Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24340
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡孟君
dc.contributor.authorChien-Ting Panen
dc.contributor.author潘建廷zh_TW
dc.date.accessioned2021-06-08T05:22:30Z-
dc.date.copyright2005-08-02
dc.date.issued2005
dc.date.submitted2005-07-25
dc.identifier.citation1. Agarwal, V. R., S. E. Bulun, M. Leitch, R. Rohrich, and E. R. Simpson. 1996. Use of alternative promoters to express the aromatase cytochrome P450 (CYP19) gene in breast adipose tissues of cancer-free and breast cancer patients. J Clin Endocrinol Metab 81:3843-9.
2. Annicotte, J. S., E. Fayard, G. H. Swift, L. Selander, H. Edlund, T. Tanaka, T. Kodama, K. Schoonjans, and J. Auwerx. 2003. Pancreatic-duodenal homeobox 1 regulates expression of liver receptor homolog 1 during pancreas development. Mol Cell Biol 23:6713-24.
3. Bayer, P., A. Arndt, S. Metzger, R. Mahajan, F. Melchior, R. Jaenicke, and J. Becker. 1998. Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol 280:275-86.
4. Ben-Zimra, M., M. Koler, and J. Orly. 2002. Transcription of cholesterol side-chain cleavage cytochrome P450 in the placenta: activating protein-2 assumes the role of steroidogenic factor-1 by binding to an overlapping promoter element. Mol Endocrinol 16:1864-80.
5. Boerboom, D., N. Pilon, R. Behdjani, D. W. Silversides, and J. Sirois. 2000. Expression and regulation of transcripts encoding two members of the NR5A nuclear receptor subfamily of orphan nuclear receptors, steroidogenic factor-1 and NR5A2, in equine ovarian cells during the ovulatory process. Endocrinology 141:4647-56.
6. Brendel, C., L. Gelman, and J. Auwerx. 2002. Multiprotein bridging factor-1 (MBF-1) is a cofactor for nuclear receptors that regulate lipid metabolism. Mol Endocrinol 16:1367-77.
7. Chalkiadaki, A., and I. Talianidis. 2005. SUMO-dependent compartmentalization in promyelocytic leukemia protein nuclear bodies prevents the access of LRH-1 to chromatin. Mol Cell Biol 25:5095-105.
8. Chen, C., and I. C. Guo. 2000. Effect of cAMP on protein binding activities of three elements in upstream promoter of human CYP11A1 gene. Life Sci 67:2045-9.
9. Chen, W. Y., W. C. Lee, N. C. Hsu, F. Huang, and B. C. Chung. 2004. SUMO modification of repression domains modulates function of nuclear receptor 5A1 (steroidogenic factor-1). J Biol Chem 279:38730-5.
10. Chung, B. C., I. C. Guo, and S. J. Chou. 1997. Transcriptional regulation of the CYP11A1 and ferredoxin genes. Steroids 62:37-42.
11. Clyne, C. D., C. J. Speed, J. Zhou, and E. R. Simpson. 2002. Liver receptor homologue-1 (LRH-1) regulates expression of aromatase in preadipocytes. J Biol Chem 277:20591-7.
12. Compagnone, N. A., A. Bulfone, J. L. Rubenstein, and S. H. Mellon. 1995. Expression of the steroidogenic enzyme P450scc in the central and peripheral nervous systems during rodent embryogenesis. Endocrinology 136:2689-96.
13. Crawford, P. A., C. Dorn, Y. Sadovsky, and J. Milbrandt. 1998. Nuclear receptor DAX-1 recruits nuclear receptor corepressor N-CoR to steroidogenic factor 1. Mol Cell Biol 18:2949-56.
14. Dace, A., L. Zhao, K. S. Park, T. Furuno, N. Takamura, M. Nakanishi, B. L. West, J. A. Hanover, and S. Cheng. 2000. Hormone binding induces rapid proteasome-mediated degradation of thyroid hormone receptors. Proc Natl Acad Sci U S A 97:8985-90.
