請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24291
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張文章(Wen-Chang Chang) | |
dc.contributor.author | Chia-Cheng Chin | en |
dc.contributor.author | 秦嘉政 | zh_TW |
dc.date.accessioned | 2021-06-08T05:20:56Z | - |
dc.date.copyright | 2005-07-29 | |
dc.date.issued | 2005 | |
dc.date.submitted | 2005-07-26 | |
dc.identifier.citation | Amersham International plc (1995). ECL Western Blotting Protocols.
Battista, J.R. 1997. Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol 51: 203-224. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. Bull, C., Niederhoffer, E.C., Yoshida, T., and Fee, J.A. 1991. Kinetic Studies of Superoxide Dismutases: Properties of the Manganese-Containing Protein from Thermus thermophilus. J Am Chem Soc 113: 4069-4076. Burnette, W.N. 1981. 'Western blotting': electrophoretic transfer of proteins from sodium dodecyl sulfate--polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Anal Biochem 112: 195-203. Cadenas, E., Boveris, A., Ragan, C.I., and Stoppani, A.O. 1977. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch Biochem Biophys 180: 248-257. Cooper, J.B., McIntyre, K., Badasso, M.O., Wood, S.P., Zhang, Y., Garbe, T.R., and Young, D. 1995. X-ray structure analysis of the iron-dependent superoxide dismutase from Mycobacterium tuberculosis at 2.0 Angstroms resolution reveals novel dimer-dimer interactions. J Mol Biol 246: 531-544. Daly, M.J., Ouyang, L., Fuchs, P., and Minton, K.W. 1994. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol 176: 3508-3517. Edgington, S.M. 1994. As we live and breathe: free radicals and aging. Correlative evidence from a number of fields suggests they may be key. Biotechnology (N Y) 12: 37-40. Fridovich, I. 1989. Superoxide dismutases. An adaptation to a paramagnetic gas. J Biol Chem 264: 7761-7764. Fridovich, I. 1995. Superoxide radical and superoxide dismutases. Annu Rev Biochem 64: 97-112. Getzoff, E.D., Tainer, J.A., Weiner, P.K., Kollman, P.A., Richardson, J.S., and Richardson, D.C. 1983. Electrostatic recognition between superoxide and copper, zinc superoxide dismutase. Nature 306: 287-290. Halliwell, B., and Gutteridge, J.M.C. 1999. Free radicals in biology and medicine,3rd ed. Oxford University Press, Oxford; New York, pp. xxxi, 936 p. Hille, R., and Nishino, T. 1995. Flavoprotein structure and mechanism. 4. Xanthine oxidase and xanthine dehydrogenase. Faseb J 9: 995-1003. Kitagawa, Y., Tanaka, N., Hata, Y., Kusunoki, M., Lee, G.P., Katsube, Y., Asada, K., Aibara, S., and Morita, Y. 1991. Three-dimensional structure of Cu,Zn-superoxide dismutase from spinach at 2.0 A resolution. J Biochem (Tokyo) 109: 477-485. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. Markillie, L.M., Varnum, S.M., Hradecky, P., and Wong, K.K. 1999. Targeted mutagenesis by duplication insertion in the radioresistant bacterium Deinococcus radiodurans: radiation sensitivities of catalase (katA) and superoxide dismutase (sodA) mutants. J Bacteriol 181: 666-669. Martin, M.E., Byers, B.R., Olson, M.O., Salin, M.L., Arceneaux, J.E., and Tolbert, C. 1986. A Streptococcus mutans superoxide dismutase that is active with either manganese or iron as a cofactor. J Biol Chem 261: 9361-9367. Matsuura, T., Miyai, K., Trakulnaleamsai, S., Yomo, T., Shima, Y., Miki, S., Yamamoto, K., and Urabe, I. 1999. Evolutionary molecular engineering by random elongation mutagenesis. Nat Biotechnol 17: 58-61. Mattimore, V., and Battista, J.R. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178: 633-637. McCord, J.M., and Fridovich, I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049-6055. Minton, K.W., and Daly, M.J. 1995. A model for repair of radiation-induced DNA double-strand breaks in the extreme radiophile Deinococcus radiodurans. Bioessays 17: 457-464. Misra, H., and Fridovich, I. 1976. Superoxide dismutase and the oxygen enhancement of radiation lethality. Arch Biochem Biophys 176: 577-581. Nilsson, R., Pick, F.M., and Bray, R.C. 1969. EPR studies on reduction of oxygen to superoxide by some biochemical systems. Biochim Biophys Acta 192: 145-148. Parker, M.W., and Blake, C.C. 1988. Crystal structure of manganese superoxide dismutase from Bacillus stearothermophilus at 2.4 A resolution. J Mol Biol 199: 649-661. Repine, J.E., Pfenninger, O.W., Talmage, D.W., Berger, E.M., and Pettijohn, D.E. 1981. Dimethyl sulfoxide prevents