy response in patients with advanced had and neck cancer using [F-18]fluorodeoxyglucose positron emission tomography. Head Neck 1997; 19:666-674. 70. Kostakoglu L, Goldsmith SJ. PET in the assessment of therapy response in patients with carcinoma of the head and neck and of the esophagus. J Nucl Med 2004; 45:56-68. 71. Reisser C, Haberkom U, Dimitrakopulou-Strauss A, Seifert E, and Strauss LG. Chemotherapeutic management of head and neck malignancies with positron emission tomography. Arch Otolaryngol Head Neck Surg 1995; 121:272-276. 72. Rozental JM, Levine RL, Nickles RJ, Dobkin JA. Glucose uptake by gliomas after treatment. Arch Neurol 1989; 46:1302-1307. 73. De Witte O, Hildebrand J, Luxen A, Goldman S. Acute effect of carmustine on glucose metabolism in brain and glioblastoma. Cancer 1994; 74:2836-2842. 74. Fulham MJ, Bruneti A, Aloj H, et al. Decreased cerebral glucose metabolism in patients with brain tumours: an effect of corticosteroids. J Neurosurg 1995; 83:657-664. 75. O’Reilly Sm, newlands ES, Harte RJA, et al. Early changes in tumour glucose metabolism may predict and quantify response of gliomas to chemotherapy: a phase II study using temozolomide. Proc Am Soc Clin Oncol 1995; 14:499. 76. Yen TC, Chang YC, Chan SC, et al. Are dual-phase 18F-FDG PET scans necessary in nasopharyngeal carcinoma to assess the primary tumour and loco-regional nodes. Eur J Nucl Med Mol Imaging 2005; 32:541-548. 77. Kao CH, Hsieh JF, Tsai SC, et al. Comparison of 18-fluoro-2deoxyglucose positron emission tomography and computed tomography in detection of cervical lymph node metastases of nasopharyngeal carcinoma. Ann Oto Rhinol Laryngol 2000; 109:1130-1134. 78. Ng SH, Chang TC, Chan SC, et al. Nodal metastasee of nasopharyngeal carcinoma: patterns of disease on MRI and FDG PET. Eur J Nucl Med Mol Imaging 2004; 31:1073-1080. 79. Yen TC, Chang JTC, Ng SH, et al. The value of 18F-FDG PET in the detection of stage M0 carcinoma of the nasopharynx. J Nucl Med 2005; 46:405-410. 80. Change JTC, Chan SC, Yen TC, et al. Nasopharyngeal carcinoma staging by (18)F-Fluorodeoxyglucose positron emission tomography. Int J Radiat Oncol Biol Phys 2005; 62:501-507. 81. Nishioka T, Shiga T, Shirato H, et al. Image fusion between 18FDG-PET and MRI/CT for radiotherapy planning of oropharyngeal and nasopharyngeal carcinomas. Int J Radiat Oncol Biol Phys 2002; 53:1051-1057. 82. Tsai MH, Shiau YC, Kao CH, et al. Detection of recurrent nasopharyngeal carcinomas with positron emission tomography using 18-fluoro-2-deoxyglucose in patients with indeterminate magnetic resonance imaging findings after radiotherapy. J Cancer Res Clin Oncol 2002; 128:279-282. 83. Ng SH, Chang JTC, Chan SC, et al. Clinical usefulness of 18F-FDG PET in nasopharyngeal carcinoma patients with questionable MRI findings for recurrence. J Nucl Med 2004; 45:1669-1676. 84. Kaplan ES, Meier P. Non-parametric estimation from incomplete observations. J Am Stat Assoc 1958; 58:457-481. 85. Goerres GW, Mosna-Firiejczyk K, Steurer J, et al. Assessment of clinical utility of 18F-FDG PET in patients with head and neck cancer: a probability analysis. Eur J Nucl Med Mol Imaging 2003; 30:562-571. 86. Beck JR, Kassirer JP, Pauker SG: A convenient approximation of life expectancy (the “DEALE”): I. Validation of the method. Am J Med 1982a; 73:883-888. 87. Chua DTT, Wei WI, Sham JS, et al. Treatment outcome for synchronous locoregional failures of nasopharyngeal carcinoma. Head Neck 2003;?585-594. 88. Poon D, Yap sp, Wong ZW, et al. Concurrent chemoradiotherapy in locoregionally recurrent nasopharyneal carcinoma. Int J Radiat Oncol Biol Phys 2004; 59:1312-1318. 