請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24309完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉致為(Chee Wee Liu) | |
| dc.contributor.author | Tien-Pei Chou | en |
| dc.contributor.author | 周典霈 | zh_TW |
| dc.date.accessioned | 2021-06-08T05:21:30Z | - |
| dc.date.copyright | 2011-08-04 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-07-28 | |
| dc.identifier.citation | CH1
1. G.D. Wilk, R.M. Wallace and J.M. Anthony, High-kappa gate dielectrics: Current status and materials properties considerations. Journal of Applied Physics, 2001. 89(10): p. 5243-5275. 2. S.E. Thompson, R.S. Chau, T. Ghani, K. Mistry, S. Tyagi and M.T. Bohr, In search of 'Forever,' continued transistor scaling one new material at a time. Semiconductor Manufacturing, IEEE Transactions on, 2005. 18(1): p. 26-36. 3. Y. Taur. CMOS scaling beyond 0.1 mm : how far can it go? in VLSI Technology, Systems, and Applications, 1999. International Symposium on. 1999. 4. B.H. Lee, J. Oh, H.H. Tseng, R. Jammy and H. Huff, Gate stack technology for nanoscale devices. Materials Today, 2006. 9(6): p. 32-40. 5. E.P. Gusev, V. Narayanan and M.M. Frank, Advanced high-k dielectric stacks with polySi and metal gates: Recent progress and current challenges. IBM Journal of Research and Development, 2006. 50(4.5): p. 387-410. 6. K. Kita and A. Toriumi, Origin of electric dipoles formed at high-k/SiO2 interface. Applied Physics Letters, 2009. 94(13): p. 132902-3. 7. H.-H. Tseng, P. Kirsch, C.S. Park, G. Bersuker, P. Majhi, M. Hussain and R. Jammy, The progress and challenges of threshold voltage control of high-k/metal-gated devices for advanced technologies (Invited Paper). Microelectronic Engineering. 86(7-9): p. 1722-1727. 8. E.H. Poindexter and P.J. Caplan, Characterization of Si/SiO2 interface defects by electron spin resonance. Progress in Surface Science, 1983. 14(3): p. 201-294. 9. M. Caymax, S. Van Elshocht, M. Houssa, A. Delabie, T. Conard, M. Meuris, M.M. Heyns, A. Dimoulas, S. Spiga, M. Fanciulli, J.W. Seo and L.V. Goncharova, HfO2 as gate dielectric on Ge: Interfaces and deposition techniques. Materials Science and Engineering: B, 2006. 135(3): p. 256-260. 10. S. Baldovino, A. Molle and M. Fanciulli, Evidence of dangling bond electrical activity at the Ge/oxide interface. Applied Physics Letters, 2008. 93(24): p. 242105-3. 11. S. Baldovino, A. Molle and M. Fanciulli, Influence of the oxidizing species on the Ge dangling bonds at the (100)Ge/GeO2 interface. Applied Physics Letters, 2010. 96(22): p. 222110-3. 12. E. Beyne. The rise of the 3rd dimension for system intergration. in Interconnect Technology Conference, 2006 International. 2006. CH2 1. C.C. Hobbs, L.R.C. Fonseca, A. Knizhnik, V. Dhandapani, S.B. Samavedam, W.J. Taylor, J.M. Grant, L.G. Dip, D.H. Triyoso, R.I. Hegde, D.C. Gilmer, R. Garcia, D. Roan, M.L. Lovejoy, R.S. Rai, E.A. Hebert, T. Hsing-Huang, S.G.H. Anderson, B.E. White and P.J. Tobin, Fermi-level pinning at the polysilicon/metal oxide interface-Part I. Electron Devices, IEEE Transactions on, 2004. 