DNA nicking mediated by ionizing radiation or iron/hydrogen peroxide-generated hydroxyl radical. Proc Natl Acad Sci U S A 78: 1001-1003. Rotilio, G., Calabrese, L., Finazzi Agro, A., and Mondovi, B. 1970. Indirect evidence for the production of superoxide anion radicals by pig kidney diamine oxidase. Biochim Biophys Acta 198: 618-620. Sligar, S.G., Lipscomb, J.D., Debrunner, P.G., and Gunsalus, I.C. 1974. Superoxide anion production by the autoxidation of cytochrome P450cam. Biochem Biophys Res Commun 61: 290-296. Steinman, H.M., and Hill, R.L. 1973. Sequence homologies among bacterial and mitochondrial superoxide dismutases. Proc Natl Acad Sci U S A 70: 3725-3729. Stohs, S.J., and Bagchi, D. 1995. Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18: 321-336. Tainer, J.A., Getzoff, E.D., Beem, K.M., Richardson, J.S., and Richardson, D.C. 1982. Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. J Mol Biol 160: 181-217. Tanaka, A., Hirano, H., Kikuchi, M., Kitayama, S., and Watanabe, H. 1996. Changes in cellular proteins of Deinococcus radiodurans following gamma-irradiation. Radiat Environ Biophys 35: 95-99. Ukeda, H., Maeda, S., Ishii, T., and Sawamura, M. 1997. Spectrophotometric assay for superoxide dismutase based on tetrazolium salt 3'--1--(phenylamino)-carbonyl--3, 4-tetrazolium]-bis(4-methoxy-6-nitro)benzenesulfonic acid hydrate reduction by xanthine-xanthine oxidase. Anal Biochem 251: 206-209. Wang, P., and Schellhorn, H.E. 1995. Induction of resistance to hydrogen peroxide and radiation in Deinococcus radiodurans. Can J Microbiol 41: 170-176. White, O., Eisen, J.A., Heidelberg, J.F., Hickey, E.K., Peterson, J.D., Dodson, R.J., Haft, D.H., Gwinn, M.L., Nelson, W.C., Richardson, D.L., et al. 1999. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 286: 1571-1577. Whittaker, M.M., and Whittaker, J.W. 1998. A glutamate bridge is essential for dimer stability and metal selectivity in manganese superoxide dismutase. J Biol Chem 273: 22188-22193. Youn, H.D., Kim, E.J., Roe, J.H., Hah, Y.C., and Kang, S.O. 1996. A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem J 318 (Pt 3): 889-896. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/24291 | - |
dc.description.abstract | 大腸桿菌與抗輻射奇異球菌中的含錳超強氧歧化酶基因被放大並選殖到表
現載體pQE30 上,使得將要被表現的蛋白質在N 端會帶有His-tag。以IPTG 誘 導並加入cofacotor 錳離子後,重組蛋白可以成功的在E. coli M15 宿主細胞大量 表現。利用Ni-NTA 親和力管柱來進行純化,可以在這一個步驟中得到純度良好 的重組蛋白,之後並利用西方墨點法與質譜分析鑑定所得到的蛋白質。以凝膠層 析法鑑定天然的大腸桿菌含錳超強氧歧化酶、重組的大腸桿菌含錳超強氧歧化 酶、重組的抗輻射奇異球菌含錳超強氧歧化酶,得到它們都是屬於二聚體的蛋白 質。三個蛋白質的比活性分別是13000 U/mg、9800 U/mg、7200 U/mg。 重組的含錳超強氧歧化酶耐熱能力與抗輻射能力都比天然的含錳超強氧歧 化酶要來得好。重組蛋白在攝氏90 度加熱20 分鐘後都還保有70%的活性,而天 然的含錳超強氧歧化酶在攝氏80 度加熱20 分鐘後僅剩20%的活性。重組蛋白接 受2585.88 Gy 的X-ray 照射後,活性都還能保持在80%以上。而天然的蛋白在 相同的劑量下,濃度越低的樣品、活性損失越大。 | zh_TW |
dc.description.abstract | The DNA fragment encoding manganese superoxide dismutase from
Deinococcus radiodurans and Escherichia coli was amplified and cloned into the plasmid pQE30 to obtain an N-terminus His-tagged fusion expression plasmid. The recombinant protein MnSODs were successfully overexpressed in E. coli M15 supplemented with Mn2+. The fusion proteins were purified in a single step by Ni-NTA affinity chromatograph, and verified by western blotting and ESI-MASS spectrometry. Characterization of oligomeric state by gel filtration chromatography showed that three kinds of proteins were all dimeric. The specific activity of native E. coli MnSOD, recombinant E. coli MnSOD, and recombinant D. radiodurans MnSOD are 13000 U/mg, 9800 U/mg, and 7200 U/mg respectively. Both recombinant MnSOD is shown to be more thermostable and radiation resistance than native MnSOD of E. coli. The activity of native MnSOD reduced to 20% after heating at 80℃ for 20 min, whereas the activity of both recombinant MnSODs was maintained at about 70% after heating at 90℃ for 20 min. His-tagged MnSOD preserved more than 80% of its activity after irradiation, whereas native MnSOD lost its activity dramatically. | en |
dc.description.provenance | Made available in DSpace on 2021-06-08T05:20:56Z (GMT). No. of bitstreams: 1 ntu-94-R92b46027-1.pdf: 2043098 bytes, checksum: 9739049c15c6125a422219ec1a1e0bcd (MD5) Previous issue date: 2005 | en |
dc.description.tableofcontents | 中文摘要................................................................................................................................................II