89. Shin SS, Ahn YC, Lim DH, et al. High dose 3-dimensional re-irradiation for locally recurrent nasopharyngeal cancer. Yonsei Med J 2004; 45:100-106. 90. Higashi K, Anaira CC, Wahl RL. Does FDG uptake measure proliferative activity of human cancer cells? in vitro comparison with DNA flow cytometry and tritiated thymidine uptake. J Nucl Med 1993; 34:414-419. 91. Duhaylongsod FG, Lowe VJ, Patz EF Jr., Vaughn AL, and Coleman RE. Lung tumor growth correlates with glucose metabolism measured by fluoride-18 fluorodeoxyglucose positron emission tomography. Ann Thorac Surg 1995; 60:1348-1352. 92. Wahl RL, Zasadny K, Helvie M, Hutchins GD, Weber B, and Cody R. Metabolic monitoring of breast cancer chemohormonotherapy using positron emission tomography: initial evaluation. J Clin Oncol 1993; 11:2101-2111. 93. Yen RF, Chen ML, Liu FY, Ko SC, Chang YL, Chieng PU, et al. False-positive 2-[F-18]-fluoro-2-deoxy-d-glucose positron emission tomography studies for evaluation of focal pulmonary abnormalities. J Formosan Med Assoc 1998; 97:642-5. 94. Schoder H, Yeung HW, Gonen M, Kraus D and Larson SM. Head and neck cancer: clinical usefulness and accuracy of PET/CT image fusion. Radiology 2004; 231:65-72. 95. Goerres GW, von Schulthess GK, Steinert HC. Why most PET of lung and head-and-neck cancer will be PET/CT. J Nucl Med 2004; 45:66S-71S. 96. Dressel S, Grammerstorff J, Schwenzer K, Brinkbaumer K, Schmid R, Pfluger T, et al. [18F]FDG imaging of head and neck tumours: comparison of hybrid PET and morphological methods. Eur J Nucl Med Mol Imaging 2003; 30:995-1003. 97. Bengel FM, Ziegler SI, Avril N, Weber W, Laubenbacher C, Schwaiger M. Whole-body positron emission tomography in clinical oncology: comparison between attenuation-corrected and uncorrected images. Eur J Nucl Med 1997; 24:1091-1098. 98. Mitsuhashi N, Hayakawa K, Hasegawa M, et al. Clinical FDG-PET in diagnosis and evaluation of radiation response of patients with nasopharyngeal tumor. Anticancer Res 1998; 18:2827-2832. 99. Greven KM, Williams DW 3rd, Keyes JW Jr, et al. Positron emission tomography of patients with head and neck carcinoma before and after high dose irradiation. Cancer 1994; 74:1355-1359. 100. Chaiken L, Rege S, Hoh C, et al. Positron emission tomography with fluorodeoxyglucose to evaluate tumor response and control after radiation therapy. Int J Radiat Oncol Biol Phys 1993; 27:455-464. 101. Greven KM, Williams DW 3rd, Keyes JW Jr, et al. Positron emission tomography of patients with head and neck carcinoma before and after high dose irradiation. Cancer 1994; 74:1355-1359. 102. van den Brekel MW, Stel HV, Castelijns JA, et al. Cervical lymph node metastasis: assessment of radiologic criteria. Radiology 1990; 177:379-384. 103. Chua DTT, Sham JST, Kwong DLW, et al. Retropharyngeal lymphadenopathy in patients with nasopharyngeal carcinoma. Cancer 1997; 79:869-877. 104. Bailet JW, Abemayor E, Jabour BA, et al. Positron emission tomography: a new, precise imaging modality for detection of primary head and neck tumors and assessment of cervical adenopathy. Laryngoscope 1992; 102:281-288. 105. Brink I, Klenzner T, Krause T, et al. Lymph node staging in extracranial head and neck cancer with FDG PET –appropriate uptake period and size-dependence of the results. Nuklearmedizin 2002; 41:108-113. 106. Mancuso AA, Drane WE, Mukherji S. The promise FDG in diagnosis and surveillance of head and neck cancer. Cancer 1994; 74:1193-1195. 107. Huang CJ, Leung SW, Lian SL, et al. Patterns of distant metastases in nasopharyngeal carcinoma. Kaohsiung J Med Sci 1996; 12:229-234. 