15. Dennis, A. P., R. U. Haq, and Z. Nawaz. 2001. Importance of the regulation of nuclear receptor degradation. Front Biosci 6:D954-9.
16. Deroo, B. J., C. Rentsch, S. Sampath, J. Young, D. B. DeFranco, and T. K. Archer. 2002. Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol Cell Biol 22:4113-23.
17. Desclozeaux, M., I. N. Krylova, F. Horn, R. J. Fletterick, and H. A. Ingraham. 2002. Phosphorylation and intramolecular stabilization of the ligand binding domain in the nuclear receptor steroidogenic factor 1. Mol Cell Biol 22:7193-203.
18. Desterro, J. M., M. S. Rodriguez, and R. T. Hay. 1998. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2:233-9.
19. Doody, K. J., M. C. Lorence, J. I. Mason, and E. R. Simpson. 1990. Expression of messenger ribonucleic acid species encoding steroidogenic enzymes in human follicles and corpora lutea throughout the menstrual cycle. J Clin Endocrinol Metab 70:1041-5.
20. Falender, A. E., R. Lanz, D. Malenfant, L. Belanger, and J. S. Richards. 2003. Differential expression of steroidogenic factor-1 and FTF/LRH-1 in the rodent ovary. Endocrinology 144:3598-610.
21. Galarneau, L., J. F. Pare, D. Allard, D. Hamel, L. Levesque, J. D. Tugwood, S. Green, and L. Belanger. 1996. The alpha1-fetoprotein locus is activated by a nuclear receptor of the Drosophila FTZ-F1 family. Mol Cell Biol 16:3853-65.
22. Golos, T. G., W. L. Miller, and J. F. Strauss, 3rd. 1987. Human chorionic gonadotropin and 8-bromo cyclic adenosine monophosphate promote an acute increase in cytochrome P450scc and adrenodoxin messenger RNAs in cultured human granulosa cells by a cycloheximide-insensitive mechanism. J Clin Invest 80:896-9.
23. Gonzalez, G. A., and M. R. Montminy. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell 59:675-80.
24. Guo, I. C., H. M. Tsai, and B. C. Chung. 1994. Actions of two different cAMP-responsive sequences and an enhancer of the human CYP11A1 (P450scc) gene in adrenal Y1 and placental JEG-3 cells. J Biol Chem 269:6362-9.
25. Hanukoglu, I., C. T. Privalle, and C. R. Jefcoate. 1981. Mechanisms of ionic activation of adrenal mitochondrial cytochromes P-450scc and P-45011 beta. J Biol Chem 256:4329-35.
26. Harada, N., T. Utsumi, and Y. Takagi. 1993. Tissue-specific expression of the human aromatase cytochrome P-450 gene by alternative use of multiple exons 1 and promoters, and switching of tissue-specific exons 1 in carcinogenesis. Proc Natl Acad Sci U S A 90:11312-6.
27. Hinshelwood, M. M., J. J. Repa, J. M. Shelton, J. A. Richardson, D. J. Mangelsdorf, and C. R. Mendelson. 2003. Expression of LRH-1 and SF-1 in the mouse ovary: localization in different cell types correlates with differing function. Mol Cell Endocrinol 207:39-45.
28. Honda, S., K. Morohashi, M. Nomura, H. Takeya, M. Kitajima, and T. Omura. 1993. Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J Biol Chem 268:7494-502.
29. Hu, M. C., N. C. Hsu, C. I. Pai, C. K. Wang, and B. Chung. 2001. Functions of the upstream and proximal steroidogenic factor 1 (SF-1)-binding sites in the CYP11A1 promoter in basal transcription and hormonal response. Mol Endocrinol 15:812-8.
30. Ishimura, K., and H. Fujita. 1997. Light and electron microscopic immunohistochemistry of the localization of adrenal steroidogenic enzymes. Microsc Res Tech 36:445-53.
31. Ito, M., R. Yu, and J. L. Jameson. 1997. DAX-1 inhibits SF-1-mediated transactivation via a carboxy-terminal domain that is deleted in adrenal hypoplasia congenita. Mol Cell Biol 17:1476-83.