ABSTRACT........................................................................................................................................ III LIST OF FIGURES............................................................................................................................ IV LIST OF TABLES ................................................................................................................................V ABBREVIATIONS............................................................................................................................. VI CHAPTER 1. INTRODUCTION..........................................................................................................1 SUPEROXIDE RADICAL ........................................................................................................................2 SUPEROXIDE DISMUTASE ....................................................................................................................3 DEINOCOCCUS RADIODURANS R1........................................................................................................5 CHAPTER 2. MATERIALS AND METHODS...................................................................................7 CHEMICALS (REAGENTS) AND ENZYMES ...........................................................................................8 INSTRUMENTS ....................................................................................................................................9 BACTERIAL STRAINS, AND PLASMIDS..................................................................................................9 TRANSFORMATION...........................................................................................................................10 OVEREXPRESSION AND ENZYME PURIFICATION...............................................................................10 PURIFICATION OF MALTOSE-BINDING PROTEIN (MBP) FUSIONS.....................................................11 PROTEIN CONCENTRATION DETERMINATION...................................................................................12 SODIUM DODECYL SULFATE-POLYACRYLAMIDE GEL ELECTROPHORESIS.......................................12 WESTERN BLOTTING........................................................................................................................12 FAST PROTEIN LIQUID CHROMATOGRAPHY (FPLC)........................................................................13 CRYSTALLIZATION OF E.COLI HIS-TAGGED SOD............................................................................14 ACTIVITY ASSAY OF SUPEROXIDE DISMUTASE AND UNIT DEFINITION..............................................14 TREATMENT OF PROTEINS WITH IONIZING RADIATION...................................................................15 COMPUTATIONAL ANALYSIS..............................................................................................................15 CHAPTER 3. RESULTS AND DISCUSSION...................................................................................16 OVEREXPRESSION AND PURIFICATION OF MNSODS .......................................................................17 THERMOSTABILITY..........................................................................................................................19 RADIORESISTANCE...........................................................................................................................20 REFERENCE:.....................................................................................................................................38 | |
dc.language.iso | en | |
dc.title | 大腸桿菌與抗輻射菌的超氧歧化酶之生化研究 | zh_TW |
dc.title | Biochemical Studies on Superoxide Dismutase from
Escherichia coli K12 and Deinococcus radiodurans R1 | en |
dc.type | Thesis | |
dc.date.schoolyear | 93-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 吳世雄(Shih-Hsiung Wu),蔡珊珊(San-San Tsay),林光慧(Guang-Huey Lin) | |
dc.subject.keyword | 大腸桿菌,抗輻射菌,超氧岐化酶,熱穩定性,重組蛋白, | zh_TW |
dc.subject.keyword | E. coli,Deinococcus,superodxide dismutase,thermostability,recombinant protein, | en |
dc.relation.page | 40 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2005-07-27 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科學研究所 | zh_TW |
顯示於系所單位: | 生化科學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-94-1.pdf 目前未授權公開取用 | 2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。