108. Kitagawa Y, Nishizawa S, Sano K, et al. Whole-body 18F-fluorodeoxyglucose positron emission tomography in patients with head and neck cancer. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2002; 93:202-207 109. Pai M, Park CH, Suh JH, et al. Fluorine-18 fluorodeoxyglucose imaging using dual-head coincidence positron emission tomography without attenuation correction in patients with head and neck cancer. Clin Nucl Med 1999; 24:495-500. 110. Barrington SF, Maisey MN. Skeletal muscle uptake of fluorine-18-FDG: effect of oral diazepam. J Nucl Med 1996; 37:1127-1129. 111. Mukherji SK, Drane WE, Mancuso AA, et al. Occult primary tumors of the head and neck: detection with 2-[F-18]fluoro-2-deoxy-d-glucose SPECT. Radiology 1996; 199:761-766. 112. Hong RL, Lin CY, Tin LL, et al. Comparison of clinical and molecular surveillance in patients with advanced nasopharyngeal carcinoma after primary therapy. Cancer 2004; 100:1429-1437. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24348 | - |
| dc.description.abstract | 目的: 鼻咽癌為一種盛行於台灣地區之頭頸部癌症。對於局部鼻咽癌患者,其治療方式為合併放化療或誘導性化療後再施與合併化放療。在使用誘導性化療患者,如果我們能在施予誘導性化療初期,即早評估誘導性化療的效益,可儘速調整該鼻咽癌患者之治療策略,以避免無效化療的副作用。此外鼻咽癌患者之長期存活率主要取決於局部復發或遠端轉移之早期偵測。在合併放化療完成後,局部及周圍組織會發生壞死和纖維化,使傳統的CT/MRI解剖影像檢查往往很難偵測復發病灶。近年來,F-18去氧葡萄糖 (18F-FDG) 正子造影 (PET) 之體內葡萄糖的代謝影像,利用惡性腫瘤組織較正常組織容易攝取18F-FDG之特性,在其他腫瘤被認為可即早偵測療效,並可偵測早期復發/轉移之病灶。18F-FDG PET使用於鼻咽癌療效評估及早期復發/轉移病灶之偵測尚未被透徹的研究過。本研究主要目的為探討18F-FDG PET使用於: (1) 誘導性化療在局部鼻咽癌患者之早期療效及預後之評估, (2) 早期偵測鼻咽癌復發/轉移病灶之效益。最後, (3) 以決策分析樹狀圖來評估高價位正子掃描對早期偵測鼻咽癌局部復發是否符合經濟效益。
方法: 本研究分為三部份。第一部份為50 位接受誘導性化療之局部鼻咽癌患者,在誘導性化療之第一 (33位) 或第二 (17位) 療程後使用18F-FDG PET 來評估誘導性化療療效,用患者18F-FDG PET的結果做再分期,如果患者PET分期下降為stage I或 stage II,將之歸為有療效反應組,如果患者PET分期仍為stage III或 stage IV,將之歸為無顯著療效反應組。並將PET分期結果和這些患者的後續追蹤結果做相關性分析。第二部份為64 位接受合併放化療或誘導性化療後的鼻咽癌患者,評估18F-FDG PET用來偵測復發或轉移病灶的效益,並以18F-FDG PET結果和患者預後做存活分析。第三部份則以決策分析樹狀圖針對三種偵測鼻咽癌復發之方案: 只使用MRI、只使用PET和MRI-PET(若MRI結果不確定則加做PET)做成本效益分析。 結果: 本研究顯示18F-FDG PET 在 (1) 評估診斷誘導性化療療效使用上,23個有療效反應者只有一位後來產生局部復發,相反的27個無顯著療效反應有15位後來產生局部復發或遠端轉移。存活分析也顯示有療效反應組其存活時間比無顯著療效組長且具有顯著統計意義。(2) 鼻咽癌復發或轉移病灶的偵測有很高的精確度 (92%), 而且正子造影結果有無18F-FDG 的異常代謝之病灶和其存活時間有高相關性。(3) 使用樹狀圖分析用三種方案偵測鼻咽癌復發之品質校正存活人命分別為16.16 QALYs (MRI方案)、 16.70 QALYs (PET方案)、17.35 QALYs (MRI-PET方案). MRI-PET方案相對於MRI方案 每增加一個QALYs 需多花費US$462 (US$550/1.19)。 MRI-PET方案對PET方案擁有壓倒性優勢,因為MRI-PET方案花費較低而所得QALYs 較高。 結論: 本研究顯示18F-FDG PET (1)在誘導性化療第一或第二療程後之再分期可正確預測誘導性化療之療效及鼻咽癌患者之預後。 (2) 對接受化放療後之鼻咽癌患者,可早期偵測復發及轉移病灶。而且也是一個有效的預後指標。(3) 對於早期偵測復發鼻咽癌病灶,以現在的成本結構計算, MRI-PET 方案最具成本效益,但如果PET費用如能較MRI費用降低更快,在不久的未來PET方案應可成為最有成本效益的方案。 | zh_TW |
| dc.description.abstract | Objective: Nasopharyngeal carcinoma (NPC) is a head and neck malignancy prevalent in Taiwan. For NPC patients with locoregionally advanced disease, induction chemotherapy (IC) followed by concurrent chemoradiotherapy has been the preferred therapeutic approach for improving locoregional control and eradicating micrometastases. It is of great advantage if we are capable of identifying the non-responders during or immediately after induction therapy such that alternative treatment strategies may be formulated as early as possible. Besides, the loco-regional recurrences and distant metastases are crucial prognostic factors for NPC patients after their treatments. Nonetheless, conventional MRI and CT have relatively low sensitivity and moderate specificity in distinguishing residual/recurrent lesions from post-therapy changes because a variety of changes in the nasopharyngeal tissue caused by radiotherapy may obscure the detection of tumor recurrence by these anatomical imaging studies.