32. Kayes-Wandover, K. M., and P. C. White. 2000. Steroidogenic enzyme gene expression in the human heart. J Clin Endocrinol Metab 85:2519-25.
33. Kim, J. W., J. C. Havelock, B. R. Carr, and G. R. Attia. 2005. The orphan nuclear receptor, liver receptor homolog-1, regulates cholesterol side-chain cleavage cytochrome p450 enzyme in human granulosa cells. J Clin Endocrinol Metab 90:1678-85.
34. Kim, J. W., N. Peng, W. E. Rainey, B. R. Carr, and G. R. Attia. 2004. Liver receptor homolog-1 regulates the expression of steroidogenic acute regulatory protein in human granulosa cells. J Clin Endocrinol Metab 89:3042-7.
35. Lala, D. S., D. A. Rice, and K. L. Parker. 1992. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol 6:1249-58.
36. Lalli, E., M. H. Melner, D. M. Stocco, and P. Sassone-Corsi. 1998. DAX-1 blocks steroid production at multiple levels. Endocrinology 139:4237-43.
37. Lambeth, J. D., and V. L. Stevens. 1984. Cytochrome P-450scc: enzymology, and the regulation of intramitochondrial cholesterol delivery to the enzyme. Endocr Res 10:283-309.
38. Lange, C. A., T. Shen, and K. B. Horwitz. 2000. Phosphorylation of human progesterone receptors at serine-294 by mitogen-activated protein kinase signals their degradation by the 26S proteasome. Proc Natl Acad Sci U S A 97:1032-7.
39. Le Drean, Y., N. Mincheneau, P. Le Goff, and D. Michel. 2002. Potentiation of glucocorticoid receptor transcriptional activity by sumoylation. Endocrinology 143:3482-9.
40. Lee, D. H., and A. L. Goldberg. 1996. Selective inhibitors of the proteasome-dependent and vacuolar pathways of protein degradation in Saccharomyces cerevisiae. J Biol Chem 271:27280-4.
41. Lee, M. B., L. A. Lebedeva, M. Suzawa, S. A. Wadekar, M. Desclozeaux, and H. A. Ingraham. 2005. The DEAD-box protein DP103 (Ddx20 or Gemin-3) represses orphan nuclear receptor activity via SUMO modification. Mol Cell Biol 25:1879-90.
42. Lee, Y. K., and D. D. Moore. 2002. Dual mechanisms for repression of the monomeric orphan receptor liver receptor homologous protein-1 by the orphan small heterodimer partner. J Biol Chem 277:2463-7.
43. Liu, D. L., W. Z. Liu, Q. L. Li, H. M. Wang, D. Qian, E. Treuter, and C. Zhu. 2003. Expression and functional analysis of liver receptor homologue 1 as a potential steroidogenic factor in rat ovary. Biol Reprod 69:508-17.
44. Lu, T. T., M. Makishima, J. J. Repa, K. Schoonjans, T. A. Kerr, J. Auwerx, and D. J. Mangelsdorf. 2000. Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol Cell 6:507-15.
45. Luo, X., Y. Ikeda, and K. L. Parker. 1994. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 77:481-90.
46. Mahajan, R., C. Delphin, T. Guan, L. Gerace, and F. Melchior. 1997. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97-107.
47. Morohashi, K., Y. Fujii-Kuriyama, Y. Okada, K. Sogawa, T. Hirose, S. Inayama, and T. Omura. 1984. Molecular cloning and nucleotide sequence of cDNA for mRNA of mitochondrial cytochrome P-450(SCC) of bovine adrenal cortex. Proc Natl Acad Sci U S A 81:4647-51.
48. Morohashi, K., S. Honda, Y. Inomata, H. Handa, and T. Omura. 1992. A common trans-acting factor, Ad4-binding protein, to the promoters of steroidogenic P-450s. J Biol Chem 267:17913-9.
49. Nawaz, Z., D. M. Lonard, C. L. Smith, E. Lev-Lehman, S. Y. Tsai, M. J. Tsai, and B. W. O'Malley. 1999. The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily. Mol Cell Biol 19:1182-9.