51(6): p. 971-977. 2. K. Iwamoto, Y. Kamimuta, A. Ogawa, Y. Watanabe, S. Migita, W. Mizubayashi, Y. Morita, M. Takahashi, H. Ota, T. Nabatame and A. Toriumi, Experimental evidence for the flatband voltage shift of high-k metal-oxide-semiconductor devices due to the dipole formation at the high-k/SiO2 interface. Applied Physics Letters, 2008. 92(13): p. 132907-132907-3. 3. B.H. Lee, J. Oh, H.H. Tseng, R. Jammy and H. Huff, Gate stack technology for nanoscale devices. Materials Today, 2006. 9(6): p. 32-40. 4. S. Kamiyama, D. Ishikawa, E. Kurosawa, H. Nakata, M. Kitajima, M. Ootuka, T. Aoyama, Y. Nara and Y. Ohji. Systematic Study of Vth controllability using ALD-Y2O3, La2O3, and MgO2 layers with HfSiON/metal gate first n-MOSFETs for hp 32 nm bulk devices. in Electron Devices Meeting, 2008. IEDM 2008. IEEE International. 2008. 5. B. Lee, D.J. Lichtenwalner, M. Agustin, R. Arghavani, X. Tang, S. Gandikota and V. Misra, Investigation of VT Shift Mechanism of Hf-Based Dielectrics caused by Lanthanum Capping for NMOS and Tantalum Capping for PMOS Devices. 213th ECS Meeting, 2008. Abstract #630. 6. Y. Yamamoto, K. Kita, K. Kyuno and A. Toriumi, Study of La-Induced Flat Band Voltage Shift in Metal/HfLaOx/SiO2/Si Capacitors. Japanese Journal of Applied Physics. 46(Copyright (C) 2007 The Japan Society of Applied Physics): p. 7251. 7. S. Guha, V.K. Paruchuri, M. Copel, V. Narayanan, Y.Y. Wang, P.E. Batson, N.A. Bojarczuk, B. Linder and B. Doris, Examination of flatband and threshold voltage tuning of HfO2/TiN field effect transistors by dielectric cap layers. Applied Physics Letters, 2007. 90(9): p. 092902-3. 8. P.D. Kirsch, P. Sivasubramani, J. Huang, C.D. Young, M.A. Quevedo-Lopez, H.C. Wen, H. Alshareef, K. Choi, C.S. Park, K. Freeman, M.M. Hussain, G. Bersuker, H.R. Harris, P. Majhi, R. Choi, P. Lysaght, B.H. Lee, H.H. Tseng, R. Jammy, T.S. Boscke, D.J. Lichtenwalner, J.S. Jur and A.I. Kingon, Dipole model explaining high-k/metal gate field effect transistor threshold voltage tuning. Applied Physics Letters, 2008. 92(9): p. 092901-3. 9. Materials Studio Release Notes, Release 5.5,. 2010. 10. W. Kohn and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, 1965. 140(4A): p. A1133. 11. C.C.J. Roothaan, New Developments in Molecular Orbital Theory. Reviews of Modern Physics, 1951. 23(2): p. 69. 12. L. Hedin and B.I. Lundqvist, Explicit local exchange-correlation potentials. Journal of Physics C: Solid State Physics, 1971. 4(14): p. 2064. 13. D.M. Ceperley and B.J. Alder, Ground State of the Electron Gas by a Stochastic Method. Physical Review Letters, 1980. 45(7): p. 566. 14. D.R. Hamann, Schl, uuml, M. ter and C. Chiang, Norm-Conserving Pseudopotentials. Physical Review Letters, 1979. 43(20): p. 1494. 15. G.B. Bachelet, D.R. Hamann, Schl, uuml and M. ter, Pseudopotentials that work: From H to Pu. Physical Review B, 1982. 26(8): p. 4199. 16. G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B, 1999. 