It has been reported that positron emission tomography (PET) using 18-fluoro-2-deoxyglucose (18F-FDG), based on the property that 18F-FDG is prone to accumulate in the malignancy, is a promising tool for evaluating therapeutic responses of several malignancies and for distinguishing recurrent tumors from post-treatment changes in the nasopharynx. To the best of my knowledge, the usages of 18F-FDG PET for NPC patients in these two categories have not been fully evaluated yet. This study of mine is to evaluate the usefulness of 18F-FDG PET for the therapeutic responses during and after induction therapy and the usefulness of 18F-FDG PET for the early detection of recurrence/metastases in the follow-up of NPC patients, and to perform a cost-effectiveness analysis to determine the optimized usage for the follow-up of NPC patients by 18F-FDG PET which is known to be prohibitively expensive. Study Design: This study includes 3 parts: The first part studies therapeutic responses of NPC patients by PET. 50 patients (19 female and 31 male with age 17-72 years; mean, 45.9 ± 11.9) who had histologically proven locoregionally advanced NPC without distant metastasis and had received IC were recruited in this part of study. Whole-body 18F-FDG PET was performed for each patient after completion of one (33 patients) or two (17 patients) courses of IC. Each patient was restaged by 18F-FDG PET results. Patients who were downstaged to stage I or II were classified as major-responders. The rest were classified as non-major-responders. The PET restaging results were correlated with follow-up results of these patients. The second part studies 64 Taiwanese NPC patients, 14 female and 50 male (age range, 16-75 years; mean age, 45.8±13.0 years) who received 18F-FDG PET studies at 4-70 months (mean: 14.1± 13.5 months) after radiotherapy or induction chemotherapy followed by concurrent chemoradiotherapy. The second part of study evaluates the effectiveness and prognostic significance of whole-body 18F-FDG PET in the diagnosis of recurrent/metastatic NPC and in the follow-up examination of these NPC patients. For the third part, an analysis for cost-effectiveness is performed based on the decision-tree model for three different strategies: (1) MRI-only, (2) PET-only, and (3) MRI-PET (performing PET scan if MRI result is uncertain) to analyze the cost-effectiveness of 18F-FDG PET for detecting loco-regional recurrences for NPC patients after RT or CCRT therapy. Results: (Part 1) Only 1 of the 23 major-responders developed local recurrence afterwards. They were all alive at the time of data analysis. On the other hand, 15 of the 27 non-major-responders had locoregional recurrence or distant metastasis. Among these non-major-responders, 7 died of NPC and 2 died of therapeutic complications at the time of data analysis. Kaplan-Meier survival analysis showed significantly longer recurrence-free survival and overall survival in major-responders (56.4 ±9.2 and 58.1±2.2 months) as compared to non-major-responders (33.7 ±23.2 and 44.7±20.0 months) with p < 0.0001 and p = 0.0024, respectively. (Part 2) The sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value (NPV) of 18F-FDG PET images in the diagnosis of NPC recurrence/ metastases and secondary primary cancers were 92%, 90%, 92%, 90% and 91%, respectively. Furthermore, the presence of 18F-FDG hypermetabolism was found to be highly correlated with the survival time of NPC patients. (Part 3) Plugging the data for utilities and life expectancies in the decision tree model, the quality adjusted life expectancies are found to be 16.16 QALYs for strategy 1, 16.70 QALYs for strategy 2 and 17.35 QALYs for strategy 3. The additional cost per additional QALYs for strategy 3 relative to strategy 1 is calculated to be US$62 (US$550/1.19). Strategy 3 dominates over strategy 2 because strategy 3 costs less and yields more QALYs than