50. Nawaz, Z., and B. W. O'Malley. 2004. Urban renewal in the nucleus: is protein turnover by proteasomes absolutely required for nuclear receptor-regulated transcription? Mol Endocrinol 18:493-9.
51. Oonk, R. B., K. L. Parker, J. L. Gibson, and J. S. Richards. 1990. Rat cholesterol side-chain cleavage cytochrome P-450 (P-450scc) gene. Structure and regulation by cAMP in vitro. J Biol Chem 265:22392-401.
52. Ou, Q., J. F. Mouillet, X. Yan, C. Dorn, P. A. Crawford, and Y. Sadovsky. 2001. The DEAD box protein DP103 is a regulator of steroidogenic factor-1. Mol Endocrinol 15:69-79.
53. Pare, J. F., S. Roy, L. Galarneau, and L. Belanger. 2001. The mouse fetoprotein transcription factor (FTF) gene promoter is regulated by three GATA elements with tandem E box and Nkx motifs, and FTF in turn activates the Hnf3beta, Hnf4alpha, and Hnf1alpha gene promoters. J Biol Chem 276:13136-44.
54. Payne, A. H., and G. L. Youngblood. 1995. Regulation of expression of steroidogenic enzymes in Leydig cells. Biol Reprod 52:217-25.
55. Pelletier, G., S. Li, V. Luu-The, Y. Tremblay, A. Belanger, and F. Labrie. 2001. Immunoelectron microscopic localization of three key steroidogenic enzymes (cytochrome P450(scc), 3 beta-hydroxysteroid dehydrogenase and cytochrome P450(c17)) in rat adrenal cortex and gonads. J Endocrinol 171:373-83.
56. Peng, N., J. W. Kim, W. E. Rainey, B. R. Carr, and G. R. Attia. 2003. The role of the orphan nuclear receptor, liver receptor homologue-1, in the regulation of human corpus luteum 3beta-hydroxysteroid dehydrogenase type II. J Clin Endocrinol Metab 88:6020-8.
57. Poukka, H., U. Karvonen, O. A. Janne, and J. J. Palvimo. 2000. Covalent modification of the androgen receptor by small ubiquitin-like modifier 1 (SUMO-1). Proc Natl Acad Sci U S A 97:14145-50.
58. Rausa, F. M., L. Galarneau, L. Belanger, and R. H. Costa. 1999. The nuclear receptor fetoprotein transcription factor is coexpressed with its target gene HNF-3beta in the developing murine liver, intestine and pancreas. Mech Dev 89:185-8.
59. Richards, J. S., T. Jahnsen, L. Hedin, J. Lifka, S. Ratoosh, J. M. Durica, and N. B. Goldring. 1987. Ovarian follicular development: from physiology to molecular biology. Recent Prog Horm Res 43:231-76.
60. Sablin, E. P., I. N. Krylova, R. J. Fletterick, and H. A. Ingraham. 2003. Structural basis for ligand-independent activation of the orphan nuclear receptor LRH-1. Mol Cell 11:1575-85.
61. Sirianni, R., J. B. Seely, G. Attia, D. M. Stocco, B. R. Carr, V. Pezzi, and W. E. Rainey. 2002. Liver receptor homologue-1 is expressed in human steroidogenic tissues and activates transcription of genes encoding steroidogenic enzymes. J Endocrinol 174:R13-7.
62. Stocco, D. M., and B. J. Clark. 1997. The role of the steroidogenic acute regulatory protein in steroidogenesis. Steroids 62:29-36.
63. Strauss, J. F., 3rd, F. Martinez, and M. Kiriakidou. 1996. Placental steroid hormone synthesis: unique features and unanswered questions. Biol Reprod 54:303-11.
64. Suzuki, T., M. Kasahara, H. Yoshioka, K. Morohashi, and K. Umesono. 2003. LXXLL-related motifs in Dax-1 have target specificity for the orphan nuclear receptors Ad4BP/SF-1 and LRH-1. Mol Cell Biol 23:238-49.