59(3): p. 1758. 17. J.P. Perdew, K. Burke and M. Ernzerhof, Generalized Gradient Approximation Made Simple. Physical Review Letters, 1996. 77(18): p. 3865. 18. B.H. Lee, L. Kang, R. Nieh, W.-J. Qi and J.C. Lee, Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing. Applied Physics Letters, 2000. 76(14): p. 1926-1928. 19. L. Lin and J. Robertson, Atomic mechanism of flat-band voltage shifts at La2O3, Al2O3 and Nb2O5 capping layers. Microelectronic Engineering. 86(7-9): p. 1743-1746. 20. H.-H. Tseng, P. Kirsch, C.S. Park, G. Bersuker, P. Majhi, M. Hussain and R. Jammy, The progress and challenges of threshold voltage control of high-k/metal-gated devices for advanced technologies (Invited Paper). Microelectronic Engineering, 2009. 86(7-9): p. 1722-1727. 21. C.H. Lee, H.F. Luan, W.P. Bai, S.J. Lee, T.S. Jeon, Y. Senzaki, D. Roberts and D.L. Kwong. MOS characteristics of ultra thin rapid thermal CVD ZrO2 and Zr silicate gate dielectrics. in Electron Devices Meeting, 2000. IEDM Technical Digest. International. 2000. 22. G.D. Wilk, R.M. Wallace and J.M. Anthony, High-kappa gate dielectrics: Current status and materials properties considerations. Journal of Applied Physics, 2001. 89(10): p. 5243-5275. 23. G.V. Soares, C. Krug, L. Miotti, K.P. Bastos, G. Lucovsky, I.J.R. Baumvol and C. Radtke, Intermixing between HfO2 and GeO2 films deposited on Ge(001) and Si(001): Role of the substrate. Applied Physics Letters, 2011. 98(13): p. 131912-3. 24. S. Spiga, C. Wiemer, G. Tallarida, G. Scarel, S. Ferrari, G. Seguini and M. Fanciulli, Effects of the oxygen precursor on the electrical and structural properties of HfO2 films grown by atomic layer deposition on Ge. Applied Physics Letters, 2005. 87(11): p. 112904. CH3 1. E.H. Poindexter and P.J. Caplan, Characterization of Si/SiO2 interface defects by electron spin resonance. Progress in Surface Science, 1983. 14(3): p. 201-294. 2. L. Dobaczewski, S. Bernardini, P. Kruszewski, P.K. Hurley, V.P. Markevich, I.D. Hawkins and A.R. Peaker, Energy state distributions of the Pb centers at the (100), (110), and (111) Si/SiO2 interfaces investigated by Laplace deep level transient spectroscopy. Applied Physics Letters, 2008. 92(24): p. 242104-3. 3. Y. Nishi, Study of Silicon-Silicon Dioxide Structure by Electron Spin Resonance I. Japanese Journal of Applied Physics. 10(Copyright (C) 1971 Publication Board, Japanese Journal of Applied Physics): p. 52. 4. K. Katsuhiro, O. Tomoya and K. Hirose, First-principles study on electronic structure of Si/SiO2 interface—Effect of interface defects on local charge density. Science and Technology of Advanced Materials, 2007. 8(3): p. 204. 5. S.N. Rashkeev, D.M. Fleetwood, R.D. Schrimpf and S.T. Pantelides, Defect Generation by Hydrogen at the Si- SiO2 Interface. Physical Review Letters, 2001. 87(16): p. 165506. 