strategy 2. Conclusion: The results suggest that (Part 1) early restaging by whole-body 18F-FDG PET performed after the 1st or the 2nd course of IC is useful for predicting therapeutic response and outcome for locoregionally advanced NPC patients; (Part 2) whole-body 18F-FDG PET is a sensitive follow-up diagnostic tool for the evaluation of NPC recurrences and metastases. It is also an effective prognostic indicator for NPC patients. Finally, (Part 3) the decision tree analysis shows that MRI-PET strategy is the most cost-effective for now. In the near future, as the cost of PET scan decreases in a faster rate than the cost of MRI does, it is likely the PET-only strategy will become the most cost-effective strategy for recurrent NPC patients. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:22:47Z (GMT). No. of bitstreams: 1 ntu-94-D91842006-1.pdf: 691819 bytes, checksum: 5d4d8a18713eb216da4ff536467ec9c8 (MD5) Previous issue date: 2005 | en |
| dc.description.tableofcontents | I. INTRODUCTION 7
II. LITERATURE REVIEWS 9 1. Nasopharyngeal carcinoma 9 2. Conventional post-treatment imaging of the nasopharynx …10 3. 18F-FDG PET in clinical oncology 11 4. 18F-FDG PET in therapy response monitoring 12 5. Clinical utilization of 18F-FDG PET in NPC 15 III. OBJECTIVES 18 IV. MATERIALS and METHODS 20 Whole-body 18F-FDG PET imaging 20 Part 1. 18F-FDG PET restaging during induction chemotherapy 20 Part 2. 18F-FDG PET in detecting recurrent/metastatic NPC 22 Part 3. Cost-effectiveness analysis of PET in recurrent NPC 23 V. RESULTS 27 Part 1. 18F-FDG PET restaging during induction chemotherapy 27 Part 2. 18F-FDG PET in detecting recurrent/metastatic NPC 29 Part 3. Cost-effectiveness analysis of PET in recurrent NPC 30 VI. DISCUSSION 33 Part 1. 18F-FDG PET restaging during induction chemotherapy 33 Part 2. 18F-FDG PET in detecting recurrent/metastatic NPC 36 Part 3. Cost-effectiveness analysis of PET in recurrent NPC 39 VII. CONCLUSION 42 VIII. REFERENCES 43 IX. TABLES 55 X. FIGURES 66 XI. APPENDIX 77 1. AJCC cancer staging for NPC 77 2. Standard follow-up schedule for NPC patients in NTUH 79 3. Visual analog scale questionaire 81 4. Publications 83 | |
| dc.language.iso | en | |
| dc.subject | 復發 | zh_TW |
| dc.subject | 療效評估 | zh_TW |
| dc.subject | 再分期 | zh_TW |
| dc.subject | 正子造影 | zh_TW |
| dc.subject | F-18 去氧葡萄糖 | zh_TW |
| dc.subject | 鼻咽癌 | zh_TW |
| dc.subject | 決策分析樹狀圖 | zh_TW |
| dc.subject | 成本效益 | zh_TW |
| dc.subject | 存活分析 | zh_TW |
| dc.subject | F-18-fluorodexoyglucose | en |
| dc.subject | decision tree model | en |
| dc.subject | cost-effectiveness | en |
| dc.subject | survival analysis | en |
| dc.subject | recurrence | en |
| dc.subject | therapeutic effect | en |
| dc.subject | restaging | en |
| dc.subject | Nasopharyngeal carcinoma | en |
| dc.subject | positron emission tomography | en |
| dc.title | F-18去氧葡萄糖正子造影運用於鼻咽癌之效用及經濟評估 | zh_TW |
| dc.title | The Utility and Cost-Effectiveness Analysis of
18-Fluoro-2-Deoxyglucose Positron Emission Tomography in Nasopharyngeal Carcinoma | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 93-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 曾凱元(Kai-Yuan Tzen) | |
| dc.contributor.oralexamcommittee | 洪瑞隆(Ruey-Long Hong),劉宏輝(Hong-Hwey Liou),楊銘欽(Ming-Chin Yang),張淑惠(Shu-Hui Chang) | |
| dc.subject.keyword | 鼻咽癌,F-18 去氧葡萄糖,正子造影,再分期,療效評估,復發,存活分析,成本效益,決策分析樹狀圖, | zh_TW |
| dc.subject.keyword | Nasopharyngeal carcinoma,F-18-fluorodexoyglucose,positron emission tomography,,restaging,therapeutic effect,recurrence,survival analysis,cost-effectiveness,decision tree model, | en |
| dc.relation.page | 83 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2005-07-26 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 流行病學研究所 | zh_TW |
| 顯示於系所單位: | 流行病學與預防醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-94-1.pdf 未授權公開取用 | 675.6 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