65. Takayama, K., K. Morohashi, S. Honda, N. Hara, and T. Omura. 1994. Contribution of Ad4BP, a steroidogenic cell-specific transcription factor, to regulation of the human CYP11A and bovine CYP11B genes through their distal promoters. J Biochem (Tokyo) 116:193-203.
66. Tugwood, J. D., Issemann,I. and Green,S. 1991. LRH-1: A nuclear hormone receptor active in the absence of exogenous ligands. GenBank M81385.
67. Ueda, H., G. C. Sun, T. Murata, and S. Hirose. 1992. A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein. Mol Cell Biol 12:5667-72.
68. Val, P., A. M. Lefrancois-Martinez, G. Veyssiere, and A. Martinez. 2003. SF-1 a key player in the development and differentiation of steroidogenic tissues. Nucl Recept 1:8.
69. Wallace, A. D., and J. A. Cidlowski. 2001. Proteasome-mediated glucocorticoid receptor degradation restricts transcriptional signaling by glucocorticoids. J Biol Chem 276:42714-21.
70. Wang, Z. N., M. Bassett, and W. E. Rainey. 2001. Liver receptor homologue-1 is expressed in the adrenal and can regulate transcription of 11 beta-hydroxylase. J Mol Endocrinol 27:255-8.
71. Watanabe, N., H. Inoue, and Y. Fujii-Kuriyama. 1994. Regulatory mechanisms of cAMP-dependent and cell-specific expression of human steroidogenic cytochrome P450scc (CYP11A1) gene. Eur J Biochem 222:825-34.
72. Xu, P. L., Y. Q. Liu, S. F. Shan, Y. Y. Kong, Q. Zhou, M. Li, J. P. Ding, Y. H. Xie, and Y. Wang. 2004. Molecular mechanism for the potentiation of the transcriptional activity of human liver receptor homolog 1 by steroid receptor coactivator-1. Mol Endocrinol 18:1887-905.
73. Yang, S. H., and A. D. Sharrocks. 2004. SUMO promotes HDAC-mediated transcriptional repression. Mol Cell 13:611-7.
74. Yeh, J. R., L. C. Hsu, and B. Chung. 2000. Sp1-like proteins function in the transcription of human ferredoxin genes. J Biomed Sci 7:144-51.
75. Young, M. J., C. D. Clyne, T. J. Cole, and J. W. Funder. 2001. Cardiac steroidogenesis in the normal and failing heart. J Clin Endocrinol Metab 86:5121-6.
76. Zhang, C. K., W. Lin, Y. N. Cai, P. L. Xu, H. Dong, M. Li, Y. Y. Kong, G. Fu, Y. H. Xie, G. M. Huang, and Y. Wang. 2001. Characterization of the genomic structure and tissue-specific promoter of the human nuclear receptor NR5A2 (hB1F) gene. Gene 273:239-49.
77. Zhou, D., C. Zhou, and S. Chen. 1997. Gene regulation studies of aromatase expression in breast cancer and adipose stromal cells. J Steroid Biochem Mol Biol 61:273-80.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24340-
dc.description.abstractCYP11A1基因的產物為膽固醇側鍵截切酶(cholesterol side-chain cleavage enzyme, P450scc)。 P450scc酵素在類固醇荷爾蒙的合成途徑中,負責催化第一個步驟,也就是將膽固醇轉換成孕烯醇酮 (pregenelone)。CYP11A1普遍存在於腎上腺、性腺等所有類固醇生成組織中。Liver receptor homolog-1 (LRH-1)為 NR5A家族中的一員,為一轉錄因子,其大量存在於某些類固醇生成組織內,例如卵巢,並具有調控類固醇生成基因的能力。
我們首先使用大腸桿菌表現系統大量產生小鼠LRH-1 (mLRH-1)兩個不同片段的胜肽,分別是具有N端1~115胺基酸序列及C端169~560胺基酸序列。經電泳純化後,以此製備LRH-1抗體。在西方墨染法中,以所製備的LRH-1抗體,證實LRH-1存在於黃體的初代培養細胞中。293T細胞株經轉染mLRH-1表現質體後,亦能以此抗體偵測到mLRH-1的表現。我們利用共同轉染的方法研究LRH-1調控CYP11A1基因表現的能力。LRH-1對於1.5 kb長度的CYP11A1啟動子,即具有增進其轉錄的作用。CYP11A1基因上的兩個SF-1結合序列(-40和-1600),經由點突變後發現,位於-40上的SF-1結合序列,可能是LRH-1在CYP11A1基因啟動子上的主要結合序列。轉染Dax-1後,LRH-1增進CYP11A1基因啟動子的作用,會受到抑制。LRH-1會和轉譯後修飾蛋白SUMO-1產生鍵結,而lysine 289為其主要的結合位置。SUMO-1和LRH-1結合後,會抑制LRH-1的轉錄活性,其抑制效果和Dax-1並無關聯。我們發現LRH-1在轉染細胞中的表現並不穩定,當加入proteasome抑制劑MG-132後,可提升其蛋白含量。