6. J. Mitard, B. De Jaeger, F.E. Leys, G. Hellings, K. Martens, G. Eneman, D.P. Brunco, R. Loo, J.C. Lin, D. Shamiryan, T. Vandeweyer, G. Winderickx, E. Vrancken, C.H. Yu, K. De Meyer, M. Caymax, L. Pantisano, M. Meuris and M.M. Heyns. Record ION/IOFF performance for 65nm Ge pMOSFET and novel Si passivation scheme for improved EOT scalability. in Electron Devices Meeting, 2008. IEDM 2008. IEEE International. 2008. 7. A. Dimoulas and P. Tsipas, Germanium surface and interfaces (Invited Paper). Microelectronic Engineering. 86(7-9): p. 1577-1581. 8. H. Shang, H. Okorn-Schimdt, J. Ott, P. Kozlowski, S. Steen, E.C. Jones, H.S.P. Wong and W. Hanesch, Electrical characterization of germanium p-channel MOSFETs. Electron Device Letters, IEEE, 2003. 24(4): p. 242-244. 9. S. Takagi, T. Tezuka, T. Irisawa, S. Nakaharai, T. Numata, K. Usuda, N. Sugiyama, M. Shichijo, R. Nakane and S. Sugahara, Device structures and carrier transport properties of advanced CMOS using high mobility channels. Solid-State Electronics, 2007. 51(4): p. 526-536. 10. Y. Fukuda, T. Ueno, S. Hirono and S. Hashimoto, Electrical Characterization of Germanium Oxide/Germanium Interface Prepared by Electron-Cyclotron-Resonance Plasma Irradiation. Japanese Journal of Applied Physics. 44(Copyright (C) 2005 The Japan Society of Applied Physics): p. 6981. 11. P. Tsipas and A. Dimoulas, Modeling of negatively charged states at the Ge surface and interfaces. Applied Physics Letters, 2009. 94(1): p. 012114-3. 12. K. Seino and F. Bechstedt, Effective density of states and carrier masses for Si/SiO2 superlattices from first principles. Semiconductor Science and Technology, 2011. 26(1): p. 014024. 13. J.F. Zhang and B. Eccleston, Donor-like interface trap generation in pMOSFET's at room temperature. Electron Devices, IEEE Transactions on, 1994. 41(5): p. 740-744. 14. T. Hosoi, K. Kutsuki, G. Okamoto, M. Saito, T. Shimura and H. Watanabe, Origin of flatband voltage shift and unusual minority carrier generation in thermally grown GeO[sub 2]/Ge metal-oxide-semiconductor devices. Applied Physics Letters, 2009. 94(20): p. 202112-3. 15. H. Matsubara, T. Sasada, M. Takenaka and S. Takagi, Evidence of low interface trap density in GeO2/Ge metal-oxide-semiconductor structures fabricated by thermal oxidation. Applied Physics Letters, 2008. 93(3): p. 032104-3. 16. M. Houssa, G. Pourtois, M. Caymax, M. Meuris, M.M. Heyns, V.V. Afanas'ev and A. Stesmans, Ge dangling bonds at the (100)Ge/GeO2 interface and the viscoelastic properties of GeO2. Applied Physics Letters, 2008. 93(16): p. 161909-3. 17. M. Houssa, G. Pourtois, M. Caymax, M. Meuris and M.M. Heyns, First-principles study of the structural and electronic properties of (100)Ge/Ge(M)O2 interfaces (M = Al, La, or Hf). Applied Physics Letters, 2008. 92(24): p. 242101-3. 18. D.M. Ceperley and B.J. Alder, Ground State of the Electron Gas by a Stochastic Method. Physical Review Letters, 1980. 45(7): p. 566. 19. M. Heyns, C. Adelmann, G. Brammertz, D. Brunco, M. Caymax, B. De Jaeger, A. Delabie, G. Eneman, M. Houssa, D. Lin, K. Martens, C. Merckling, M. Meuris, J. Mittard, J. Penaud, G. Pourtois, M. Scarrozza, E. Simoen, S. Sioncke and E.W. Wei. Alternative channel materials for MOS devices. in Silicon Nanoelectronics Workshop, 2008. SNW 2008. IEEE. 2008. 20. M. Kobayashi, G. Thareja, M. Ishibashi, Y. Sun, P. Griffin, J. McVittie, P. Pianetta, K. Saraswat and Y. Nishi, Radical oxidation of germanium for interface gate dielectric GeO2 formation in metal-insulator-semiconductor gate stack. Journal of Applied Physics, 2009. 106(10): p. 104117-7. 21. H. Kim, C.O. Chui, K.C. Saraswat and P.C. McIntyre, Local epitaxial growth of ZrO2 on Ge (100) substrates by atomic layer epitaxy. Applied Physics Letters, 2003. 83(13): p. 2647-2649. 22. Y.-H. Wu, M.-L. Wu, J.-R. Wu and L.-L. Chen, Ge-stabilized tetragonal ZrO2 as gate dielectric for Ge metal-oxide-semiconductor capacitors fabricated on Si substrate. Applied Physics Letters, 2010. 97(4): p. 043503-3. 23. P. Broqvist, A. Alkauskas and A. Pasquarello, Defect levels of dangling bonds in silicon and germanium through hybrid functionals. Physical Review B, 2008. 78(7): p. 075203. CH4 1. G.L. Loi, B. Agrawal, N. Srivastava, S.-C. Lin, T. Sherwood and K. Banerjee, A thermally-aware performance analysis of vertically integrated (3-D) processor-memory hierarchy, in Proceedings of the 43rd annual Design Automation Conference. 2006, ACM: San Francisco, CA, USA. p. 991-996. 2. S.F. Al-Sarawi, D. Abbott and P.D. Franzon, A review of 3-D packaging technology. Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, IEEE Transactions on, 1998. 21(1): p. 2-14. 3. A.W. Topol, D.C.L. Tulipe, L. Shi, D.J. Frank, K. Bernstein, S.E. Steen, A. Kumar, G.U. Singco, A.M. Young, K.W. Guarini and M. Ieong, Three-dimensional integrated circuits. IBM Journal of Research and Development, 2006. 50(4.5): p. 491-506. 4. I. Meikei, K.W. Guarini, V. Chan, K. Bernstein, R. Joshi, J. Kedzierski and W. Haensch. Three dimensional CMOS devices and integrated circuits. in Custom Integrated Circuits Conference, 2003. Proceedings of the IEEE 2003. 2003. 5. Y. Uemoto, E. Fujii, A. Nakamura and K. Senda. A high-performance stacked-CMOS SRAM cell by solid phase growth technique. in VLSI Technology, 1990. Digest of Technical Papers.1990 Symposium on. 1990. 6. S.J. Koester, A.M. Young, R.R. Yu, S. Purushothaman, K.N. Chen, D.C. La Tulipe, N. Rana, L. Shi, M.R. Wordeman and E.J. Sprogis, Wafer-level 3D integration technology. IBM Journal of Research and Development, 2008. 52(6): p. 583-597. 7. D.R. Cote, S.V. Nguyen, A.K. Stamper, D.S. Armbrust, D. Tobben, R.A. Conti and G.Y. Lee, Plasma-assisted chemical vapor deposition of dielectric thin films for ULSI semiconductor circuits. IBM J. Res. Dev., 1999. 43(1-2): p. 5-38. 8. J. Dong Min, R. Chunghyun, L. Kwang Yong, C. Byeong Hoon, K. Joungho, O. Tae Sung, L. Won Jong and Y. Jin. Development and Evaluation of 3-D SiP with Vertically Interconnected Through Silicon Vias (TSV). in Electronic Components and Technology Conference, 2007. ECTC '07. Proceedings. 57th. 2007. 9. S. Spiesshoefer, L. Schaper, S. Burkett, G. Vangara, Z. Rahman and P. Arunasalam. Z-axis interconnects using fine pitch, nanoscale through-silicon vias: Process development. in Electronic Components and Technology Conference, 2004. Proceedings. 54th. 2004. 10. K.H. Lu, Z. Xuefeng, R. Suk-Kyu, J. Im, H. Rui and P.S. Ho. Thermo-mechanical reliability of 3-D ICs containing through silicon vias. in Electronic Components and Technology Conference, 2009. ECTC 2009. 59th. 2009. 11. D.T. Read, Y.W. Cheng and R. Geiss, Morphology, microstructure, and mechanical properties of a copper electrodeposit. Microelectronic Engineering, 2004. 75(1): p. 63-70. 12. C.S. Selvanayagam, J.H. Lau, Z. Xiaowu, S. Seah, K. Vaidyanathan and T.C. Chai, Nonlinear Thermal Stress/Strain Analyses of Copper Filled TSV (Through Silicon Via) and Their Flip-Chip Microbumps. Advanced Packaging, IEEE Transactions on, 2009. 32(4): p. 720-728. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24309 | - |
| dc.description.abstract | 半導體科技在製程微縮以提高元件性能及密度,傳統的二氧化矽層逐漸面臨漏電流增加的影響,為了使物理厚度增加以阻絕漏電流,業界改採用高介電常數閘極氧化層。當高介電常數閘極氧化層應用於半導體元件,由於其與二氧化矽介面不穩定,臨限電壓變得不容易控制,足以影響元件的特性。在本論文中我們利用第一原理計算的方法模擬當高介電常數氧化層與二氧化矽介面參入特定原子造成對臨限電壓的影響,並利用原子層沉積技術製作高介電常數氧化層電容元件以驗證模擬的結果。在二氧化矽(SiO2)與二氧化鉿(HfO2)中參入了鋁(Al)則臨限電壓往正的方向移動,而參入鑭(La)則臨限電壓往負移動。其造成臨限電壓移動的原因與參入原子之功函數有關,而與價數關係不大。
研究矽、鍺晶圓及其氧化層介面特性譬如氧化層的介面缺陷、固定電荷…等,我們通常使用電性量測的方法,如電荷泵(charge pump)。本論文中,我們使用了第一原理計算的方法解釋在介面上的缺陷對電性造成的影響。我們建立了多種超晶格結構,並分析介面上矽、鍺缺陷產生的懸鍵(dangling bond)對其能量在能帶圖中的位置。在矽與二氧化矽結構中,我們分析矽的懸鍵位能分別靠近價帶與傳導帶,在介面缺陷中分別扮演著給體(donor-like)、受體(acceptor-like)的角色。在鍺與其氧化層中也可看到不同懸鍵能量的分布位置,氧化數為零的鍺元素,其懸鍵的能量接近價帶,而氧化數越高,懸鍵能量則越接近傳導帶,理論上可解釋不同介面品質影響電荷捕捉之特性。 當半導體製程微縮技術面臨挑戰,新的結構或封裝方式成為了解決之道,3DIC便是未來可能的趨勢。3DIC是將不同晶片直接以矽晶穿孔技術連接起來,使得在相同面積下有多層的結構之概念。我們利用解析解求得矽晶穿孔填入銅後因熱應變所產生的效應,並與有限元素分析法相互比較。當相鄰的兩個矽晶穿孔受到熱應力,中間的平行方向會產生拉伸應變,而垂直方向會產生壓縮應變。而兩個矽晶穿孔的應力分析則會隨著彼此間距離漸小而與解析解有所差異,當距離過小解析解會大於有限元素分析的應變量。最後,我們做了立體結構的有限元素法計算,發現在表面所受到的應變比解析解來的高。因此我們訂定了表面修正參數以修正解析解。此表面修正參數與有限元素分析中矽基板的厚度無關,所以可以適用到任何厚度之矽晶穿孔通道。此應力模擬可做為未來3DIC設計參考,在受到拉伸應變的區域置入n-FET,或是利用此應力特性使得p-FET及n-FET取得更好的平衡。 | zh_TW |
| dc.description.abstract | As the scaling of semiconductor industry continues, the performance and density of device grow. The traditional silicon dioxide has met the problem of leakage current. In order to reduce the leakage current and increase the physical thickness we use high-k materials as gate dielectric. But because of the instability between High-k and native oxide, it is not easy to control the threshold voltage, and this affect the performance of devices. In this thesis, we use first principle calculation to simulate the affect to threshold voltage when we introduce some dopant into the interface of High-k layer and SiO2. When we doped Al at the interface of SiO2/HfO2, the threshold voltage shifted positively. On the contrary, if we doped La at the interface, the threshold voltage will shift negatively. It is the work function of the doped element that affects the threshold voltage, not the valence charges.
In order to obtain the interface property like interface trap, we often use charge pumping, or conductance method. In this thesis, we use first principle calculation method to explain how the defect at interface affects the electric property. We build different kinds of SiO2/Si and GeO2/Ge structures, and analysis the Silicon, Germanium dangling bond’s energy level at bandgap. In SiO2/Si interface, the defect level near valence band is call donor-like defect, and the defect level near conduction band is the acceptor-like defect. In GeO2/Ge model, we can see different energy distribution of the Ge dangling bond. For Ge+0 (Ge dangling bond), the defect level is near valence band. And defect level will close to conduction band when the oxidation number of Ge is higher. The result can explain different characteristic in charge trapping. When scaling of device faces challenge, a new structure or package can become the solution. 3D IC is more and more important. It can be used to place different chip together with through silicon via (TSV), and different function can be integrated in single area. We here use analytical solution to find out the strain effect when silicon with TSV is cooling down from higher temperature, and compared with finite element calculation. When 2 TSV are close together, the area between TSVs will suffer from tensile strain in horizontal direction and compressive strain in vertical direction. The analytical solution will different from FEM result when TSVs are too close, and analytical solution will overestimate the strain between TSVs. When we do the FEM in 3D model and the surface will have more strain than analytical solution. We set a surface correction factor Cw to fix analytical solution. Cw is independent from thickness of silicon model, so it can fit to any thickness of TSV model. This analysis can be used as a design rule to increase carrier mobility in n-FET or p-FET. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-08T05:21:30Z (GMT). No. of bitstreams: 1 ntu-100-R98941021-1.pdf: 2904800 bytes, checksum: cddf18c8d85206c60ece352d474394c2 (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Motivation 1 1.2 Thesis organization 5 1.3 Reference 8 Chapter 2 Atomistic simulation of high-k insulator 9 2.1 Introduction 9 2.2 Theoretical background 10 2.2.1 CASTEP 10 2.2.2 Density functional theory (DFT) 11 2.2.3 Pseudopotential 13 2.2.4 Approximations of exchange-correlation 14 2.2.5 Geometry optimization 15 2.2.6 Density of states and partial density of states 16 2.3 HfO2/SiO2 modeling 17 2.3.1 Calculation method 17 2.3.2 Results and discussions 19 2.4 ZrO2/SiO2 modeling 24 2.5 HfO2/GeO2 26 2.6 Summary 27 2.7 Reference 28 Chapter 3 Defect States at SiO2/Si and GeO2/Ge Interfaces 31 3.1 Introduction 31 3.2 SiO2/Si interface modeling 32 3.2.1 Calculation method 32 3.2.2 Results and discussions 34 3.3 GeO2/Ge interface modeling 38 3.3.1 Calculation method 38 3.3.2 Results and discussions 39 3.4 Summary 44 3.5 Reference 45 Chapter 4 Strain Effect Modeling in Silicon with Through Silicon Via 48 4.1 Introduction 48 4.1.1 Driving force of 3D IC 48 4.1.2 3D IC process 50 4.2 Modeling of the strain in silicon 53 4.2.1 Strain and stress relation 53 4.2.2 Analytical solution of TSV 56 4.3 2D modeling and FEM result 62 4.3.1 1 TSV modeling 62 4.3.2 2 TSV modeling 66 4.3.3 Multi-TSV modeling 68 4.4 3D FEM and analytical solution for TSV 70 4.5 Summary 73 4.6 Reference 74 Chapter 5 Summary and Future Work 76 5.1 Summary 76 5.2 future work 78 | |
| dc.language.iso | en | |
| dc.subject | 直通矽晶穿孔 | zh_TW |
| dc.subject | 高介電常數材料 | zh_TW |
| dc.subject | 矽 | zh_TW |
| dc.subject | 鍺 | zh_TW |
| dc.subject | 第一原理計算 | zh_TW |
| dc.subject | TSV | en |
| dc.subject | first principle | en |
| dc.subject | High-k material | en |
| dc.subject | silicon | en |
| dc.subject | germanium | en |
| dc.subject | through silicon via | en |
| dc.title | 半導體介面模擬及直通矽晶穿孔技術之應力分析 | zh_TW |
| dc.title | Modeling of Semiconductor Interface and Strain Effect on Silicon with Through Silicon Via | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 99-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 胡振國(Jenn-Gwo Hwu),林中一(Chung-Yi Lin),林吉聰,郭宇軒(Yu-Hsuan Kuo) | |
| dc.subject.keyword | 第一原理計算,高介電常數材料,矽,鍺,直通矽晶穿孔, | zh_TW |
| dc.subject.keyword | first principle,High-k material,silicon,germanium,through silicon via,TSV, | en |
| dc.relation.page | 79 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2011-07-29 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf 未授權公開取用 | 2.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