zh_TW
dc.description.abstractCYP11A1 gene encodes P450scc enzyme, which controls the first and rate-limiting step of steroidogenesis by conversion of cholesterol to pregnenolone. CYP11A1 gene is expressed in many steroidogenic tissues like adrenal and gonad. Liver receptor homolog-1 (LRH-1) is a transcription factor and belongs to a member of nuclear receptor NR5A family. LRH-1 is expressed in some steroidogenic tissues such as ovary and may play a role in the regulation of steroidogenic gene.
To study the function of LRH-1, two peptides of mouse LRH-1 were produced in E. coli for the generation of antibody. This antibody was used to detect the presence of LRH-1 in rat primary luteal cells by Western blotting. Transfection of LRH-1 expression vector in 293T cell line also can be detected by Western blotting. To examine the ability of LRH-1 in the regulation of CYP11A1 gene expression, we cotransfected LRH-1 expression vector and human CYP11A1 promoter construct into 293T cell line. LRH-1 can enhance the shortest 1.5 kb CYP11A1 promoter activity. Two functional SF-1 binding sites were located at -40 and -1600 in CYP11A1 promoter. By mutating the SF-1 binding sites, we found that SF-1 binding site located at -40 is the major site of LRH-1 binding to CYP11A1 promoter. Induction of CYP11A1 promoter activity by LRH-1 was inhibited by Dax-1. LRH-1 can be conjugated with post-translation modification protein SUMO-1 and we found that lysine 289 is the major conjugation site of SUMO-1. When LRH-1 was conjugated with SUMO-1 the ability of LRH-1 inducing CYP11A1 promoter activity was inhibited and that was independent of Dax-1 function. We found that LRH-1 may not be stable in the transfected cell.The proteasome inhibitor, MG-132, can increase the amount of LRH-1 protein in transfected cell.
en
dc.description.provenanceMade available in DSpace on 2021-06-08T05:22:30Z (GMT). No. of bitstreams: 1
ntu-94-R92441010-1.pdf: 1006745 bytes, checksum: a02441f2636b56d208f55ec44ef14a95 (MD5)
Previous issue date: 2005
en
dc.description.tableofcontents目錄.....................................................Ⅰ
圖表目錄.....................................................Ⅲ
中文摘要.....................................................Ⅳ
英文摘要.....................................................Ⅴ
第一章、序論..................................................1
一、類固醇荷爾蒙的生成.......................................1
二、CYP11A1基因............................................2
三、CYP11A1啟動子特性......................................2
四、轉錄因子SF-1............................................4
1、 SF-1之特性............................................4
2、 SF-1的表現............................................4
五、轉錄因子LRH-1.........................................5
1、 LRH-1蛋白特性........................................5
2、 LRH-1於胚胎發育及分化上的角色........................6
3、 LRH-1的作用..........................................6
六、影響LRH-1作用之因子....................................8
1、 輔因子................................................8
2、 轉譯後修飾蛋白SUMO-1的作用.........................9
七、研究動機................................................10
第二章、材料與方法............................................11
一、質體構築................................................11
二、重組蛋白於大腸桿菌內表現的誘導及分離....................15
三、重組蛋白質純化..........................................16
四、抗體....................................................16
五、SDS-PAGE..............................................17
六、細胞培養................................................19
七、暫時性轉染法............................................19
八、Luciferase活性分析.......................................20
九、胞外轉錄和轉譯反應及胞外sumoylation作用.................20
第三章、結果..................................................22
一、mLRH-1抗體的製備......................................22
1、 mLRH-1蛋白的構建與表現..............................22
2、 重組mLRH-1蛋白之純化................................23
3、 mLRH-1抗體測試......................................23
二、 LRH-1調控人類CYP11A1基因之功能.......................24
1、 LRH-1對於CYP11A1啟動子之影響.......................24
2、 LRH-1在CYP11A1啟動子上的結合序列...................25
三、影響LRH-1調控人類CYP11A1基因轉錄活性之因素..........25
1、 LRH-1上N端1-101胺基酸對於CYP11A1啟動子之作用......25
2、 Dax-1抑制LRH-1增進CYP11A1啟動子之作用..............26
四、轉譯後修飾蛋白SUMO-1對於LRH-1之影響.................26
1、 LRH-1上的SUMO-1結合位置............................27
2、 SUMO-1的轉譯後修飾作用對LRH-1調控CYP11A1之影響...28
3、 SUMO-1和LRH-1結合後之抑制效果與Dax-1無關..........28
五、LRH-1蛋白表現之穩定性.................................29
第四章、討論..................................................30
參考文獻.....................................................35
圖...........................................................43
圖表目錄
圖一、 人類CYP11A1啟動子上順式調節元素之位置...............43
圖二、 mLRH-1蛋白在M15菌株的表現........................44
圖三、 mLRH-1蛋白於M15菌株表現之確認.....................45
圖四、 mLRH-1-C及mLRH-1-N蛋白之純化.....................46
圖五、 anti-mLRH-1-N及anti-mLRH-1-C抗體於大腸桿菌
表現mLRH-1蛋白之測試................................47
圖六、 anti-mLRH-1-N及anti-mLRH-1-C抗體於細胞表現
mLRH-1蛋白之測試....................................48
圖七、 LRH-1增進人類CYP11A1啟動子轉錄活性.................49
圖八、 LRH-1與SF-1增進不同片段長度之人類CYP11A1
啟動子轉錄活性.......................................50
圖九、 SF-1結合序列對LRH-1與SF-1調控人類CYP11A1
啟動子的影響.........................................51
圖十、 N端刪除A/B domain不影響mLRH-1調控人類
CYP11A1啟動子能力...................................52
圖十一、Dax-1抑制LRH-1促進人類CYP11A1啟動子
轉錄活性之作用.......................................53
圖十二、mLRH-1會和SUMO-1結合.............................54
圖十三、mLRH-1與SUMO-1結合之lysine位置....................55
圖十四、SUMO-1的結合對mLRH-1調控CYP11A1活性之影響.......56
圖十五、SUMO-1的結合對mLRH-1調控能力之影響...............57
圖十六、SUMO-1抑制LRH-1活性與Dax-1無關...................58
圖十七、MG-132增加mLRH-1蛋白表現量........................59
dc.language.isozh-TW
dc.subject轉錄因子zh_TW
dc.subject轉譯後修飾蛋白zh_TW
dc.subjectLRH-1en
dc.subjectSUMO-1en
dc.subjectCYP11A1en
dc.titleLRH-1抗體製備及LRH-1調控CYP11A1之研究zh_TW
dc.titlePreparation of LRH-1 Antibody & Regulation of CYP11A1 Gene by LRH-1en
dc.typeThesis
dc.date.schoolyear93-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鍾邦柱,張繼堯,郭應誠
dc.subject.keyword轉錄因子,轉譯後修飾蛋白,zh_TW
dc.subject.keywordLRH-1,CYP11A1,SUMO-1,en
dc.relation.page59
dc.rights.note未授權
dc.date.accepted2005-07-26
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-94-1.pdf
  未授權公開取用
983.15 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved